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Abstract
Hormone replacement therapy is necessary for pa-
tients with adrenal and gonadal failure. Steroid hor-
mone treatment is also employed in aging people for 
sex hormone deficiency. These patients undergo such 
therapies, which have associated risks, for their entire 
life. Stem cells represent an innovative tool for tissue 
regeneration and the possibility of solving these prob-
lems. Among various stem cell types, mesenchymal 
stem cells have the potential to differentiate into ste-
roidogenic cells both in vivo  and in vitro . In particular, 
they can effectively be differentiated into steroidogenic 
cells by expressing nuclear receptor 5A subfamily pro-
teins (steroidogenic factor-1 and liver receptor homo-
log-1) with the aid of cAMP. This approach will provide 
a source of cells for future regenerative medicine for 
the treatment of diseases caused by steroidogenesis 

deficiencies. It can also represent a useful tool for 
studying the molecular mechanisms of steroidogenesis 
and its related diseases.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Stem cells can be a potential source of cells 
for regenerative medicine for diseases caused by ste-
roidogenesis deficiency. Among various stem cell types, 
mesenchymal stem cells have the potential to differen-
tiate into steroidogenic cells both in vivo  and in vitro . 
This system can also provide a powerful tool for study-
ing the molecular mechanisms of steroidogenesis and 
its related diseases.
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INTRODUCTION
In mammals, steroid hormones are produced from cho-
lesterol mainly in adrenal glands and gonads. Steroid 
hormones are essential for glucose metabolism, the stress 
response, fluid and electrolyte balance, sex differentiation 
and reproduction via binding to cognate receptors in tar-
get tissues. Therefore, a steroidogenesis abnormality can 
often be life threatening. Congenital adrenal hyperplasia 
(CAH) is one of  the most common disorders caused by 
deficiency of  any enzyme involved in steroidogenesis in 
adrenal glands[1,2]. Impaired cortisol and aldosterone pro-
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duction increases adrenocorticotropic hormone (ACTH) 
secretion from the pituitary gland, leading to adrenal 
hyperplasia and accumulation of  adrenal androgens. Fe-
male patients are prenatally virilized because of  excess 
androgen and neonates of  both genders may suffer from 
a life-threatening Addisonian crisis. Steroid hormone 
deficiency also occurs in aging people by hypogonadism. 
In males, testosterone concentrations decline with age, 
causing various clinical symptoms such as obesity and hy-
pertension[3-6]. Postmenopausal women often suffer from 
osteoporosis caused by estrogen deficiency[7,8]. Hormone 
replacement therapy has been well established for the 
treatment of  such patients, although they require hor-
mone replacement for their entire lifetime. In addition, 
these patients suffer from various side effects (liver and 
kidney damage, immune system dysfunction) and risks 
associated with long-term replacement therapy (cancer). 
Therefore, another therapy is needed to resolve these 
problems. Stem cells represent an innovative tool for tis-
sue regeneration and gene therapy, which could possibly 
solve these problems. In this review, we provide an over-
view of  differentiation and regeneration of  steroidogenic 
cells using mesenchymal stem cells (MSCs), preceded by a 
description of  the development of  steroidogenic organs. 
We also describe molecular events, such as coactivator 
function and epigenetic modifications, which occur dur-
ing differentiation.

DEVELOPMENT OF STEROIDOGENIC 
ORGANS AND NUCLEAR RECEPTOR 5A 
SUBFAMILY
Steroidogenesis begins with conversion of  cholesterol 
into pregnenolone in mitochondria by the P450 side 
chain cleavage enzyme (P450scc/CYP11A1/Cyp11a1), 
a rate-limiting enzyme in the synthesis of  all steroid hor-
mones. Thereafter, various hormones are synthesized 
by tissue-specific P450 hydroxylases and hydroxysteroid 
dehydrogenases[9,10]. Although adrenal glands and gonads 
produce various steroid hormones in adult life, they have 
a common developmental origin, a so-called adrenogo-
nadal primordium (AGP) that mainly originates from the 
intermediate mesoderm and is localized on the coelomic 
epithelia of  the developing urogenital ridge[11-13]. As de-
velopment proceeds, AGP separates into two distinct 
populations, adrenocortical and gonadal primordia, char-
acterized by the existence of  chromaffin cell precursors 
and primordial germ cells, respectively, which originate 
and migrate from other germ layers. During differentia-
tion, adrenal glands and gonads synthesize tissue-specific 
steroid hormones by specific expression patterns of  ste-
roidogenic enzymes. 

Steroidogenic factor-1 (SF-1, also known as Ad4BP) 
is one of  the earliest markers of  the appearance of  
AGP[11,14]. Because SF-1 knockout mice fail to develop 
adrenal glands and gonads, SF-1 represents a master 
regulator of  the development of  these organs[15-17]. SF-1/

Ad4BP is also important for steroidogenesis by regulating 
the transcription of  steroidogenic genes. SF-1/Ad4BP 
was originally discovered by Keith Parker and Ken Mo-
rohashi as a transcription factor that binds to the Ad4 
sequence in promoter regions of  all cytochrome P450 
steroid hydroxylase genes for transactivation[18,19]. They 
concluded from the expression of  SF-1 in steroidogenic 
cells and its regulation of  all steroid hydroxylase genes 
that SF-1 is a determinant factor in cell-specific expres-
sion of  steroidogenic enzymes. In addition to steroido-
genic enzymes, diverse groups of  SF-1 target genes, such 
as other steroidogenic genes, pituitary hormones and 
cognate receptors, and sex differentiation-related genes 
have been identified thus far[17,20,21]. SF-1 belongs to the 
nuclear receptor (NR) superfamily. NRs are lipophilic 
ligand-dependent and independent transcription factors 
and essential for various physiological phenomena[22,23]. 
A large number of  family members have been identi-
fied from invertebrate to mammals. There are a total of  
48 family members on the human genome. They share 
a common structural organization: zinc finger DNA-
binding domain and a carboxyl-terminal ligand-binding 
domain. The NR superfamily can be broadly divided 
into four classes based on their characteristics (steroid 
hormone receptors, RXR heterodimers, dimeric orphan 
receptors and monomeric orphan receptors). SF-1 is 
categorized into monomeric orphan receptors, although 
Ingraham and colleague argued the possibility that phos-
phatidylinositols are ligands for SF-1[24]. SF-1 is very 
similar to liver receptor homolog-1 (LRH-1). LRH-1 was 
originally identified in the liver[25] and is known to func-
tion in metabolism, cholesterol and bile acid homeostasis 
by regulating the transcription of  a number of  genes[26-29]. 
In addition to the liver, LRH-1 is highly expressed in tis-
sues of  endodermal origin. It is also expressed in gonads 
and involved in steroidogenesis; in particular, its ovarian 
expression levels are the most abundant among tissues[30]. 
These factors constitute one of  the NR subfamilies 
and are designated as NR5A proteins (Table 1, SF-1 is 
NR5A1 and LRH-1 is NR5A2). SF-1 and LRH-1 have 
various common characteristics, such as binding sequenc-
es, target genes and cofactors[24,31-38]. 

Consistent with its role in steroidogenesis, SF-1 ex-
pression is detected in adults in three layers of  the ad-
renal cortex (zona reticularis, zona fasciculata and zona 
glomerulosa), testicular Leydig and Sertoli cells, ovarian 
theca, granulosa cells and, to a lesser extent, in the corpus 
lutea[39,40]. In the corpus lutea, LRH-1 rather than SF-1 
is highly expressed and is important for progesterone 
production[36,41,42]. LRH-1 is also expressed in testicular 
Leydig cells[12,43,44]. 

SF-1 knockout mice die shortly after birth because 
of  adrenal insufficiency and exhibit male-to-female sex 
reversal in external genitalia[15]. These phenotypes are 
caused by the complete loss of  adrenal glands and go-
nads. Although the initial stages of  adrenal and gonadal 
development occur in the absence of  SF-1, they regress 
and disappear during the following developmental stage. 
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Because gonads disappear prior to male sexual differ-
entiation, the internal and external urogenital tracts of  
SF-1 knockout mice are of  the female type, irrespective 
of  genetic sex. Heterozygous SF-1 knockout mice show 
decreased adrenal volume associated with impaired corti-
costerone production in response to stress[45-47], whereas 
transgenic overexpression of  SF-1/Ad4BP increases 
adrenal size and ectopic adrenal tissue in the thorax[48,49]. 
Total SF-1 disruption in mice demonstrated that SF-1 is 
crucial for the determination of  steroidogenic cell fate in 
vivo. It has also been shown in Leydig cell and granulosa 
cell-specific knockout (LCKO and GCKO, respectively) 
models that SF-1 plays important roles in steroidogenesis 
following the development of  steroidogenic organs. In 
LCKO mice, testicular steroidogenic acute regulatory 
protein (StAR) and Cyp11a1 expression is impaired, 
indicating a defect in androgen production[50]. Consis-
tent with this hypothesis, the testes fail to descend (an 
androgen-dependent developmental process) and are 
hypoplastic. In GCKO mice, the ovaries are hypoplastic, 
adults are sterile and ovaries show reduced numbers of  
oocytes and lack corpora lutea[51]. Gonadotropin-induced 
steroid hormone production are also markedly reduced in 
this model. 

LRH-1 knockout mouse embryos die around E6.5-7.5 
d[52,53]. Moreover, heterozygous and GCKO models re-
vealed the importance of  LRH-1 in steroidogenesis[41,54,55]. 
In heterozygous Lrh-1-deficient male mice, testicular 
testosterone production is decreased along with the ex-
pression of  steroidogenic enzymes and the development 
of  sexual characteristics[54]. In addition, GCKO mice 
are infertile because of  anovulation with impaired pro-
gesterone production[41]. It has also been demonstrated 
that LRH-1 has a broader role beyond steroidogenesis in 
these cells as they fail to luteinize.

Although SF-1 and LRH-1-deficient models revealed 
a common function in gonadal steroidogenesis, both fac-
tors cannot compensate for the deficiency of  the other 
factor, even in cells expressing both factors. These facts 
indicate that even although SF-1 and LRH-1 control 
transcription by binding to the same response sequences, 

each has selective actions on the pattern of  gene expres-
sion in the development of  steroidogenic cells and ste-
roidogenesis.

DIFFERENTIATION OF MSCS INTO 
STEROIDOGENIC CELLS 
In an early study, forced expression of  SF-1 has been 
shown to direct differentiation of  murine embryonic 
stem cells (ESCs) toward the steroidogenic lineage and 
then Cyp11a1 mRNA was expressed after the addition of  
cAMP and retinoic acid[56]. However, the steroidogenic 
capacity of  these cells is very limited and they do not un-
dergo de novo synthesis because progesterone is the only 
steroid hormone produced in the presence of  the exog-
enous substrate, 20α-hydroxycholesterol. In addition, 
major differences between these differentiated cells and 
natural steroidogenic cells have been shown in cholester-
ol delivery and the steroidogenic pathway, including de-
ficiencies of  StAR (cholesterol delivery protein from the 
outer to inner mitochondrial membrane in steroidogenic 
cells) and steroidogenic enzymes, except for Cyp11a1 and 
Hsd3b1[56-58]. It is also very difficult to isolate clones ex-
pressing SF-1 from ESCs and induced pluripotent stem 
cells[37,57,59] because SF-1 (and LRH-1) overexpression is 
cytotoxic to these cells. These studies clearly indicate that 
SF-1 initiates the fate-determination program of  the ste-
roidogenic lineage in stem cells, although it is not com-
pleted in pluripotent stem cells.

Based on these results, we focused on MSCs[57], mul-
tipotent adult stem cells that have been shown to dif-
ferentiate into mesodermal lineages, such as adipocytes, 
chondrocytes, osteoblasts and hematopoietic-supporting 
stroma, both in vivo and ex vivo[60-63]. Furthermore, MSCs 
are able to generate cells of  all three germ layers, at least 
in vitro. Although MSCs were originally discovered in 
bone marrow (BM-MSCs)[60,64-66], they have also been 
isolated from various origins, such as fat, placenta, um-
bilical cord blood and other tissues[62,63,67-69]. In addition 
to their multipotency, MSCs have attracted considerable 
interest for use in cell and gene therapies because they 
can be obtained from adult tissues and suppress immune 
responses[70,71]. Indeed, their therapeutic applicability has 
been assessed in some cases and particularly in bone tis-
sue engineering[72,73].

Induction of MSC differentiation into steroidogenic cells 
in vivo and in vitro
To investigate the potential of  MSCs to differentiate into 
steroidogenic cells, BM-MSCs from GFP-transgenic rats 
were transplanted into prepubertal testes (Figure 1A)[57]. 
In testes, there are two different steroidogenic popula-
tions, fetal and adult Leydig cells[74-76]. Even although the 
cells in these two populations share a common charac-
teristic of  producing androgen, they are different in their 
origin, ultrastructure, lifespan, steroidogenic pathway and 
its regulation. Fetal Leydig cells have multiple origins and 
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Table 1  Summary of the characteristics of steroidogenic 
factor-1 and liver receptor homolog-1

Nuclear 
receptor

Expressing 
tissues

Function Phenotypes of knockout 
mice

SF-1/
Ad4BP/
NR5A1

Testis, ovary, 
adrenal, 

Steroidogenesis 
Sex differentiation 

Energy homeostasis 

Adrenal and gonadal 
agenesis 

Sex reversal in external 
genitalia

Impaired expression of 
pituitary gonadotropins

Abnormality of 
ventromedial 

hypothalamic nucleus
LRH-1/
NR5A2

Ovary, testis, 
liver, pancreas, 
intestine, early 

embryo

Steroidogenesis 
Ovulation 

Bile acid synthesis 
Glucose metabolism

Embryonic lethal around 
E6.5-7.5 d
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Cyp17). These results indicate that MSCs have the capac-
ity to differentiate into steroidogenic Leydig cells in vivo.

Although these data suggest that the injected stem 
cells differentiated into Leydig cells, the apparent stem 
cell plasticity may also be explained by possible cell-nu-
clear fusion between donor and recipient cells. However, 
purified murine BM-MSC lines spontaneously differenti-
ate into steroidogenic cells in vitro[57]. A human CYP11A1 
promoter-driven GFP reporter, which consisted of  a 
2.3-kb fragment that drives reporter gene expression 
selectively in adrenal and gonadal steroidogenic cells[77], 

appear in the interstitial space to induce sex differentia-
tion just after the formation of  the testis cord. Adult 
Leydig cells, which originate from mesenchymal precur-
sor cells present in the testicular interstitium, appear to 
induce puberty. During the postnatal period, fetal Leydig 
cells are replaced by adult Leydig cells in prepubertal tes-
tis. Therefore, it should be possible to use transplanted 
BM-MSCs in such conditions in vivo. Indeed, after 3 wk, 
transplanted GFP-positive cells were located in the inter-
stitium and expressed various steroidogenic enzymes for 
androgen production (P450scc/Cyp11a1, 3β-HSD I and 
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Figure 1  Differentiation of mesenchymal stem cells into steroidogenic cells. A: Transplantation of GFP-positive MSCs into prepubertal testis. Double staining of 
frozen sections from the testis 5 wk after MSC transplantation with anti-GFP and anti-P450scc antibodies; B: Protocol for generating steroidogenic cells from MSCs, 
and gene expression pattern of steroidogenic cells derived from hBM-MSCs; C: Fluorescence images of DAPI staining and P450scc immunostaining of SF-1 intro-
duced BM-MSCs cultured with or without cAMP. ST: Seminiferous tubule. MSC: Mesenchymal stem cell.
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has been transfected into BM-MSCs to detect cell popu-
lations committed to the steroidogenic lineage. In some 
transfected cell lines, GFP fluorescence was detected in 
very small populations that were also positive for Cy-
p11a1. Further analysis showed that these cells expressed 
several Leydig cell markers, including 3β-HSD type Ⅰ and 
Ⅵ and luteinizing hormone (LH) receptor. These ob-
servations further support the in vivo findings that MSCs 
have the capacity to differentiate into steroidogenic cells, 
even under the isolated condition. Therefore, part of  
population of  MSCs can spontaneously differentiate into 
steroidogenic cells in vitro. Interestingly, SF-1 expression 
was also detected in the GFP-positive cells. 

Differentiation of MSCs into steroidogenic cells induced 
by SF-1 and LRH-1
The above mentioned results strongly suggest that SF-1 
can effectively direct the differentiation of  MSCs into the 
steroidogenic lineage. Indeed, MSCs completely differ-
entiate into steroidogenic cells and show their phenotype 
after stable expression of  SF-1 (using plasmids or retrovi-
ruses) and cAMP treatment (Figure 1B)[36,37,44,57,78,79]. SF-1 
by itself  induces morphological changes in BM-MSCs, 
such as the accumulation of  numerous lipid droplets, 
although these cells hardly express steroidogenic enzyme 
genes or produce steroid hormones at detectable levels. 
However, SF-1 expressing cells strongly become positive 
for CYP11A1/Cyp11a1 after cAMP treatment (Figure 
1C). These cells express many other steroidogenesis-
related genes (SR-BI, StAR, 3β -HSD and other P450 
steroid hydroxylases) and autonomously produce steroid 
hormones, including androgen, estrogen, progestin, 
glucocorticoid and aldosterone. Notably, this approach 
differentiates human BM-MSCs into high cortisol-
producing cells in response to ACTH, which are very 
similar to fasciculata cells in the adrenal cortex (Figure 
1B). Adenovirus-mediated transient expression of  SF-1 
also differentiates BM-MSCs into steroidogenic cells 
with the capacity of de novo synthesis of  various steroid 
hormones[80-84]. After transplantation into animal models, 
these MSC-derived steroidogenic cells can improve symp-
toms of  steroid hormone deficiencies caused by adrenal-
ectomy. However, as mentioned above, these methods are 
not applicable to ESCs, embryonal carcinoma cells and 
terminally differentiated cells, such as fibroblasts and adi-

pocytes[37,57,81]. These results indicate that MSCs are suit-
able stem cells for differentiation of  steroidogenic cells. 
This hypothesis is supported by the fact that after pre-
differentiation into MSCs, ESCs can also be subsequently 
differentiated into steroidogenic cells using SF-1[37].

As in the case of  SF-1, introduction of  LRH-1 (us-
ing retroviruses) into BM-MSCs with the aid of  cAMP 
induced the expression of  steroidogenic enzymes and 
differentiation into steroid hormone-producing cells[44]. 
Expression of  SF-1 was never induced in LRH-1-trans-
duced cells and vice versa. Therefore, LRH-1 could act as 
another master regulator for determining the MSC fate 
to the steroidogenic lineage. This phenomenon is likely 
to represent a situation of  active progesterone produc-
tion in human corpus luteum; LRH-1 is highly expressed, 
whereas SF-1 is expressed at very low levels[36,42].

MOLECULAR MECHANISMS OF 
DIFFERENTIATION
Steroidogenic cells derived from various MSCs and their 
properties
In addition to BM-MSCs, various MSC types have been 
differentiated into steroidogenic cells by the above men-
tioned methods. However, their steroidogenic properties 
markedly vary and depend on the derivation tissues and 
species (Table 2)[36,42,57,83,84]. For example, hBM-MSCs 
differentiated into cortisol-producing adrenocortical-
like cells and umbilical cord blood (UCB)-derived MSCs 
differentiated into granulosa luteal-like cells, which pro-
duced high levels of  progesterone[36,57]. Gondo et al[83] also 
reported that steroidogenic profiles of  adipose tissue-de-
rived MSCs were markedly different from those of  BM-
MSCs prepared from the same mouse. However, the cell 
differentiation fate was consistent in each MSC. These 
findings suggest that the steroidogenic properties of  the 
differentiated cells depend on the characteristics of  the 
originating MSCs. 

To determine the difference between BM-MSCs and 
UBC-MSCs, the fluctuations in gene expression were 
investigated by a DNA microarray[36,85]. Among the iden-
tified genes, peroxisome proliferator-activated receptor 
γ coactivator-1α (PGC-1α) was expressed only in UBC-
MSCs at relatively high levels. Consistent with these re-
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Table 2  Properties of steroidogenic cells derived from mesenchymal stem cells induced by steroidogenic factor-1/liver receptor 
homolog-1 and cAMP

Cells Origin SF-1/LRH-1 Produced Properties of differentiated cells

KUM9
Mouse

Plasmid Testosterone Testicular leydig cells
Bone marrow

hMSC-
TERT-E6/7

Human Plasmid Cortisol Adrenal fasciculata cells
Bone marrow Retrovirus Cortisol

UE7T-13
Human

Bone marrow

Retrovirus Testosterone, cortisol
Fetal adrenal-like cellsUE6E7T-12 Retrovirus Testosterone, cortisol

UE6E7T-11 Retrovirus Testosterone, cortisol

UCB408E6E7T-33
Human 

Retrovirus Progesterone cells Ovarian granulosa-luteal cells
Umbilical cord blood
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sults, the expression of  PGC-1α was observed in ovarian 
granulosa cells. Overexpression of  PGC-1α in granulosa 
cells induced the genes essential for progesterone synthe-
sis, whereas knockdown of  PGC-1α in granulosa cells 
attenuated the expression of  these genes. These results 
demonstrate that PGC-1α represents one of  the impor-
tant factors for progesterone production in luteinized 
granulosa cells.

Epigenetic regulation during differentiation
Differentiation of  stem cells into specialized cells can be 
viewed as a process in which epigenetic changes result in 
alterations in genes expressed by the cell as it becomes 
more specialized[86,87]. Thus, stem cell differentiation is 
a process that involves a series of  epigenetic changes in 
the genome: histone and DNA modifications cause chro-
matin structural changes and affect the profiles of  gene 
expression. In fact, such epigenetic modifications con-
tribute to the induction of  steroidogenesis-related genes 
when MSCs differentiate into steroidogenic cells[44,88-90]. 

The histone code hypothesis predicts that post-trans-
lational modifications of  histone tails, alone or in com-
bination, function to direct specific and distinct DNA-
templated programs[91]. Histone acetylation is a positive 
marker of  transcription, while histone methylation corre-
lates with transcriptional activation (H3K4, H3K36) and 
repression (H3K9, H3K27) that are dependent on their 
amino acid residues[92]. In hMSCs-derived steroidogenic 
cells, H3K27 acetylation and H3K4 dimethylation (active 
enhancer markers) increased in the regulatory regions of  
some steroidogenesis-related genes (glutathione S-trans-
ferase A and ferrodoxin reductase) after the introduction 
of  SF-1[89,90]. Conversely, histone eviction, which has 
been reported in actively transcribed genes[93], took place 
on the promoter and the enhancer regions of  the StAR 
gene[88]. Because these modifications occurred around 
the SF-1 binding sites, recruitment of  SF-1 to the regu-
latory regions is likely to induce recruitment of  various 
transcriptional regulators and histone modifiers, which in 
turn alter chromatin structure and lead to the expression 
of  steroidogenesis-related genes.

In addition to histone modifications, DNA methyla-
tion at cytosine residues of  the dinucleotide sequence 
CpG, which induces gene silencing, is essential for dif-
ferentiation and development[94,95]. In MSC-derived ste-
roidogenic cells, the DNA methylation status changes 
in the promoter regions of  some steroidogenic genes 
during differentiation[44]. In undifferentiated hBM-
MSCs, the CYP11A1 promoter region is hypomethyl-
ated, whereas the CYP17A1 promoter region is highly 
methylated. In SF-1/LRH-1-introduced MSCs during 
cAMP treatment, this condition was almost completely 
unchanged in the CYP11A1 promoter region, whereas 
the CYP17A1 promoter region was progressively de-
methylated. These methylation patterns of  the CYP11A1 
and CYP17A1 promoters closely paralleled the induction 
patterns of  both genes by cAMP. There is a time lag as-
sociated with the induction of  steroidogenic enzymes by 

cAMP treatment in SF-1/LRH-1-introduced MSCs[44,57]. 
The order of  induction of  the enzymes is similar to the 
sequential order of  the steroid hormone synthesis path-
way; upstream enzymes (CYP11A1 and 3β-HSD) were 
rapidly induced at earlier time points (6-12 h), whereas 
downstream enzymes (CYP17A1 and CYP11B1) were 
induced at later time points (24-48 h). Because this time 
lag disappeared by treatment with a demethylating agent, 
the status of  DNA methylation in the promoter regions 
could be important for regulating the expression of  ste-
roidogenic enzymes in MSCs.

CONCLUSION
It is clear that SF-1 represents a master regulator, not 
only for the development of  steroidogenic organs, but 
also for steroidogenesis following organogenesis. LRH-1 
is also important for steroidogenesis in gonads. In addi-
tion, SF-1 and LRH-1 direct differentiation of  non-ste-
roidogenic stem cells into steroidogenic cells. Among the 
various stem cell types, MSCs are suitable stem cells for 
the differentiation of  steroidogenic cells. After pre-dif-
ferentiation into MSCs, pluripotent stem cells can also be 
subsequently differentiated into steroidogenic cells using 
SF-1. These cells may provide a source for regenerative 
and gene therapies, although various problems should 
be resolved in future studies. It is essential to delineate 
the conditions that allow the directed differentiation into 
specific steroidogenic lineages with the characteristics of  
testicular Leydig cells, ovarian granulosa and theca cells, 
as well as various types of  adrenocortical cells (reticularis, 
fasciculata and glomerulosa). In addition, it is neces-
sary to establish methods for inducing SF-1 and LRH-1 
expression in stem cells without gene transfer. Further 
studies are required for the realization of  regeneration of  
steroidogenic tissues. 

MSC-derived steroidogenic cells also provide oppor-
tunities for investigating various phenomena involved in 
differentiation of  steroidogenic cells and steroidogenesis. 
In addition to the molecular mechanisms of  differentia-
tion described herein, the conservation and evolution of  
the androgen metabolic pathway (11-ketotestosterone 
production) between teleost fish and mammals has been 
revealed[78,96]. Genome-wide analyses of  differentiated 
cells identified novel target genes regulated by SF-1 
and LRH-1[89,90,97,98]. In addition, they contributed to the 
elucidation of  one of  the causes of  steroidogenesis dis-
orders[99-101]. Thus, progression of  these studies is also 
important for the understanding of  steroidogenesis and 
its related disorders.
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