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Abstract

Hes1 is a member of the family of basic helix-loop-helix transcription factors and the Hes1 gene

regulatory network (GRN) may be described as the canonical example of transcriptional control in

eukaryotic cells, since it involves only the Hes1 protein and its own mRNA. Recently, the Hes1

protein has been established as an excellent target for an anti-cancer drug treatment, with the

design of a small molecule Hes1 dimerisation inhibitor representing a promising if challenging

approach to therapy.

In this paper, we extend a previous spatial stochastic model of the Hes1 GRN to include nuclear

transport and dimerisation of Hes1 monomers. Initially, we assume that dimerisation occurs only

in the cytoplasm, with only dimers being imported into the nucleus. Stochastic simulations of this

novel model using the URDME software show that oscillatory dynamics in agreement with

experimental studies are retained. Furthermore, we find that our model is robust to changes in the

nuclear transport and dimerisation parameters. However, since the precise dynamics of the nuclear

import of Hes1 and the localisation of the dimerisation reaction are not known, we consider a

second modelling scenario in which we allow for both Hes1 monomers and dimers to be imported

into the nucleus, and we allow dimerisation of Hes1 to occur everywhere in the cell. Once again,

computational solutions of this second model produce oscillatory dynamics in agreement with

experimental studies. We also explore sensitivity of the numerical solutions to nuclear transport

and dimerisation parameters. Finally, we compare and contrast the two different modelling

scenarios using numerical experiments that simulate dimer disruption, and suggest a biological

experiment that could distinguish which model more faithfully captures the Hes1 GRN.
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1 Introduction

Gene regulatory networks (GRNs) lie at the core of intracellular signal transduction. GRNs

can exhibit an oscillatory response in space and time to a range of external stimuli (Hirata et

al. 2002; Geva-Zatorsky et al. 2006; Nelson et al. 2004; Shankaran et al. 2009). A negative

feedback loop is often responsible for this behaviour, which controls the levels of mRNA

and proteins. The proteins involved are transcription factors, which usually must form

dimers or tetramers in order to function. The main function of transcription factors is to

enhance or hinder transcription of mRNA, and to do this they must first pass through the

nuclear membrane (via nuclear pores) and enter the nucleus. Once inside the nucleus,

transcription factors bind to specific DNA sequences (promoter regions). A simple example

of a regulatory network containing a negative feedback loop is the Hes1 GRN. The wealth

of quantitative time course expression data available for this network makes it particularly

amenable to mathematical modelling. The Hes1 GRN plays a central role in the timing of

somitogenesis (Hirata et al. 2002). Hes1 can also protect quiescent fibroblasts from

differentiation or senescence (Sang et al. 2008, 2010) and this has raised the notion of cancer

therapies that specifically target Hes1. In particular, it was suggested in Sang et al. (2010)

that disruption of Hes1 dimerisation could be an effective cancer treatment.

Dimerisation (and indeed polymerisation in general) is an important and common aspect of

many intracellular reactions. Several key proteins vital for maintaining cellular homeostasis

form dimers in order to function correctly. Examples include Hes1, p53, ERK and NF-κB

(Kagemyama et al. 2007; Nicholls et al. 2002; Lidke et al. 2010; Oeckinghaus and Ghosh

2009). It is known that homodimerisation of Hes1 monomers results in greater stability of

dimers in comparison to monomers (Bulcher et al. 2005), while some proteins cannot enter

the nucleus unless they form a dimer (Jerke et al. 2009). Furthermore, Hes1 can form

heterodimers with other bHLH proteins such as Hey1 and Hey2 that function even more

efficiently than homodimers (Iso et al. 2001). In spite of the important roles dimerisation

plays, many unknown factors remain such as where in the cell dimerisation occurs, and the

rates of formation and disassociation of the dimers.

It is clear from experimental evidence that the proper function of GRNs depends critically

on passage through the nuclear membrane by proteins and mRNAs. For example, transport

of tumour suppressors and oncogene products across the nuclear membrane has been

reported to be disrupted in cancer cells (Kim et al. 2000). It has also been suggested that

modifying nuclear-cytoplasmic transport activity may block tumorigenesis (Kau et al. 2004).

Therefore, it is important to model the structure of the nuclear membrane in detail, such as

number of nuclear pores and spatial distribution of nuclear pores.

Intrinsic noise is commonly found in many intracellular signalling pathways (Barik et al.

2008, 2010; Shahrezaei and Swain 2008). The noise can arise due to low abundance of

molecular species, randomness in certain key processes (e.g. binding and unbinding of
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transcription factors to promoter sites), stochasticity in production processes (transcription,

translation) and degradation events (Wilkinson 2009). In addition to being inherently

stochastic, intracellular signal transduction is inherently spatial. The eukaryotic cell hosts a

variety of spatial compartments (e.g. cytoplasm, nucleus, nucleolus). Each compartment

permits different metabolic activity and is often separated from the rest of the cell by a thin

lipid membrane. Signalling molecules reach the appropriate spatial compartments through

molecular movement such as diffusion and active transport. The key process of transcription

occurs at highly localised sites—genes—in the nucleus. Within the cytoplasm, another key

process—translation—occurs in the ribosomes. Clearly, mathematical models of GRNs will

be more realistic the more they seek to account for stochastic and spatial features of these

networks.

The application of spatial stochastic models to intracellular pathways is still a relatively new

field of research. Some of the first spatial stochastic models were of the Min System in an

Escherichia coli cell. Howard and Rutenberg (2003) used a stochastic analogue of a 1D

system of reaction–diffusion equations and found that, for some parameter values, the

protein concentrations were low enough that fluctuations were essential for the generation of

patterns. In the model of Fange and Elf (2006) trajectories were generated using the next

subvolume method (NSM), and numerical simulations were able to reproduce all

documented Min phenotypes, where deterministic or non-spatial models failed. A spatial

stochastic model of the MAPK pathway was developed in Takahashi et al. (2010). This

model was implemented numerically using the Green’s function reaction dynamics

approach, which allows for individual particle level simulation of molecular species. Using

this technique, MAPK responses that could not be observed using a mean-field approach

were produced. Another recent spatial stochastic model was developed to study in detail a

generic transcription factor binding and unbinding to DNA (van Zon et al. 2006). Here, the

spatial stochastic model was able to support the use of well-stirred, zero-dimensional models

for describing noise in gene expression. It is clear from these few examples that spatial

stochastic modelling can provide insight into intracellular signalling pathways that other

approaches can not. For a comprehensive review of spatial stochastic modelling of

intracellular processes, see Burrage et al. (2011).

In this paper, we extend the model of Sturrock et al. (2013) to include nuclear transport and

dimerisation of Hes1 monomers. Whereas Sturrock et al. (2013) focused on the Hes1 GRN

in embryonic stem cells, here we consider a generic study of the Hes1 GRN without specific

application to any particular cell type. Initially, we follow the modelling assumptions of

Momiji and Monk (2008) and assume that dimerisation occurs only in the cytoplasm, with

dimers only being imported into the nucleus. Simulations of this novel model show that

oscillatory dynamics in agreement with experimental studies are retained. Furthermore, we

find that our model is robust to changes in nuclear transport and dimerisation parameters.

Since the precise dynamics of the nuclear import of Hes1 and the localisation of the

dimerisation reaction are not known, we consider a second modelling scenario in which we

allow for both Hes1 monomers and dimers to be imported into the nucleus, and we allow

dimerisation of Hes1 to occur everywhere in the cell. Once again, simulations of this second

model produce oscillatory dynamics in agreement with experimental studies. We also
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explore sensitivity of the numerical solutions to nuclear transport and dimerisation

parameters. Finally, we compare and contrast the two different models and suggest different

biological experiments that could distinguish which model more faithfully captures the Hes1

GRN.

2 The Hes1 GRN

Hes1 is a member of the family of basic helix-loop-helix (bHLH) transcription factors and

the Hes1 GRN may be described as the canonical example of transcriptional control in

eukaryotic cells, since it only involves Hes1 protein and its mRNA. When the promoter site

is free, hes1 mRNA is transcribed at its maximal rate. The newly created hes1 mRNA

diffuses and is exported to the cytoplasm where it produces Hes1 protein monomers, which

then bind together to form dimers in the cytoplasm. These dimers diffuse and are imported

into the nucleus where they occupy the promoter and repress the transcription of hes1

mRNA (see Fig. 1). The occupied promoter site is still able to produce hes1 mRNA, but at a

significantly reduced rate (Takebayashi et al. 1994).

A number of experiments have been conducted to measure expression levels of hes1 mRNA

and Hes1 protein in many different cultured mouse cell lines (Hirata et al. 2002). In response

to a single serum treatment, it has been found that levels of hes1 mRNA and Hes1 protein

exhibit oscillations with a regular period of approximately 2–3 hours. It has been found that

these Hes1 oscillations are stable (both the period and amplitude are relatively constant) in

presomitic mesoderm cells but unstable (the period and amplitude are variable) in individual

dissociated presomitic mesoderm cells, suggesting that cell–cell communication is essential

for stabilisation of such cellular oscillators (Masamizu et al. 2006). The results of Yoshiura

et al. (2007) have shown that coupled Stat and Hes1 oscillations are important for efficient

cell proliferation and provide evidence that expression modes of signalling molecules

influence downstream cellular events.

Hes1 oscillations have also been observed in neural progenitor cells, again with a period of

about 2–3 hours (Shimojo et al. 2008). It was found that these oscillations were responsible

for the maintenance of neural progenitors and that sustained overexpression of Hes1

inhibited proliferation and differentiation of these cells. More recently, Hes1 expression was

monitored in embryonic stem (ES) cells (Kobayashi et al. 2009), where it was discovered

that Hes1 levels still oscillated in space and time, but with a period of 3–5 hours, longer than

that of other cell lines. This lengthened period is thought to be a result of the increased

stability of hes1 mRNA in ES cells. It has also been discovered that Hes1 oscillations

contributed to heterogeneous differentiation responses of ES cells. Using fluorescence-

activated cell sorting, ES cells with high and low expression levels of Hes1 were isolated

and then immediately transferred to a neural differentiation medium. The experiment

revealed that cells expressing low and high levels of Hes1 differentiated into neural and

mesodermal cells, respectively (Kobayashi and Kageyama 2010, 2011).

Hes1 is also known to play a role in somitogenesis, the developmental process responsible

for segmentation of the vertebrate embryo. During somitogenesis, a “segmentation clock”

controls the timing of the assignment of mesodermal cells to discrete blocks. The
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segmentation clock depends on the oscillatory expression of a complex network of

signalling pathways, including the Hes1 GRN which contains a negative feedback loop. This

feedback loop is formed through interactions of the dimerised Hes1 protein with its own

gene—Hes1 protein binds to N box sequences on the hes1 promoter and represses the

transcription of hes1 mRNA.

Mathematical models of oscillatory dynamics in the Hes1 GRN have taken a variety of

forms. The first attempt to model this pathway was presented in the experimental paper

Hirata et al. (2002), where an ODE model was used. However, in order to reproduce the

observed oscillations, a third unknown species was introduced. At about the same time, it

was discovered that introducing delays to ODE models of gene regulatory networks could

produce sustained oscillatory dynamics in the numerical solution (Tiana et al. 2002). Jensen

et al. (2003) found that invoking an unknown species could be avoided by introducing delay

terms to a model of the Hes1 GRN (representing the processes of transcription and

translation). A delay differential equation (DDE) model of the Hes1 GRN was also studied

in Monk (2003). The effect of low particle numbers in a similar DDE model of the Hes1

GRN was explored in Barrio et al. (2006). Here, the stochastic simulation algorithm (SSA)

was extended to allow for delays. Zeiser et al. (2007) found that there is not much evidence

for synergistic binding in the regulatory region of Hes1, and gave an estimate for the Hill

coefficient. The details of the Hes1 pathway were scrutinised in greater depth in Momiji and

Monk (2008), again using a delay differential equation system. In particular, an investigation

into the effects of dimerisation and compartmentalisation was presented. The role of Gro/

TLE1 was considered in Bernard et al. (2006). Other models have examined the role of the

Hes1 GRN in somitogenesis (Agrawal et al. 2009). Spatio-temporal models of the Hes1

negative feedback loop were presented in Sturrock et al. (2011), using a partial differential

equation model while extensions of this were considered in Sturrock et al. (2012). A spatial

stochastic model of the Hes1 GRN in embryonic stem cells was studied in Sturrock et al.

(2013).

3 The Reaction Diffusion Master Equation

The mathematical framework we use is a stochastic continuous time discrete space Markov

process description of the dynamics of the biochemical reaction network. The state of the

system is described by the random vector X(t) whose components {X1(t), …, XN(t)} describe

the total copy number of each species j = 1, …, N. The stochastic process {Xt}t≥0 is a

collection of such random variables indexed by time, and describes the time evolution of the

system. The chemical species take part in M chemical reactions in the well-stirred reaction

volume Ω. The state changes at random times τr according to chemical reactions. We denote

a realisation of the stochastic process by  with components xj. Reaction r then

changes the state according to x′ = x(t+τr) = x(t)+nr where the stoichiometry vector nr

defines the change in copy number of the reactants and products of the reaction. Each

reaction is associated with a propensity function, ωr (x) that describes the rate of the

reaction. It is interpreted as the probability that the reaction occurs in an infinitesimal time

interval [t, t +dt]
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(1)

Depending on the particular description of the chemical reaction, ωr will take different

functional forms. As an example, consider a small system with species A, B, and C and a

reaction pair describing the reversible binding between A and B forming the complex C.

(2)

Assuming mass action kinetics the propensity function for reaction one is ω1 = k1ab and that

for reaction two is ω2 = k2c where lower case letters denote molecular copy numbers of the

respective chemical species. The stoichiometry vectors are in this case n1 = [−1, −1, 1] and

n2 =−n1.

The Markov process has the important memoryless property, i.e. given the state of the

system at time t, the state at any future time depends only on the current state and not on

anything that happened at a time s before t, s < t. As a consequence, the time to the

occurrence of reaction r is an exponentially distributed random variable τr ~ exp(1/ωr (x)).

As a direct consequence of the Markov property the probability density function of the

system is governed by the forward Kolmogorov equation, or the chemical master equation

(CME). For brevity of notation, in the following we will write p(x, t) = p(x, t | x0, t0) for the

probability that the system can be found in state x at time t conditioned on the initial

condition x0 at time t0. The CME then takes the form

(3)

The above formulation describes a well-stirred system where it is assumed that mixing due

to molecular movement has time to homogenise the spatial distribution between reactive

encounters. Stochastically correct realisations of the processes can be generated by the

stochastic simulation algorithm (SSA) (Gillespie 1976) or one of the many optimised,

versions of this algorithm.

In this paper we are interested in a scenario where the reaction volume cannot be assumed to

be well-mixed, in fact, the spatial distribution of Hes1 protein and hes1 mRNA throughout

the cell and their transport between different parts of the cell plays a crucial role in

establishing the oscillatory dynamics of the network. To explicitly account for spatial

effects, the Markov model can be extended to account for diffusion and active transport. To

introduce molecular movement due to diffusion we discretise space and divide the domain Ω
into K non-overlapping voxels, or subvolumes, i. For an example of such a discretisation,

see Fig. 3. A system with N chemical species can now be described by the K × N matrix of

random variables X(t). Again, denote a realisation of the system by . The entries of

the row xi· in the matrix are the copy numbers of species j = 1, …, N in voxel i. Chemical

reactions occur within the voxels by treating them as in the spatially homogenous case. In
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other words, we assume that inside any voxel in the mesh, the assumption of a well-stirred

system holds so that molecules are effectively uniformly distributed in the individual voxels.

For example, a bimolecular reaction r involving species Xj and Xj′ in voxel i can in this

setting be written

(4)

The propensity function depends only on the copy number of the species in voxel i so that

reactions are completely local. In general, the propensity can take different forms in

different voxels. This will be the case if the rate constants vary in space, or more commonly,

if a reaction is only active in parts of the domain. If no molecular motion occurs, the master

equation for the full system will be

(5)

where μir is the 1 × N stoichiometry vector for reaction r in voxel i. For the case of one

subvolume, K = 1, (5) reduces to the CME (3).

The diffusive motion of molecules from one voxel to an adjacent one is modelled by linear

jump events

(6)

with propensity function a(xi·) = dijkxij. It takes a species j in voxel i to one of the immediate

neighbours k. The transition can be written . The K × 1 stoichiometry vector

νijk acts on the column x·j and has all components zero except for νijk(i) = −1 and νijk(k) =

1.

For the case of molecular transport only, the master equation takes the form

(7)

For a system with both reactions and diffusion, the full reaction–diffusion master equation

(RDME) is simply given by

(8)

Stochastic realisations of the RDME can be generated by versions of SSA optimised for

reaction–diffusion systems, such as the next sub-volume method (NSM) (Elf and Ehrenberg

2004). In the NSM, reaction and diffusion events are grouped in each of the voxels, and to

sample the next event that occurs in the system, the next voxel, or sub-volume, in which an

event occurs is first sampled. Knowing the voxel, one next samples if the event is a reaction

or diffusion event, and then finally, one samples which particular reaction or diffusion
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direction that fires. The NSM adapts ideas from the next reaction method (Gibson and Bruck

2000) to make the complexity of the step in which the next voxel is sampled logarithmic in

the number of voxels in the mesh.

3.1 Unstructured Meshes

To generate realisations from the RDME we have used URDME (Drawert et al. 2012).

URDME is a flexible software framework for stochastic simulation of reaction–diffusion

processes, specialising in the use of unstructured, triangular and tetrahedral meshes to

resolve realistic geometries. For a uniform Cartesian mesh, where the voxels are cubes with

equal side length h, the rate constants dijk are given by D/h2. For unstructured meshes, the

corresponding jump rate constants will vary depending on the size and shape of the voxels,

for a detailed description of the theory for how to obtain correct rates, see Engblom et al.

(2009). In short, the value of the propensity function for an event in the Markov model

corresponds to the inverse of the expected time for that event to occur. In other words, the

value 1/(dijkxij) is the expected time for the first species of type Xj to leave voxel i and

become well-mixed in voxel k. A reasonable requirement on the rate constants dijk,

irrespective of the mesh, is that they are chosen in such a way that the concentration process

converges to the diffusion equation in the thermodynamic limit. This can be ensured by

taking dijk corresponding to a numerical discretisation of the Laplace operator. The version

of URDME we use in this study uses a finite element discretisation for this purpose. For a

detailed discussion on the theory underlying the simulations in URDME, see Drawert et al.

(2012) and Engblom et al. (2009).

4 A Spatial Stochastic Model of the Hes1 GRN with Cytoplasmic

Dimerisation (Model A)

We assume that the molecular reactions in the Hes1 GRN follow previous modelling efforts

of Momiji and Monk (2008). Figure 1 shows a schematic description of the network.

Reaction arrows are coloured such that different colours correspond to reactions occurring in

different cellular compartments. Red arrows correspond to reactions occurring at the

promoter site of the cell, while green reaction arrows correspond to reactions occurring in

the cytoplasm, and black arrows correspond to those occurring everywhere in the cell. We

model all reactions by elementary mass action kinetics. As in Sturrock et al. (2013), we do

not employ a phenomenological Hill function approximation for Hes1 binding to the

promoter. Since our model is explicitly spatial, such an approach is neither appropriate nor

necessary. We model nuclear transport as depicted schematically in Fig. 2. Nuclear pore

complexes (NPCs) determine where species move in and out of the nucleus and how quickly

they do so. The inclusion of nuclear transport has been attempted before in a spatial

deterministic model (Cangiani and Natalini 2010), but here, we can go a step further.

Exploiting the discrete spatial nature of our model, we explicitly model the NPCs on the

nuclear membrane. In our model, an mRNA molecule travels through the nuclear membrane

by first binding to a NPC (at a rate kpore). Once bound to a pore, the mRNA molecule

shuttles through the pore and exits the nucleus (at a rate krel). Protein molecules shuttle into

the nucleus in a similar manner. As a first approximation, we simplify nuclear transport by

omitting the ran-cycle, which has been the study of numerous deterministic modelling
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efforts, see Cangiani and Natalini (2010) and references therein. We assume that both hes1

mRNA and Hes1 protein can diffuse as described above, with diffusion coefficient D = 1 ×

10−11 m2 min−1 (which is in line with available experimental data (Klonis et al. 2002)). We

do not allow promoter species to diffuse, rather we assume the promoter species remain in

the gene subdomain. A complete list of reactions, their localisation, a description, and initial

parameter values used (with references where available) are found in Table 1. We denote

hes1 mRNA by mRNA, Hes1 monomer by monomer, Hes1 dimer by dimer, a free promoter

by Pf and an occupied promoter by Po.

4.1 Domain, Initial and Boundary Conditions

The computational domain approximating a eukaryotic cell is shown in Fig. 3. The cell is

represented by two ellipsoids with centre (0, 0). The ellipsoid representing the cytoplasm has

a major axis of 18.20 µm and minor axes equal to 6.00 µm and 3.00 µm. The nucleus is

represented by another ellipsoid with major axis of 6 µm and minor axes of 4 µm and 2 µm.

These values are chosen to be consistent with experimental measurements of eukaryotic

cells, specifically fibroblast cells (Demirel et al. 2006). The promoter site, or gene

subdomain, is taken to be a single voxel at a radial distance r from the nuclear membrane.

Unless otherwise stated, we choose the promoter site to be at r = 3 µm, i.e. the voxel closest

to the centre of the cell (0, 0). We arbitrarily choose initial conditions such that 60 Hes1

proteins are uniformly distributed in the cytoplasmic subdomain, 10 mRNA molecules in the

nuclear subdomain, and a single free promoter is found in the gene subdomain. We

uniformly distribute 2,000 nuclear pores around the nuclear membrane (Banerjee et al.

2010). Zero-flux boundary conditions are applied at the cell membrane. The nuclear

membrane is treated as is shown in Fig. 3.

4.2 Computational Simulation Results

We performed simulations of model A using the baseline kinetic rate parameters as given in

Table 1 and the numerical method described in Sect. 3. A sample trajectory is displayed in

Fig. 4 (upper figure), along with the corresponding instantaneous period (lower figure).

While biologists have only investigated the evolution of hes1 mRNA and Hes1 protein

levels in cells for 2160 minutes after serum stimulation (Masamizu et al. 2006), we have

monitored levels for longer (up to 4,000 minutes). We find the numerical solution exhibits a

range of distinct transient periodic behaviours, with instantaneous periods ranging from

roughly 80 minutes to 250 minutes. Overall, the mean period is approximately 164 minutes

for this particular trajectory (as stated in the title of the lower plot). This is consistent with

Hes1 oscillations observed in certain cell types, in particular presomitic mesoderm cells

(Masamizu et al. 2006) and neural progenitors (Shimojo et al. 2008). We find the oscillatory

dynamics to be highly variable in both period and amplitude. We also include the coefficient

of variation (CV) for the protein levels in the title of the upper figure. We do this in an effort

to quantify the variability in protein level expression. The CV is a widely used measure of

protein variability (Chalancon et al. 2012).

The instantaneous period presented in the lower figure of Fig. 4 is estimated using a Morlet

continuous time wavelet transform (CWT) as implemented in WAVOS (see Harang et al.

2012 for details). Given the highly oscillatory and noisy nature of our trajectories, the use of
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standard Fourier techniques can lead to inaccurate estimates of the period, as Fourier

analysis assumes stationarity of the signal and its basis functions are unbounded in time

(Mallat 1999).Wavelets, in contrast, are localised in both time and frequency. This localises

the analysis, allowing the changes in signal properties to be tracked over time (Torrence and

Compo 1998). Furthermore, we make use of Gaussian edge elimination to minimise

artefacts in the approximation of the period.

As noted previously in Sect. 2, Hes1 oscillations are observed in a range of cell types with

periods of oscillation ranging from 120–300 minutes. Due to the highly variable and

transient period, simply computing the mean period of an individual time series such as that

in Fig. 5a yields an incomplete picture of the oscillatory dynamic. We generated ensembles

of 1,000 independent realisations of the model starting with the same parameters.

Biologically, this can be interpreted as considering a population of 1000 different, non-

interacting cells. Based on this ensemble, we computed the distribution of the mean periods

as well as the distribution of the instantaneous periods (see Fig. 5a) as measured by

WAVOS. Inspecting Fig. 5a, we can see that almost all of our calculated periods lie within

the biologically feasible 120–300 minutes range. However, in Fig. 5b, we can observe some

instantaneous periods of up to 500 minutes. In Fig. 6, we plot the computed CV for hes1

mRNA and Hes1 protein for 1,000 independent realisations of our model. These results

show that the CV for mRNA is comparatively higher than the CV for the proteins, in line

with the results of Singh et al. (2012). This is unsurprising given the relatively low

abundance of mRNA compared to protein.

4.3 Parameter Sensitivity Analysis: Nuclear Transport and Dimerisation

In the baseline simulations presented in Sect. 4.2, we chose kinetic rate parameters more or

less arbitrarily to lie in the range of biophysically plausible values. Since these parameters

are not determined experimentally for the Hes1 GRN, we explored the response of our

model to variations in the key nuclear import and dimerisation rate parameters. For each

parameter value, we generate 1,000 independent realisations. We note that using certain

parameter sets causes our model to yield periods that are unrealistically long (>400 minutes)

or simply fail to oscillate with non-negligible amplitude. We label these trajectories as cells

exhibiting ‘persistent expression’ (PE) of Hes1. Plots containing our parameter sensitivity

results for model A can be found in the Appendix. The left plots in Figs. 13–17 show the

fraction of time the system spends oscillating with a period in the ranges 0–120 minutes,

120–300 minutes, and 300–PE. These fractions are computed in a similar manner to Fig. 5b,

but were divided into bins chosen to reflect period ranges shorter than, in agreement with

and larger than the mean periods observed experimentally in various cell types. The middle

plots show the average period over the whole ensemble and the right plots show the

coefficients of variation of Hes1 protein and hes1 mRNA. The data required for each figure

takes approximately 3–5 hours to generate on a cluster using 200 cores, depending on

parameter values.

We find that, for all other parameters as in Table 1, the model is robust to changes in the

pore binding rate (kpore), the number of NPCs and the NPC import rate (krel), i.e. the nuclear
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transport parameters. However, the mean period is sensitive to changes in the dimerisation

parameters β1 and β2.

5 A Spatial Stochastic Model of the Hes1 GRN with Dimerisation

Throughout the Cell (Model B)

In this section, we present an alternative Hes1 GRN model (which we refer to as ‘model B’).

The motivation for this second model comes from the lack of knowledge regarding the

localisation of the Hes1 dimerisation reaction. In general, there are cases where proteins are

dimerised in the nucleus (Aranda and Pascual 2001) and cytoplasm (Herbst et al. 2012). In

order to investigate whether or not the localisation of the dimerisation is important for the

overall system behaviour, we now allow for the bimolecular dimerisation reaction to occur

in both the nucleus and cytoplasm. In addition, we allow for both monomers and dimers to

be imported to the nucleus. Finally, we enable dimers to break apart into monomers in the

nucleus as well as the cytoplasm. All other modelling assumptions are the same as in Sect. 4

(model A), including the time simulations are performed for, the domain, initial conditions

and boundary conditions. In addition, where possible, the same parameter values are used. In

essence, we are only varying the model structure. A complete list of reactions, their

localisation, a description and initial parameter values used (with references where

available) are found in Table 2.

5.1 Computational Simulation Results

We performed simulations of our alternative Hes1 GRN model using the baseline kinetic

rate parameters as given in Table 2 and the numerical method described in Sect. 3. A sample

trajectory is displayed in Fig. 7 (upper figure), along with the corresponding instantaneous

period (lower figure). As in Sect. 4.2, we compute trajectories for a time period of 4,000

minutes. In agreement with numerical simulations of model A, we find different transient

periodic behaviour emerging in numerical solutions of model B, with instantaneous periods

ranging from roughly 80 minutes to 240 minutes. The two models are in qualitative

agreement but there are some quantitative differences between their numerical solutions.

The mean period of our sample trajectory of model B is shorter than that produced by model

A (147 minutes as opposed to 164 minutes) and the coefficient of variation is slightly higher

(0.39 as opposed to 0.31).

Our alternative model also yields oscillatory periods in line with experimental evidence.

This is clear from Figs. 8 and 9 where we plot the mean period distribution and

instantaneous period distribution of 1,000 realisations of model B. Examining Fig. 8a, we

can see that almost all the calculated periods lie within the biologically feasible 120–300

minutes range. Hence, we can say that the mean period distribution of model B is in

approximate close agreement with model A (compare Figs. 8a and 5a). The instantaneous

period distribution generated for model B also approximately agrees with the one generated

by model A (compare Figs. 8b and 5b). In Fig. 9, we plot the computed CV for hes1 mRNA

and Hes1 protein for 1,000 independent realisations of our model. These results are in good

agreement with the CV results for model B, and we note that the CV for mRNA is once

again higher than the CV for proteins.
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5.2 Parameter Sensitivity Analysis: Nuclear Transport and Dimerisation

As we did for model A in Sect. 4.3, we now examine the sensitivity of the nuclear transport

and dimerisation parameters for model B. Once again, for each parameter value we generate

an ensemble of 1,000 independent realisations. Plots containing our parameter sensitivity

results for model B can be found in the Appendix. The left plots in Figs. 18–22 show the

fraction of time that the system spends oscillating with a period in the ranges 0–120 minutes,

120–300 minutes, and 300–PE. These fractions are computed in a similar manner to Fig. 8b,

but were divided into bins chosen to reflect period ranges shorter than, in agreement with

and larger than the mean periods observed experimentally in various cell types. These

fractions are computed in a similar manner to Fig. 8b. The middle plots show the average

period over the whole ensemble, and the right plots show the coefficients of variation of

Hes1 protein and hes1 mRNA. The data required for each figure takes approximately the

same amount of time to generate as it did for model A.

Consistent with findings for model A, we find that, for all other parameters as in Table 2,

model B is very robust to changes in the nuclear transport parameters. In model B, the mean

period is very sensitive to changes in the dimerisation parameters β1 and β2, even more so

than in model A.

6 Dimerisation Only in the Cytoplasm or Dimerisation Throughout the Cell?

In this section, we discuss the ability of our model to make some tentative predictions as to

where in the cell dimerisation occurs and how monomers and dimers are transported through

the nuclear membrane. It should be noted that performing simulations of model A and model

B with equal dimerisation parameters do not result in the same total dimer-to-monomer

ratios. In model A, the dimer does not dissociate inside the nucleus, i.e. as soon as a dimer in

model A has found a pore and has translocated into the nucleus, it will remain a dimer until

it degrades. This effect is not countered by the fact that monomers are less stable than

dimers, and model A tends to yield much higher total dimer-to-monomer ratios. The

difference becomes more pronounced for smaller β1/β2 ratios. As an example, for the

baseline parameter set, model A has a dimer to monomer ratio of about 18 while that of

model B is about 15. In contrast, for the largest value of β2 in our parameter sweeps, the

corresponding values are 9 and 3, respectively. Also, model B tends to produce realisations

with higher total protein copy number.

Based on these simulations alone and on the available experimental observations, we cannot

draw any firm conclusions about whether model A or model B is more biologically accurate.

We do note, however, that in the baseline parameter set, we have used the experimentally

measured hes1 mRNA degradation rate corresponding to fibroblast cells. Hes1 expression

level in fibroblasts has been observed experimentally to oscillate predominantly in the 120–

180 minutes range. Despite extensive, but not exhaustive searches of parameter space (data

not shown), we have not been able to find period distributions that are quantitatively

consistent with that period range for parameters that are biologically realistic using model A.

Model B, however, can display distributions that are biased toward the 180–300 minutes bin

for large values of β1 as well as distributions falling largely in the 120–180 minutes range if

the system is biased toward the monomer state. In the case of model A, an experiment where
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one specifically looked for the presence of monomers in the nucleus could reveal whether

the model assumptions are valid since dimers are assumed to be stable in the nucleus, and

monomers does not get imported. However, based on our simulations, an indirect way

would be to attempt to measure the β1 and/or β2 parameters for Hes1 dimerisation in

fibroblast cells. If they agree with the cases in Figs. 21 and 22 where the distributions match

the experimental behaviour, it would constitute compelling evidence for model B.

We want to highlight that in all of our parameter sweeps (for both model A and B) we

observe periods that are highly variable with instantaneous period distributions with long

tails. In our figures, we chose to divide the instantaneous periods into four bins, 0–120

minutes, 120–300 minutes, and 300–PE to reflect period ranges shorter than, in agreement

with and larger than the mean periods observed experimentally in various cell types. In most

of the cases we have considered, the system will spend an almost equal amount of time

oscillating with instantaneous periods falling in the range 120–300 minutes.

Note that this is a prediction of the spatial stochastic model that cannot be extracted from

more common deterministic models based on ordinary differential equations, delay

differential equations, or partial differential equations. In the latter cases, the mean period

and amplitude and possibly the phase lag between mRNA and protein are the only

information that can feasibly be used to discriminate between models. Our simulations

suggest that if only few cells and relatively short time courses are observed experimentally,

predictions based on the mean period can be misleading. If more extensive experimental

information matching the distribution information that we display here were available, we

could potentially discern which of our different model scenarios captures the biology more

faithfully.

7 Targeted Drug Treatment: Effects of Disrupting Dimerisation

It has been established in recent years that mechanisms leading to Hes1 induction could

represent promising targets for cancer therapy (Sang et al. 2010). A potential method for

sustaining Hes1 induction is to target the Hes1 dimerisation reaction. By preventing the

formation of dimers, Hes1 would not be able to associate with its promoter and inhibit hes1

mRNA production, hence Hes1 protein levels would appear persistently high. This is an

especially attractive option as the first Hes1 dimer inhibitors isolated from natural products

have now emerged (Arai et al. 2009). Therefore, there is value in studying the effects of

disrupting dimerisation in our models.

As we have seen, the two model scenarios behave similarly under a wide range of

biophysically plausible values for the dimerisation and nuclear transport parameters under

normal cellular conditions. The main qualitative differences we were able to observe were a

heightened sensitivity of model B to large dimer dissociation rates and smaller dimerisation

association rates, i.e. scenarios that favour the monomer state. We have already seen that

with all other parameters as in the baseline set in Tables 1 and 2, greatly reducing the

number of available NPCs has a minor effect on the oscillatory dynamics both in the cases

of model A and model B. Next, we consider situations where we greatly impair the ability of

Hes1 to form dimers. To that end, we will consider two scenarios:
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1. We reduce β1 by a factor of 104, i.e. dimerisation can still occur, but at a very low

rate.

2. We leave β1 unaffected and instead disrupt the stability of the dimer by setting β2 =

1000 min−1. Since the dimers are assumed to be stable in the nucleus in model A,

disruption there only affects cytoplasmic Hes1. For model B, disruption occurs

everywhere in the cell.

In order to quantify the different responses of model A and model B to the two scenarios, we

present distributions of the coefficient of variation of Hes1 protein in Fig. 10. As can be seen

from the sample trajectories in Fig. 12, a low coefficient of variation correlates well with

sustained and elevated expression of protein and low amplitude oscillations. Our

experiments suggest that, while dimer disruption has some effect in model A, it would be

much more effective in yielding non-oscillatory trajectories with sustained protein levels in

the case of model B (as shown in Figs. 11 and 12).

The heightened sensitivity of model B compared to model A to dimer disruption can be

understood from the difference in the model structures. For model A, disrupting dimer

formation affects only the rate of which Hes1 can enter the nucleus. In the very unlikely

event that a dimer does form and finds a pore and translocates, the dimer is stable and can

repress transcription. In model B, however, the dimer disruption greatly impairs Hes1

protein’s ability to find and bind to the promoter, since it needs to be in its dimer form to act

as a repressor. Hence, we can now add to our discussion in Sect. 6. We have found that the

difference between the responses to dimer disruption between the two models is large

enough to have the potential to form the basis for an experiment that indirectly discriminates

between the two modelling scenarios. As there currently exist Hes1 dimerisation disruption

drugs (Arai et al. 2009), an experiment disrupting Hes1 dimerisation in individual cells

could be enlightening and validate either model A or model B.

8 Discussion

Hes1 lies at the crossroads of multiple signalling pathways, and is known to play a major

role in tumour development. In recent years, it has been established as a promising target for

drug treatment (Sang et al. 2010). While some tumours are likely to up-regulate Hes1

through the Notch pathway, the Hedgehog pathway and others, the direct targeting of Hes1

could result in a higher response rate than by targeting pathways in general. In addition,

targeting Hes1 itself might result in fewer side effects because the many other genes also

regulated by the Notch or Hedgehog pathways would be unaffected. It also offers greater

specificity than treatment with HDACIs (histone deacetylase inhibitors), which have

widespread effects on acetyl groups, on histones and other non-histone proteins.

As the possible benefits are substantial, it is especially exciting that the first Hes1 dimer

inhibitor isolated from natural products was reported recently. Using an assay for Hes1

dimerisation, a natural products library was screened and two compounds that inhibit Hes1-

mediated downregulation of gene expression intracellularly were identified (Arai et al.

2009). Of course, the sensitivity and efficacy of these molecules and related small molecules

in vivo remains to be determined. Further, reducing Hes1 activity systemically would be
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expected to affect the physiology of normal cells, especially stem cells, which could result in

stem cell depletion, immune dysfunction, and even ageing phenotypes. Thus, the design of a

small molecule Hes1 inhibitor represents a promising, but challenging approach to therapy.

Given the importance of understanding the dynamics of Hes1 (in particular, Hes1

dimerisation) for cancer therapies, in this paper we have examined the Hes1 GRN in some

detail using two spatial stochastic models. In the first model we presented, we followed

previous modelling efforts and allowed only for Hes1 dimerisation in the cytoplasm, as well

as only allowing Hes1 dimers to be imported into the nucleus. In the absence of definitive

experimental evidence regarding dimerisation, we then formulated a second model in which

the Hes1 dimerisation reaction occurred throughout the cell, with both Hes1 monomers and

Hes1 dimers being imported to the nucleus. Both models incorporated a novel treatment of

nuclear transport where the structure of the nuclear membrane is accounted for explicitly by

randomly distributing nuclear pores on the surface of the nuclear-cytoplasmic boundary.

Simulations of our models yielded trajectories that successfully captured the noisy

oscillatory response of Hes1 levels found in numerous experimental studies (Hirata et al.

2002; Masamizu et al. 2006; Yoshiura et al. 2007; Kobayashi et al. 2009; Kobayashi and

Kageyama 2010, 2011). Both of our models produce variability in period and amplitude of

hes1 mRNA and Hes1 protein (monomer and dimer) oscillations. For baseline parameter

sets, our models yielded results in close agreement, both in terms of the coefficient of

variation and the instantaneous period (calculated using a continuous time wavelet

transform).We also performed a parameter sensitivity analysis on the nuclear transport and

dimerisation parameters in both our models. We found that our models are robust to changes

in nuclear transport parameters, but more sensitive to dimerisation parameters, with model B

(dimerisation everywhere) appearing to be more sensitive than model A (cytoplasmic

dimerisation).

We suggested both a direct experiment and an indirect measurement that could distinguish

which of the two models is more faithful to the underlying biology. It is the hope of the

authors that the work presented will encourage experimentalists to investigate the structure

of this important GRN in greater depth.

Finally, we considered different methods of disrupting dimerisation in both the models.

Namely through inhibiting the formation of dimers (reducing parameter β1) and by

disrupting the stability of the dimers (increasing parameter β2). Here, we are able to report

non-negligible quantitative differences in how the two models respond. In particular, the

coefficient of variation distributions are markedly different for model A and model B. This

yields yet another possible method for determining which of our models more accurately

captures the Hes1 GRN (see Sect. 7 for details).

One aspect of intracellular dynamics which we have not included in the current model, but

which is of relevance to our study, is that of molecular crowding, i.e. volume exclusion

events due to other molecules or organelles. Molecular crowding generates an environment

where diffusion is hindered by obstacles and traps, resulting in a form of molecular

movement called “subdiffusion” (Mendez et al. 2010). More precisely, subdiffusion refers to
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a form of molecular movement in which the mean-square displacement of a molecule is not

linear in time. Molecular crowding has important implications for both nuclear transport

events and dimerisation events. In terms of nuclear transport, a recent study demonstrated

that first passage times of molecules moving from the nucleus to the cytoplasm (and vice

versa) are strongly modulated by molecular crowding (Roussel and Tang 2012). Brownian

dynamics studies of dimerisation in a crowded environment have shown that crowding alters

the dimerisation parameters and shifts the equilibrium state of the system towards the dimer

state rather than the monomer state (Grima 2010). In terms of our models, accounting for

molecular crowding may result in enhanced dimerisation, and hence, the associated

oscillatory dynamics (particularly in model B as it is sensitive to changes in dimerisation

parameters). Another aspect of the present model that may be influenced by macromolecular

crowding is our study of drug treatment. The ability of a drug to find the dimers within the

cell is strongly dependent on the intracellular environment (crowding would likely inhibit

the drug-dimer interaction). In order to account for molecular crowding in mathematical

models, numerous different approaches have been taken. In deterministic models, fractional

partial differential equations have been employed with success in simplified settings, but

have proved challenging in more realistic settings (Yadav et al. 2008). Many authors have

taken a spatial stochastic approach to account for macromolecular crowding, and numerical

studies have proven more tractable, for example, see Marquez-Lago et al. (2012).

Future work will consider extending the current study in various ways as well as analysing

the current model in greater depth. In particular, we will compare and contrast numerical

solutions of equivalent deterministic models for models A and B under different parameter

sets. This will allow us to better understand the role of intrinsic noise in our models and we

may be able to identify certain regions of the parameter space in which noise induces

oscillatory dynamics (such as was studied in Scott et al. 2011). We may also modify our

approach to account for macromolecular crowding, as discussed in the previous paragraph.

In terms of modelling, we plan to investigate nuclear transport in more detail and begin to

account for the ran-cycle. Many transcription factors are known to be actively transported

toward the nucleus along microtubules (Lomakin and Nadezhdina 2010), therefore, we may

account for this in future work. We will also conduct a global sensitivity analysis of our

model using data clustering techniques. We may also consider cell–cell communication to

see if this acts to stabilise and synchronise oscillatory behaviour as was found in Masamizu

et al. (2006). We did not explore the possibility of combination drug therapy, which has

been stated as an attractive avenue in controlling Hes1 activation (Sang et al. 2010).

Naturally, our approach is readily applicable to many other pathways and we plan to

investigate the more complex p53-Mdm2 GRN using a similar approach to the one

presented in this paper.
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Appendix

Parameter Sensitivity Analysis Figures for Model A See Figs. 13–17.

Parameter Sensitivity Analysis Figures for Model B See Figs. 18–22.
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Fig. 1.
The negative feedback loop in the Hes1 GRN. When the promoter site is free, hes1 mRNA is transcribed at its maximal rate.

The nascent mRNA then diffuses and is exported to the cytoplasm where it produces Hes1 protein monomers via the process of

translation. Hes1 monomers bind together to form dimers in the cytoplasm. Hes1 dimers diffuse and are imported into the

nucleus. They go on to occupy the hes1 promoter and repress the transcription of hes1 mRNA. The occupied promoter site is

still able to produce hes1 mRNA, but at a significantly reduced rate (Takebayashi et al. 1994) (Color figure online)
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Fig. 2.
Simplified model of unidirectional nuclear transport of mRNA (red) and protein (grey) between nucleus and cytoplasm. An

mRNA or protein molecule travels through the nuclear membrane by first binding to a NPC at a rate kpore. Once bound to a

pore, the mRNA or protein molecule shuttles through the pore and exits the nucleus or cytoplasm at a rate krel (Color figure

online)
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Fig. 3.
The 3D meshed domain approximation of a eukaryotic cell used in numerical simulations of the Hes1 model. The domain is

discretised such that 8,867 voxels make up the domain. The cytoplasm is represented by a long ellipsoid, centre (0, 0), with

major axis equal to 18.20 µm and minor axes equal to 6.00 µm and 3.00 µm. The nucleus is shown here as a blue ellipsoid,

centre (0, 0), major axis 6 µm and minor axes equal to 4 µm and 2 µm. The cytoplasm (shown in green) is the part of the cell that

is outside the nucleus. The gene subdomain is chosen to be the voxel closest to the centre of the cell (0, 0), a distance r from the

nuclear membrane (Color figure online)
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Fig. 4.
The upper plot shows the (scaled) total copy number of mRNA and protein (monomer and dimer) for a single trajectory of the

Hes1 model (see Table 1 for parameter values). The mRNA and protein oscillations have approximately the same scaled

amplitude and highly variable period. The lower plot shows the corresponding time varying period of Hes1 protein as estimated

by the continuous time wavelet transform (as implemented in WAVOS). As can be seen, the period is highly variable over time

and an accurate estimate of the mean period requires long sampling times
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Fig. 5.
Plots showing, (a) a histogram of the mean period distribution, and, (b) a histogram of the instantaneous period distribution for

Hes1 protein numbers. These histograms were generated from ensembles of 1000 independent realisations of model A using the

same parameters (as stated in Table 1)
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Fig. 6.
Plots showing, (a) a histogram of the mRNA CV distribution, and, (b) a histogram of the protein CV distribution. Both

histograms were generated from 1000 independent realisations of model A using the same parameters (as stated in Table 1)
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Fig. 7.
The upper plot shows the (scaled) total copy number of mRNA and protein (monomer and dimer) for a single trajectory of the

Hes1 model (see Table 2 for parameter values). The mRNA and protein oscillations have approximately the same scaled

amplitude and highly variable period. The lower plot shows the time varying period as estimated by the continuous time wavelet

transform (as implemented in WAVOS). As can be seen, the period is highly variable over time and an accurate estimate of the

mean period requires long sampling times
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Fig. 8.
Plots showing, (a) a histogram of the mean period distribution, and, (b) a histogram of the instantaneous period distribution for

Hes1 protein numbers. These histograms were generated from ensembles of 1000 independent realisations of model B using the

same parameters (as stated in Table 2)
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Fig. 9.
Plots showing, (a) a histogram of the mRNA CV distribution, and, (b) a histogram of the protein CV distribution. Both

histograms were generated from 1000 independent realisations of model B using the same parameters (as stated in Table 2)
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Fig. 10.
Coefficient of variation distributions for the different dimer disruption model scenarios (as indicated in the legends). While there

is an effect on model A, the effect is much greater in model B. Low values of the coefficient of variation correlate with non-

oscillatory solutions with sustained high protein levels or oscillations with a very low amplitude (Color figure online)
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Fig. 11.
Sample trajectories for the disruption experiments for model A. Impairing dimer formation or dimer stability has little effect on

model A
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Fig. 12.
Sample trajectories for the disruption experiments for model B. Impairing dimer formation or dimer stability has a large effect

on model B

Sturrock et al. Page 32

Bull Math Biol. Author manuscript; available in PMC 2014 April 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 13.
Plots showing the effect of varying parameter kpore (all other parameters as per Table 1). The left plot shows the fraction of time

the system spends oscillating with a period in the range 0–120 minutes, 120–300 minutes and 300–PE as kpore is varied. The

middle plot shows how the mean period varies as kpore is varied. The right plot shows how the CV varies for mRNA and protein

as kpore is varied. As can be seen from each plot, varying kpore has little effect on the system (Color figure online)
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Fig. 14.
Plots showing the effect of varying parameter krel (all other parameters as per Table 1). The left plot shows the fraction of time

the system spends oscillating with a period in the range 0–120 minutes, 120–300 minutes and 300–PE as krel is varied. The

middle plot shows how the mean period varies as kpore is varied. The right plot shows how the CV varies for mRNA and protein

as krel is varied. As can be seen from each plot, varying krel has little effect on the system (Color figure online)
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Fig. 15.
Plots showing the effect of varying the number of NPCs (all other parameters as per Table 1). The left plot shows the fraction of

time the system spends oscillating with a period in the range 0–120 minutes, 120–300 minutes and 300–PE as the number of

NPCs is varied. The middle plot shows how the mean period varies as the number of NPCs is varied. The right plot shows how

the CV varies for mRNA and protein as the number of NPCs is varied. As can be seen from each plot, varying the number of

NPCs has little effect on the system (Color figure online)
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Fig. 16.
Plots showing the effect of varying parameter β1 (all other parameters as per Table 1). The left plot shows the fraction of time

the system spends oscillating with a period in the range 0–120 minutes, 120–300 minutes and 300–PE as β1 is varied. The

middle plot shows how the mean period varies as β1 is varied. The right plot shows how the CV varies for mRNA and protein as

β1 is varied. As can be seen from the plots, varying β1 has an impact on the mean period. The plots reveal that increasing β1

increases the mean period (Color figure online)
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Fig. 17.
Plots showing the effect of varying parameter β2 (all other parameters as per Table 1). The left plot shows the fraction of time

the system spends oscillating with a period in the range 0–120 minutes, 120–300 minutes and 300–PE as β2 is varied. The

middle plot shows how the mean period varies as β2 is varied. The right plot shows how the CV varies for mRNA and protein as

β2 is varied. As can be seen from the plots, varying β2 has an impact on the mean period. The plots reveal that increasing β2

decreases the mean period (Color figure online)
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Fig. 18.
Plots showing the effect of varying parameter kpore (all other parameters as per Table 1). The left plot shows the fraction of time

the system spends oscillating with a period in the range 0–120 minutes, 120–300 minutes and 300–PE as kpore is varied. The

middle plot shows how the mean period varies as kpore is varied. The right plot shows how the CV varies for mRNA and protein

as kpore is varied. As can be seen from each plot, varying kpore has little effect on the system (Color figure online)
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Fig. 19.
Plots showing the effect of varying parameter krel (all other parameters as per Table 1). The left plot shows the fraction of time

the system spends oscillating with a period in the range 0–120 minutes, 120–300 minutes and 300–PE as krel is varied. The

middle plot shows how the mean period varies as krel is varied. The right plot shows how the CV varies for mRNA and protein

as krel is varied. As can be seen from each plot, varying krel has little effect on the system (Color figure online)
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Fig. 20.
Plots showing the effect of varying the number of NPCs (all other parameters as per Table 1). The left plot shows the fraction of

time the system spends oscillating with a period in the range 0–120 minutes, 120–300 minutes and 300–PE as the number of

NPCs is varied. The middle plot shows how the mean period varies as the number of NPCs is varied. The right plot shows how

the CV varies for mRNA and protein as the number of NPCs is varied. As can be seen from each plot, varying the number of

NPCs has little effect on the system (Color figure online)
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Fig. 21.
Plots showing the effect of varying parameter β1 (all other parameters as per Table 1). The left plot shows the fraction of time

the system spends oscillating with a period in the range 0–120 minutes, 120–300 minutes and 300–PE as β1 is varied. The

middle plot shows how the mean period varies as β1 is varied. The right plot shows how the CV varies for mRNA and protein as

β1 is varied. As can be seen from the plots, varying β1 has a large impact on the mean period. The plots show that increasing β1

increases the mean period (Color figure online)
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Fig. 22.
Plots showing the effect of varying parameter β2 (all other parameters as per Table 1). The left plot shows the fraction of time

the system spends oscillating with a period in the range 0–120 minutes, 120–300 minutes and 300–PE as β2 is varied. The

middle plot shows how the mean period varies as β2 is varied. The right plot shows how the CV varies for mRNA and protein as

β2 is varied. As can be seen from the plots, varying β2 has a large impact on the mean period. The plots show that increasing β2

decreases the mean period (Color figure online)
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Table 1

Reactions in model A of the Hes1 GRN, their localisation, description and baseline parameter values used

Reaction Localisation Description Parameter values

Gene Promoter occupation k1 = 1.00 × 109 M−1 min−1

(Tafvizi et al. 2011)

Gene Promoter liberation k2 = 0.10 min−1 (estimate)

Gene mRNA transcription αm = 3.00 min−1 (Barrio et
al. 2006)

Gene mRNA transcription (reduced) αm = 3.00 min−1, γ =
100.00 (Barrio et al. 2006;
Takebayashi et al. 1994)

Cytoplasm Protein translation αp = 1.00 min−1 (Barrio et
al. 2006)

Cytoplasm mRNA degradation μm = 0.031 min−1 (Hirata et
al. 2002)

Nucleus mRNA degradation μm = 0.031 min−1 (Hirata et
al. 2002)

Cytoplasm Monomer degradation μp = 0.108 min−1 (Momiji
and Monk 2008)

Cytoplasm Dimer degradation μp = 0.108 min−1, ζ = 3.00
(Hirata et al. 2002; Momiji
and Monk 2008)

Nucleus Dimer degradation μp = 0.108 min−1, ζ = 3.00
(Hirata et al. 2002; Momiji
and Monk 2008)

Cytoplasm Monomer dimerisation β1 = 1.00 × 109 M−1 min−1

(estimate)

Cytoplasm Dimer detachment β2 = 0.10 min−1 (estimate)

Nuclear membrane mRNA binding to nuclear pore kpore = 1.00 × 109 M−1

min−1 (estimate)

Nuclear membrane Release of mRNA to cytoplasm krel = 6.00 × 103 min−1

(estimate)

Nuclear membrane Dimer binding to nuclear pore kpore = 1.0.0 × 109 M−1

min−1 (estimate)

Nuclear membrane Release of dimer to nucleus krel = 6.00 × 103 min−1

(estimate)
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Table 2

Reactions in model B of the Hes1 GRN, their localisation, description and baseline parameter values used

Reaction Localisation Description Parameter values

Gene Promoter occupation k1 = 1.00 × 109 M−1

min−1 (Tafvizi et al.
2011)

Gene Promoter liberation k2 = 0.10 min−1 (estimate)

Gene mRNA transcription αm = 3.00 min−1 (Barrio
et al. 2006)

Gene mRNA transcription (reduced) αm = 3.00 min−1, γ =
100.00 (Barrio et al.
2006; Takebayashi et al.
1994)

Cytoplasm Protein translation αp = 3.00 min−1 (Barrio et
al. 2006)

Cytoplasm mRNA degradation μm = 0.031 min−1 (Hirata
et al. 2002)

Nucleus mRNA degradation μm = 0.031 min−1 (Hirata
et al. 2002)

Cytoplasm Monomer degradation μp = 0.108 min−1 (Momiji
and Monk 2008)

Nucleus Monomer degradation μp = 0.108 min−1 (Momiji
and Monk 2008)

Cytoplasm Dimer degradation μp = 0.108 min−1, ζ =
3.00 (Hirata et al. 2002;
Momiji and Monk 2008)

Nucleus Dimer degradation μp = 0.108 min−1, ζ =
3.00 (Hirata et al. 2002;
Momiji and Monk 2008)

Cytoplasm Monomer dimerisation β1 = 1.00 × 109 M−1

min−1 (estimate)

Cytoplasm Monomer dimerisation β1 = 1.00 × 109 M−1

min−1 (estimate)

Cytoplasm Dimer detachment β2 = 0.10 min−1

(estimate)

Nuclear membrane mRNA binding to nuclear pore kpore = 1.00 × 109 M−1

min−1 (estimate)

Nuclear membrane Release of mRNA to cytoplasm krel = 6.00 × 103 min−1

(estimate)

Nuclear membrane Monomer binding to nuclear
pore

kpore = 1.00 × 109 M−1

min−1 (estimate)

Nuclear membrane Release of monomer to nucleus krel = 6.00 × 103 min−1

(estimate)

Nuclear membrane Dimer binding to nuclear pore kpore = 1.00 × 109 M−1

min−1 (estimate)
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Reaction Localisation Description Parameter values

Nuclear membrane Release of dimer to nucleus krel = 6.00 × 103 min
(estimate)
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