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Abstract

Purpose of Review—One of the major obstacles in fully understanding HIV transmission

comes from the impracticality of studying transmission in humans. Because of this encumbrance,

the early phases of HIV transmission and systemic dissemination are poorly understood. In order

to fully comprehend these critical steps in HIV infection, animal models must be devised to

accurately reflect HIV’s mode of action. This review seeks to highlight the essential nature of

modeling HIV transmission in nonhuman primates.

Recent Findings—Recently it was discovered that HIV infection is established in newly

infected recipients by a single or few transmitted/founder variants. This has reshaped how animal

modeling is conducted with researchers currently recapitulating a physiologically relevant, low-

titer infection. Pertinent animal models have been established for the most common routes of

infection, including rectal, vaginal, and penile transmission; models for intravenous and oral

transmission are still in developmental stages.

Summary—These limited dose models now accurately reflect HIV transmission in humans, and

provide a realistic experimental platform for vaccine development and other intervention strategies

which can be used to inform vaccine development in humans. Using information obtained in NHP

and human trials, it is conceivable to envision effective prevention modalities in the near future.
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Introduction

HIV transmission in humans is a complex biological process confounded by the difficulty of

identifying and characterizing primary HIV infections. These obstacles are further

complicated by socioeconomic demographics, stigmatism of sexual practices, and the social

fridge nature of these at-risk populations. Nonhuman primate (NHP) models have been

developed to examine key features of HIV disease that otherwise would be challenging or

impossible to determine in humans. In order to most accurately model HIV transmission in
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NHP, we must first identify what is known about HIV transmission in humans then

determine what key aspects of transmission are or can be faithfully reproduced in this

model. NHP species not naturally infected with simian immunodeficiency virus (SIV) have

been shown to be an excellent model of HIV disease by accurately reproducing immune

activation, CD4 depletion, and significant viral replication when infected with SIV from

other naturally infected monkeys. Although this model has been used for years, SIV

transmission studies in NHP have recently been modified to incorporate new findings from

HIV transmission studies. At its most basic level, HIV transmission is caused by the

exposure of mucosal surfaces or the blood compartment to infectious virus. Epidemiological

studies have identified a number of key parameters detailing the risks of HIV transmission

which include (i) identifying the most probable behaviors conducive to infection and

estimating the infection rate per unprotected exposure to be 1:5 to 1:3,000 (depending on

behavior and site of exposure) [1], (ii) determining that transmission is more likely to occur

from partners with primary HIV infection due to unknown infection status, higher viral load,

and potentially a more fit virus [2–4], (iii) identifying preexisting sexually transmitted

diseases that increase probability of infection [5–7], and (iv) proving that male circumcision

reduces infection rate by over 60% [8–10]. Understanding how humans are exposed to

infectious virus and how often these events lead to productive infection is crucial to creating

a NHP model that most accurately mirrors HIV infection.

One essential concept in HIV transmission predicted by epidemiological studies and proven

by molecular and mathematical studies involves a genetic bottleneck between donor and

recipient. In general, a genetic bottleneck is the reduction in genetic diversity of a population

with only relatively few lineages surviving some otherwise catastrophic event. While this

new population is by definition reduced, the extent or completeness of the reduction is

variable. Since HIV is found as a quasi-species with varying degrees of diversity associated

with the time since infection, each infected individual represents a population of virus. The

genetic bottleneck during transmission from a diverse population has been known

imprecisely for years with chronic patients being defined as containing a heterogeneous viral

population and most primary infections as being homogeneous. Recently, we and others

have discovered that during transmission, genetic diversity is reduced so drastically that the

vast majority of infected individuals are productively infected with a single genetic unit [11–

15]. Additionally, patients infected with one or few variants represent over 95% of all HIV

infections in these studies suggesting a very low infectious dose at time of transmission, a

significant host barrier to new infections or both. A key technological advance allowing for

the exact enumeration of infecting variants is single genome amplification (SGA), which is a

limiting dilution PCR where cDNA or DNA is diluted so that the majority of reactions have

only a single template. The benefits of SGA over standard bulk sequencing or cloning and

then sequencing includes proportional representation of the viral population, a lack of in

vitro recombination, and no Taq induced errors [13,16,17]. This remarkably simple technical

advance provided the opportunity to elucidate fundamental questions in viral transmission

including: (i) enumerating transmitted/founder variants [11–15], (ii) identifying and

molecularly cloning the exact nucleotide sequence of these genomes [13,18], (iii)

computationally modeling early viral diversification [19–22] (iv) identifying increased

variants in men-who-have-sex-with-men and intravenous-drug-users [14,23–25], (v)
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determining the earliest anti-viral responses both innate and humoral [26–28], and (vi)

defining the phenotype of transmitted viruses which includes the requirement for CCR5

[13,18,29,30]. However, there are limitations in studying HIV transmission, which include

an inability to sample relevant tissues immediately following exposure, an inability to

genetically characterize or quantify the donor’s virus at the time of transmission, and to

unambiguously identify the route of exposure. These obstacles make an accurate NHP

model an essential tool to fully understanding HIV transmission (Fig. 1).

NHP Models of Transmission

There are many NHP models available for research. The fundamental criterion for a

successful model is whether or not it recapitulates HIV infection. For mucosal infections in

rhesus macaques, infection with SIV or chimeric SHIV can recapitulate the key features of

HIV transmission if investigators are willing to invest time and resources. Various challenge

sites and viruses can be used to initiate infection and model viral transmission including the

earliest events in establishing infection in a new host. As for the sites of infection, they can

be categorized as mucosal or intravenous. While the intravenous challenge model is

frequently used for convenience, it is rarely utilized to model intravenous infections in

humans. Mucosal transmissions are modeled most frequently using intrarectal or

intravaginal challenge. Recently, there have been advances in modeling male genital track

infection to better recapitulate heterosexual HIV risk. Single genome amplification has been

used as a means to more precisely determine the infectious dose necessary to infect animals

with a minimal number of variants, thereby reflecting the most important feature of HIV

infection—low infectious titer [31–41]. Furthermore, titrating virus to a limiting dose is

possible without the benefits of enumerating founder variants (i.e. using cloned virus stocks)

but requires significant animal testing [42]. Finally, using a low-dose, repeated challenge

with an infection rate of approximately 20%, allows for a reduced founder population and

can be performed in a reasonable time frame [37,41,43]. Regardless of route of challenge,

using a single challenge titered-dose provides the opportunity for few but often multiple

transmitted/founder variants while a repetitive low-dose challenge often results in

productive infection of a single transmitted/founder variant perfectly modeling the vast

majority of HIV infections (Table 1).

Rectal

HIV infection resulting from unprotected anal intercourse (UAI) is the most common route

of disease transmission in many developed countries and represents the highest risk mode of

sexual HIV transmission at 1:20 – 1:300 infections per exposure [1]. The rectum is lined

with only a single layer of protective columnar epithelium as a barrier between infected

blood or semen and the lymphoid-rich mucosal tissue [44]. Intestinal mucosal tissues

contain the largest reservoir of activated CD4+ and CCR5+ cells in the body (particularly in

the lamina propria and within lymphoid aggregates) and represents an environment prime

for viral infection. Rectal infection is the most commonly utilized NHP model for its

consistency and as an authentic site of HIV infection. Previous models of rectal transmission

have relied upon high dose challenges in order to ensure infection, yet recent findings have

shown that low dose challenges in NHPs provide a more accurate model for the route of
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HIV transmission and dissemination throughout the body [31,32]. In studies using a single

challenge, the goals are to infect most if not all animals with as few variants as possible.

Based on a Poisson distribution, it is apparent that at a dose required to infect all animals in

a study, the majority of animals will not be infected with a single variant, but most likely

infected with 3–6 unique variants [31]. To ensure a single variant infection, a limited

dilution challenge is necessary so that the majority of animals are uninfected (i.e. ~20%

infection rate) [41]. These models provided for a limited transmitted/founder population,

which revealed a delay in detectable viral load in animals infected with one or few variants.

Furthermore, the infecting virus originated in multiple sites within the phylogenetic tree

suggesting an unbiased selection of variants. This infection route using single or repetitive

titered challenges accurately reflects HIV transmission via UAI and should be used for

studies aimed at identifying the key early events surrounding transmission and systemic

dissemination.

Female Genital Tract

Heterosexual transmission of HIV via the vagina is the most prevalent mode of disease

transmission globally, despite the fact that it has a comparatively low risk per exposure rate

estimated at 1:200 – 1:2000 [1]. In female genital tract transmission, virus carried in semen

or blood contacts both the vagina and the cervix with a mucosal barrier consisting of a single

layer of columnar epithelium (in the endocervix) or squamous nonkeritinized epithelium in

the vagina or ectocervix [44]. As with rectal challenges, until recently, vast excess quantities

of virus were used to challenge animals vaginally. These studies focused on the endocervix

for convenience, but may have been interpreted by others as the major or only site of

infection [45]. Recently, a lower dosed challenge model has been adopted which better

imitates HIV in animals [33]. In this study, the number of transmitted/founder variants was

determined in animals challenges intravaginally at either 105 or 103 infectious units.

Although there was greater variation in the number of variants vaginally compared to rectal

challenges, there was clearly a dose effect and some animals at the lower dose showed

evidence of productive infection with a single variant. Additional studies using a low, titered

dose should provide additional insight into where in the female genital tract infection

originates and how infection disseminates systemically.

Male Genital Tract

Penile HIV transmission occurs during homo- or hetero- sexual intercourse during which

virus is transferred from infectious cervicovaginal or rectal secretions. Putatively, infection

can occur either at the foreskin (which presents an epithelial barrier of squamous, poorly

keratinized cells) or in the penile urethra (in which stratified, columnar epithelium acts as a

barrier to transmission) [46]. Until recently, this route of transmission as an NHP model was

not well developed. A new emphasis on relevant models has led to the development of two

NHP models for penile transmission [34,47]. Here researchers expose penis to infectious

virus by dipping a flaccid penis into infectious virus or by forming a cup with the foreskin

and applying virus. Productive infection was limited to a single viral variant per animal

using a repeated challenge model [34]. Recently, this model has been used in an adenovirus-

vector based vaccine efficacy study recapitulating a clinical trial humans [48]. Additional
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studies are necessary to elucidate the initial sites of productive infection and routes of

systemic dissemination following male genital tract exposure.

Oral

Oral transmission of HIV occurs primarily during the exposure to infected breastmilk,

maternal vaginal secretions intrapartum, infected blood, or semen. For infants, infection can

occur from mouth through the upper gastrointestinal tract. For adults, it is unlikely that

infectious virus can survive in an acidic stomach and infection is more likely to occur in

mouth or esophagus. Importantly, tonsils are highly active secondary lymphoid tissue and

are a likely site of viral infection. Depending on the exact site of viral transmission, there are

various barriers to infection and target cell availability. Currently, there are limited NHP

models dedicated to oral transmission [49,50]. Additional studies will be needed to expand

our understanding of oral transmission.

Non Mucosal Infections

HIV infection via blood contact occurs during direct blood to blood contact (i.e. sharing

contaminated needles), or in utero when virus from the mother crosses the placental barrier.

Direct intravenous infection is commonly used to infect animals, but not specifically to

model this route of HIV transmission. In bypassing a mucosal barrier, intravenous infections

eliminate the genetic bottleneck and alters the dynamics of viral replication and systemic

dissemination. Little effort is made in this model to limit transmitted/founder variants found

in most human patients [23,24], but doing so could provide useful information as to the sites

and timing of early viral replication.

Optimally Using NHP Models

Having an authentic model of HIV transmission is useful in understanding transmission

itself, but it is also essential for determining the correct method to challenge animals in

vaccine trials, therapeutic interventions, passive antibody studies, and in viral reservoir

studies. High-dose intravenous challenge is an unrealistic model for vaccine intervention

because it excludes the mucosal barrier and alters the dynamics of viral dissemination [32].

Even high-dose mucosal challenges are potentially unnecessarily stringent for vaccine

efficacy studies. Many investigators improved the challenge portion of vaccine efficacy

studies by challenging animals with a single, limited dose or by repeated exposure at a

fraction of that dose [35–41,48,51–58]. For example, Barouch et al. and Hansen et al.

utilized a repetitive low-dose intrarectal challenge (described in [31,59]) as a bases for a

heterologous challenge in a successful adenovirus-virus-based vaccine study [43] and

cytomegalovirus-vector-based vaccine study [52]. Furthermore, Vaccari et al. specifically

tested the notion that vaccine efficacy was correlated to challenge dose and found partial

vaccine effect in low-dose challenged animals but no vaccine effect in animals challenged at

a 10 fold higher dose [39]. It is clear that challenging animals at too high a dose does not

allow for accurate assessment of vaccine potential. However, it is uncertain if vaccine

strategies that are successful in a low-dose NHP model will translate to humans, but our

current opinion is that it will. Furthermore, therapeutic intervention studies and passive

antibody protection studies have been used for years, but have recently been altered to limit
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founder variants of the chimeric HIVenv with a SIV-backbone (SHIV) virus [60–62].

Additional insights could be obtained using this more relevant transmission model.

Although the transmission event itself could be defined as productive infection of a single

cell, transmission typically includes the time of exposure through establishment of

productive, systemic dissemination. This period of time is also known as the eclipse phase

not because the virus is dormant, but because the virus is undetectable in peripheral blood.

Importantly, it is during this time that the infecting virus is at its most vulnerable. Regardless

of the route of infection, plasma viremia represents the accumulation of thousands of rounds

of exponential replication in a new host starting with as few as one virus to billions of

viruses found throughout the host. The length of the eclipse phase is likely dependent on the

route of exposure, the replicative capacity of the infecting virus, the host response and the

inflammation state of the host. Furthermore, compared to HIV’s eclipse phase (7–21 days

[13,20]), the time to viremia via mucosal challenges ranges from 3–9 days in nonhuman

primates [31,63]. While the actual time to detectable plasma viremia is variable and

dependent on dose, route, viral strain, and potentially other non-viral constituents in the

inoculum [64], this period represents our best window of opportunity for intervention (i.e.

the virus’s Achilles heel) because viral reservoirs are not yet fully established and viral

replication is anatomically limited. Once viral reservoirs that can persist for the life of the

patient are established in sufficient quantities, this small window to interdict is shut.

Importantly, it is not well known how rapidly intervention must be initiated to prevent

infection. However, early antiretroviral treatment in post-exposure prophylaxis studies and

in latency studies suggest that reservoirs establishment sufficient to maintain infection is

approximately 3–5 days post exposure [65–71]. Additional studies are necessary to more

accurately determining the timing of reservoir establishment in animals infected with a

limited number of transmitted/founder variants.

Conclusions

The first tenant of creating any animal model should be Primum non nocere, “first, do no

harm”. Unfortunately some investigators believe that animals models can and often mislead

human trials [72]. We submit that authentically reproducing HIV infection comes from

robust and thoughtful animal modeling. The most compelling rationale for using models

appropriately originates in a NHP study that predicts the STEP trial failure but was

unfortunately performed in retrospect [51]. When new evidence is generated by NHP/SIV or

human/HIV researchers, it behooves us to adapt and modify as necessary. The NHP/SIV

field has actively and successfully incorporated new knowledge obtained in HIV

transmission studies into new models of transmission. These improved models allow for

productive infection of one or few variants challenged at multiple mucosal sites thereby

recapitulating the essence of HIV transmission. We hope that many human/HIV researchers

will acknowledge these improved models and allow NHP research to inform human clinical

trials. Overall we are in a position to address several fundamental research questions

including: (i) identifying the source of transmitted virus (cell-associated or cell-free), (ii) the

mechanism for CXCR4-tropic exclusion or CCR5-tropic selection, (iii) the means used to

breach the epithelial barrier (transcytosis, breaks or abrasions, or simply navigating between

cells), (iv) the amount and inhibitory potential of mucus at various sites of infection, (v) the
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number of variants transmitted and replicating only locally versus variants identified

systemically, (vi) the dynamics and routes of systemic dissemination, and (vii) the quantity

and rapidity of long-term viral reservoir establishment. Greater understanding of these

essential questions will require both NHP research and studies in HIV infected humans, and

successfully addressing these questions will provide the necessary underpinning for future

intervention strategies.
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Key Points

HIV infection is established in newly infected recipients by a single or few

transmitted/founder variants.

Animal modeling is conducted with researchers currently recapitulating a

physiologically relevant, low-titer infection.

Pertinent animal models have been established for the most common routes of

infection, including rectal, vaginal, and penile transmission.

Vaccine and other intervention studies have the modified challenge approach to

recapitulate HIV infection.
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Figure 1. Model of the viral genetic-bottleneck following mucosal challenge
Despite exposing animals mucosally with a large number of genetically distinguishable variants, the systemic dissemination of a

single genetic unit can be obtained in NHP models thereby recapitulating HIV-1 infection. Genetic analyses of variants that are

transmitted to the inoculum allows for enumerating the number of variants systemically replicating and potentially identifying

unique features of these lineages. However, a precise molecular description of how this genetic constraint is accomplished is

still largely unknown with the earliest events of viral infection still within a metaphorical black-box. Additional experiments are

needed to assess the various contributions of anatomic and other host barriers to infection and current NHP models provide the

necessary sensitivity and tissue availability to describe these early events.
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