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Abstract

We present an integrated analytical method for analyzing peptide microarray antibody binding

data, from normalization through subject-specific positivity calls and data integration and

visualization. Current techniques for the normalization of such data sets do not account for non-

specific binding activity. A novel normalization technique based on peptide sequence information

quickly and effectively reduced systematic biases. We also employed a sliding mean window

technique that borrows strength from peptides sharing similar sequences, resulting in reduced

signal variability. A smoothed signal aided in the detection of weak antibody binding hotspots. A

new principled FDR method of setting positivity thresholds struck a balance between sensitivity

and specificity. In addition, we demonstrate the utility and importance of using baseline control

measurements when making subject-specific positivity calls. Data sets from two human clinical

trials of candidate HIV-1 vaccines were used to validate the effectiveness of our overall

computational framework.

© 2013 Elsevier B.V. All rights reserved.
*To whom correspondence should be addressed, Raphael Gottardo: rgottard@fhcrc.org, Phone: 1 (206) 667-4076.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Immunol Methods. Author manuscript; available in PMC 2014 September 30.

Published in final edited form as:
J Immunol Methods. 2013 September 30; 395(0): 1–13. doi:10.1016/j.jim.2013.06.001.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Keywords

Peptide microarrays; Antibodies; Normalization; Positivity calls; Software; Visualization

1) Introduction

Peptide microarrays are a powerful tool for profiling the fine specificity of antibody binding

against thousands of peptides simultaneously. In a typical experimental protocol, slides

spotted with a library of peptide probes are bathed in sample serum, and serum antibodies

bind to cognate peptide probes. Fluorescently labeled secondary antibodies are added to tag

peptide-bound serum antibodies, and scanned slides yield a fluorescence intensity for each

probe. A common choice of peptide library is a tiling array, in which peptides are drawn

from the linear sequence of a protein in an overlapping fashion. Typical applications of

peptide microarrays include epitope mapping and the profiling of vaccine-elicited antibody

responses.Lin et al. (2009) employed peptide tiling arrays to map linear epitopes for milk

allergens. In a similar vein,Shreffler et al. (2004) used peptide tiling arrays to map linear

epitopes on a peanut allergen. One can also test a treatment's effect on an antibody profile,

referring to a subject's set of antibodies as well as their concentrations. Detecting changes in

antibody profiles can help define the immunogenic properties of a vaccine. In studies of

immune correlates of vaccine efficacy, peptide microarrays can tease out differences in

antibody responses that correlate with an outcome of interest such as risk of infection

(Neuman de Vegvar et al., 2003; Haynes et al., 2012).

As with DNA microarrays, technological variation can contaminate true underlying signal

measurements from peptide probes. Thus peptide microarray experimental protocols include

numerous steps that may introduce systematic biases. In many cases, the antibody binding

intensity values from peptide microarray assays are not directly comparable because of

inherent non-specific binding activity. If not accounted for, such biases can severely

deteriorate subsequent results. The statistical method of normalization aims to reduce these

biases for improved assay standardization. Most methods for peptide microarray

normalization are based on techniques developed for gene expression microarrays (Kerr et

al., 2000; Bolstad et al., 2003). Reilly and Valentini (2009) and Renard et al. (2011) used

linear models to estimate and remove systematic errors. Schrage et al. (2009) used quantile

normalization in the context of kinome profiling. Although DNA and peptide microarrays

are similar in principle, experimental protocols differ substantially. Peptide microarray

probes use short amino-acid sequences rather than nucleic acid sequences and require a

fluorescently labeled secondary antibody to tag peptide-bound primary antibodies. This

secondary binding reaction can increase background noise due to non-specific binding to

peptides. The tremendous physiochemical diversity within a large library of peptides

increases the likelihood of weak antibody binding that is not related to the antibodies of

interest. DNA microarrays are also subject to non-specific hybridization (Naef and

Magnasco, 2003), but many methods designed to cope with this are tailored to the particular

biochemistry of DNA microarrays (Wu et al., 2004, Carvalho et al,. 2006). Thus, methods

for DNA microarray normalization might not be optimal for peptide microarrays, and there

is a need for peptide-specific normalization methods.
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Once data have been properly normalized, true positives need to be identified that represent

peptide-bound antibodies of interest. Again, in the context of peptide microarrays, most

studies have used methods developed for the identification of differentially expressed genes.

Schrage et al. (Schrage et al.) used Limma (Smyth, 2004) to compare kinome profiles across

cell lines. Nahtman et al. (2007) used SAM (Efron and Tibshirani, 2002) to compare

antibody profiles among TB-positive and TB-negative individuals. These methods can only

compare profiles across groups of individuals and unfortunately cannot be used on a per

subject basis. Due to between-subject variability of host immune systems, multiple subjects

may produce different antibody profiles in response to an identical stimulus (e.g. vaccine or

infection). As a consequence, it is important that the positivity method allow subject-specific

determinations to be made. This is particularly true for vaccine immunogenicity studies,

where it is common practice to report the proportion of subjects who generate a positive

response after vaccination. The high throughput nature of peptide microarrays allows

responses to be measured across thousands of peptides spanning numerous epitopes. As far

as we are aware, only two groups have addressed the problem of subject-specific calls

(Reilly and Valentini, 2009; Renard et al., 2011). Reilly and Valentini (2009) proposed a

rule to call positive peptides those with signals above two standard deviations of the mean,

where the mean and standard deviation are calculated across all peptides on a slide. In a

similar fashion, Renard et al. (2011) used Gaussian mixture models to discriminate signal

carrying peptides from background noise. Based on our experience, these two approaches

can lead to a high false positive rate.

We present a complete analytical and visualization framework for the analysis of peptide

microarray data that directly addresses the shortcomings mentioned above. The analytical

tool, named pepStat, includes normalization, data smoothing and subject-specific positivity

calls. The novel normalization method uses peptide physiochemical properties to estimate

and remove non-specific peptide binding activity of antibodies. When the slide layout

comprises overlapping n-mers, normalized signal intensities are then smoothed using a

running mean, which consolidates signals across overlapping peptides and reduces

background noise. We propose a method for generating subject-specific positivity calls by

fixing a global threshold based on the false discovery rate (FDR). The visualization stage,

named Pviz, is a general framework for high throughput data reduction and visualization,

providing genome-browser type visualization. Pviz can simultaneously visualize and

compare results from multiple studies, along with user-provided annotations of the antigen

of interest (e.g. HIV-1 landmarks). Using two HIV-1 vaccine trial datasets, we illustrate our

complete analytical framework compared to other methods, including normalization

techniques developed for one-channel DNA microarrays, and the subject-specific positivity

methods.

2. Methods

2.1. Datasets

As a basis for comparing methodologies, we consider two HIV-1 vaccine trial datasets.
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RV144—The HIV-1 vaccine used in the RV144 efficacy trial consisted of priming with a

recombinant canarypox vector and boosting with this vector and a bivalent gp120 protein. A

pilot set of peptide microarray binding data was generated using plasma samples from 80

vaccine recipients and 20 placebo HIV-1 uninfected recipients, with pre and post-

vaccination (2 weeks post final boosting) plasmas assayed together for all subjects. In

addition, 20 of the 80 plasmas from vaccinees were assayed in two different laboratories,

leading to a smaller “replicated” dataset. Further details about these data can be found in

Karasavvas et al. (2012), while more details about the design and findings of the RV144

phase III clinical trial can be found in RerksNgarm et al. (2009). We will refer to these two

RV144 pilot datasets as RV144a and RV144b, respectively.

HVTN204—HVTN204 was a phase 2 clinical trial of two HIV-1 vaccine candidates used in

a prime-boost protocol. The two vaccines were VRC-HIVDNA016-00-VP (“DNA vaccine”)

and VRC-HIVADV014-00-VP (“adenoviral vector vaccine”). The DNA priming agent

comprised six plasmids containing the HIV genes gag, pol, nef and three gp140s (subtypes

A, B, and C). The boost consisted of four adenovirus vectors separately expressing HIV-1

Gag/Pol and subtypes and subtypes A, B, and C gp140s. The dataset consists of a subset of

15 HIV-1 uninfected vaccinees with pre and post-vaccination assays run on all subjects.

Both experiments used the same peptide microarray design consisting of 1423 peptides

tiling multiple subtypes (clades) of the HIV-1 envelope protein gp160 manufactured by JPT

Peptide Technologies, Berlin, Germany (Tomaras et al., 2011). The peptide sequences

covered the entire gp160 consensus sequences of 6 HIV-1 subtypes A, B, C, D, CRF01_AE

and CRF02_AG, and a consensus group M gp160, Con-S (Gaschen et al., 2002). All

peptides were synthesized as 15-mers overlapping by 12 amino acids. Amino acid sequences

were indexed according to the gp160 sequence of HIV-1 strain HxB2. Each peptide was

assigned a position within the HxB2 reference sequence corresponding to the midpoint of

the alignment for that peptide.

Data Preprocessing—Foreground and background intensities from microarray scans

were loaded from GenePix results (gpr) files. Background-corrected intensities were

estimated using the normexp method, reviewed and developed in Ritchie et al. (2007) and

implemented in the limma R package. Intensities were log2 transformed for further analysis.

For each dataset, within-slide peptide replicates (in our case, 3) were summarized by their

median prior to producing signal calls. The median summary is robust against outliers and

questionable observations, and reduces the likelihood of false positives during further

analysis.

2.2. Statistical modeling

Data Normalization—The primary goal of data normalization in antibody binding assays

is to remove non-biological sources of bias and increase the comparability of true positive

signal intensities across slides. Here, we introduce a novel normalization method applied to

peptide microarrays that resembles normalization methods used for tiling DNA-based

microarrays. It differs by using physiochemical properties of individual peptides instead of

probe sequences as is commonly done for DNA based arrays (Johnson et al., 2006; Droit et
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al., 2010). As demonstrated by a yeast whole-proteome array (Michaud et al. 2003), epitope

specificity can vary greatly across multiple antibodies, with a number of antibodies binding

to non-cognate proteins. We expect that observed signal intensities contain effects unrelated

to true peptide binding (i.e. antibodies binding to cognate peptides), such as non-specific

binding of primary or secondary antibody.

We apply the z-scales developed in Sandberg et al. (1998) to model non-specific antibody

binding to arrays. The z-scales are the first five principal components of 26 physiochemical

amino acid properties such as molecular weight, thin layer chromatography values for

various substrates, electronegativity, and others. A single z-scale represents a weighted

combination of physiochemical properties that strongly differentiates amino acids. For

example, the third z-scale mainly describes an amino acid's polarity. We obtain the five Z-

scale values ζpj, j = 1,…, 5 for peptide p by summing the scores of the amino acids that it

comprises.

Using the peptide z-scale values, we model the peptide intensities yp as

where εp is distributed σt4, a scaled student-t distribution with 4 degrees of freedom, β0 is an

intercept term, and βj is the overall effect of the j-th physiochemical property. The use of t-

distributed errors dramatically reduces the influence of extreme values when estimating

model coefficients. In turn, relatively sparse true binding events do not unduly impact the

estimation of non-specific binding events. Note that our model only includes linear terms;

including higher order terms (e.g. ) did not improve the method's performance (data not

shown). This model is fitted to each slide, and the fitted values  estimate the portion of

signal that arises due to systematic biases, such as batch effects and non-specific antibody

binding. Normalized signal intensities are taken to be the residuals .

As a comparison, we tried a normalization method similar to the MAT model of Johnson et

al. (2006) that is used to normalize DNA tiling experiments, in which DNA probes are

normalized according to their ACGT counts. In our case, we model the peptide level

intensities, yp as

where γjp counts the number of times amino acid j appears in peptide p, β0 is an intercept

term, and βj is the overall effect of the j-th amino acid content. Again, this model is fitted to

each slide separately, and normalized values are defined by the model residuals. For both

methods above, within-slide peptide intensities are median summarized prior to modeling as

described in the data section.

We compare physiochemical normalization against quantile normalization of Bolstad et al

(2003) and a linear model approach. Nahtman et al. (2007), Reilly and Valentini (2009), and

Renard et al. (2011) use linear models to control for factors such as spatial, print needle, and
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array effects. Slides from all data sets use the same array layout. Arrays comprise three

subarrays with identical probe layouts. Within a subarray, probes are divided into sixteen

blocks arranged in a four by four grid. Each block contains 121 probes spotted in an eleven

by eleven grid by a distinct printing needle.

The overall probe composition of blocks varies, but each block contains seven control

peptides. We use control peptides to estimate spatial, print needle, and array effects. Control

peptides were not printed with sufficient density to estimate finer spatial effects such as row

or column effects. We estimate array effects Ai, subarray effects Sj, needle effects Nk,

control peptide effects Pl, as well as possible interactions. The intensity yijkl of control

peptide l under needle k on subarray j of array i is modeled as

Terms (AS)ij and (AN)ik allow print needle and subarray effects to vary across arrays. The

term (SN)jk allows print needle effects to vary across subarrays. The interaction (AP)ij allows

control peptide effects to vary across arrays, which accommodates the possibility that sera

from different patients react differently toward control peptides. To correct the remaining

peptide intensities, we subtract corresponding estimates of array, subarray, and needle

effects and their two-way interactions.

A three-way interaction term (ASN)ijk was initially included in the model. This term

represents a spatial effect that is array, subarray, and needle specific. The (ASN)ijk term was

not statistically significant for the RV144A and HVTN data sets, and hence is not used to

correct peptide intensities. In the RV144B data set, the significance of the (ASN)ijk

interaction entirely depended on the inclusion of two slides from one subject with very

strong three-way interaction effects. Correcting for (ASN)ijk in RV144B increased overall

intensity variability and did not improve ROC performance, so we also omit the (ASN)ijk

interaction term from the RV144B correction. For this linear model and quantile

normalization, within-slide replicates are median-summarized after normalization.

We define the normalized baseline corrected intensity of peptide p, zp, as the normalized

intensity of peptide p post-vaccination minus its normalized intensity pre-vaccination. While

our normalization method does capture some effects of non-specific binding events,

subtracting pre-treatment intensities after normalization removes strong, consistent non-

specific binding effects for which physiochemical properties alone fail to account. As we

later show, baseline correction can substantially reduce signal variability.

Data smoothing—Normalization methods help remove systematic biases, but

experimental variation may generate relatively noisy signal. Normalized (and baseline

corrected) intensities alone also fail to take advantage of the overlapping nature of peptides

on the array. When peptides on the arrays are overlapping n-mers from the linear amino acid

sequence of a larger protein, two peptides could share a large portion of, or completely

contain, an antibody epitope. We expect that the binding effects of two overlapping peptides
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will be positively correlated. Therefore we propose a sliding mean technique to borrow

strength across neighboring peptides and to reduce signal variability.

About each peptide p, we define a window Wp
(d) to be the set of peptides with position

within d /2 of the position of p, according to their common HxB2 alignment positions. Let

λp denote the position of the midpoint of peptide p. A peptide p' is a member of Wp
(d) if and

only if |λp− λp'|<d /2. The amount of overlap between two peptides depends on the length of

the peptides, as well as the tuning parameter d. For our slide design, letting d = 9 results in a

minimum overlap of nine amino acids for peptides contained in a common window. This

value was chosen as the median of the length of known HIV gp160 continuous epitopes

listed in the LANL database (Korber et al., 2001). To compute the sliding mean statistic

ýp
(d) for a peptide p, we simply average the response indices of neighboring peptides in a

window Wp
(d), resulting in a smoothed signal with dramatically lower variability. For

peptides sharing a common position in an alignment, this also implies that the two peptides

will receive the same sliding mean value, i.e. if λp = λp' then ýp
(d) = ýp'

(d) even if p ≠ p'.

Though this is a loss of resolution, this statistic increases detection of binding hotspots that

noisy signals might otherwise obscure.

Positivity calls—We propose a thresholding method for smoothed intensities to control

the false discovery rate (FDR) across peptides and subjects, especially helpful in the absence

of negative controls. The FDR is a multiple testing procedure that aims to control the

proportion of positive calls that are false (Storey, 2002).

Assuming that for each subject, the distribution of peptide intensities is symmetric about

zero, with long right tails in the event of true binding, the FDR can be estimated as follows

for a given threshold T. We let

where Fs(T) is the estimated FDR for subject s at the threshold T. The numerators and

denominators are computed only on the set of unique peptide indices, i.e. unique λp values.

Using an argument of symmetry, the numerator is a good estimate of the number of false

positives in the upper tail, for a given threshold T. The values Fs(T) are thus estimates of the

false discovery rate within each subject, for a given threshold. The estimated overall FDR

for a threshold T is the median of the values F (T)=meds Fs(T), across all subjects. The

threshold T is selected as the threshold minimizing the difference |F (T)− f | where f is the

target FDR (e.g. 10%). All peptides with responses ýsp
(d) greater than T are called positive.

The assumption of symmetry is generally satisfied after proper normalization and baseline

correction, resulting in accurate FDR estimation (Figure 1) when using Z-scale

normalization.

2.3. Software infrastructure

In order to efficiently process, analyze, and visualize peptide microarray data, we have

developed an analysis pipeline consisting of four open-source R (Ihaka and Gentleman,

1996) packages: pepStat, HIV.db, PEP.db, and Pviz. Working directly from the GenePix
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results (gpr) files, pepStat extracts, normalizes and summarizes intensities before calculating

positivity calls for each peptide and subject. When reading the data, the user may provide a

comma-separated value (.csv) file that maps file names to metadata required for analysis,

such as treatment (i.e. Placebo/Vaccine) and visit information (Pre/Post vaccination), subject

identifiers, etc. pepStat automatically uses this information to compute normalized baseline

corrected intensities, and calculate response groups broken down by treatment information.

The HIV annotation database HIV.db contains various HIV and SIV annotation features that

can be used to annotate specific HIV landmarks. The PEP.db package contains information

about our peptide microarray designs including sequence information, HxB2 alignments and

positions, that are required by pepStat. The structure of both HIV.db and PEP.db is modular,

so that new annotations and/or peptide designs can be added for future analysis. Finally,

Pviz can be used to efficiently integrate and visualize different data sources (e.g. peptide

level data, sequence data and HIV annotations).

The data analysis platform allows for easy reproducibility of results while enabling

investigators to quickly review and share peptide microarray results, derive new hypothesis,

and generate high quality graphics for publications and reports. Our pipeline has been

developed and optimized for HIV, but non-HIV data can be processed if the user creates the

necessary peptide and annotation structures, similar to those in our PEP.db and HIV.db

packages. Our infrastructure efficiently manipulates genomic coordinates and sequences by

employing packages such as Biostrings and IRanges, available as part of the Bioconductor

project (Gentleman et al., 2004). Our software is publicly available at https://github.com/

RGLab.

3. Results

3.1 Comparison of pepStat normalization to other methods

ROC analysis—We use the receiver operating characteristic (ROC) to illustrate the

benefits of normalization and to compare our pepStat normalization with other methods.

Calculations are based on baseline corrected intensities z p as described in section 2.2. The

ROC is a curve that describes a method’s ability to discriminate binary outcomes. A

method’s ROC highlights the trade-off between sensitivity and specificity. The ROC traces

false and true positive rates as a function of a detection threshold. The false positive rate is

the proportion of positive calls that are not truly positive, and the true positive rate is the

proportion of truly positive events that are called positive by a method. In our case, we

varied a signal threshold T. When applied to the RV144a/b data sets, ROCs reveal how well

various normalization methods separate the intensities of bound and unbound peptides. We

also apply the ROC to smoothed data after normalization.

A reference truth is necessary to determine whether a positive call was truly positive.

Because of prior-infections, allergies, or other non-specific binding mechanisms, subjects

may elicit true positive binding events unrelated to treatment in both pre and post-treatment

measurements. Baseline correction likely removes such binding events, hence we assume

placebo subjects generate no true positive results. The peptide arrays cover both

glycoproteins gp120 and gp41. Because the RV144 vaccine contains a gp120 insert, all

peptides in gp120 have the potential to generate positive binding events among vaccinated
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subjects. The canarypox vector contains the env sequence for both gp120 and gp41, but the

vaccine lacks a gp41 insert. Figure 2 demonstrates a lack of signal in gp41, leading us to

characterize any binding to gp41 peptides as non-specific. In gp120 we include peptides in

the C1 region just prior to the V1 loop, V2/V3 loop peptides, and gp120 C-terminus (C5

region) as likely positive peptides.

These immunogenic regions contain known epitopes and show consistent, strong signal

across multiple vaccine subjects, as detected via inspection of Figure 2. Remaining gp120

peptides are considered true negative peptides. We stress that this reference truth is not the

exact truth of who responded to vaccine stimulus; it only covers regions where a binding

event is not unexpected. Some subjects possibly generated antibodies binding to peptides

outside of our reference truth, while other subjects likely failed to generate an antibody

response toward certain immunogenic regions. Thus ROCs are likely distorted from their

true paths, but still allow relative comparisons between methods. When comparing

smoothed data, peptides sharing the same alignment position are collapsed to a single

position measurement. The reference truth for the smoothed data ROC comparison calls a

position positive if any peptide within the position was labeled positive by the previous

criteria.

Figure 4 shows the approximate ROCs for the normalization techniques under consideration.

Taller curves imply better discrimination, and the area under the ROC curve (AUC) is a

numerical summary of a method's performance. Higher AUC corresponds to better

discrimination. In RV144A the quantile, linear model, and Z-scale methods perform

approximately the same, and exceed the performance of no normalization and the amino

acid count method. With unsmoothed data, linear model normalization has highest AUC in

RV144A, while Z-scale normalization has the highest AUC in RV144B (Table 1). In both

unsmoothed data sets, normalization by the amino acid count method performs worse than

not normalizing the data at all. The amino acid model possibly overfits the data and removes

true signal along with background non-specific binding. Quantile, linear model, and Z-scale

methods again outperform the amino acid count method and no normalization after applying

our smoothing procedure to the data. Z-scale has the highest AUC in both smoothed data

sets, followed by the quantile method, then the linear model method (Table 1).

An advantage of Z-scale normalization, implemented in pepStat, is that it does not require

sub-array information that are not always available to the data analyst. Linear model

methods can also run into computational difficulties when treating a large number of arrays

simultaneously. Fitting interaction effects can result in intractably large design matrices, and

code may need to be written in a case-by-case basis.

FDR comparison—We used placebo data to evaluate our FDR estimation approach.

FDR-based calling procedures attempt to control the expected proportion of positive calls

that are false positives. The number of positive calls Pc in the vaccine group is known, for a

given threshold T. This quantity is a sum of the unknown number of true and false positives,

Pc = FP+TP. To estimate the observed proportion of false discoveries, we must know FP.

We use the placebo group to estimate FP, because the distribution of non-signal-carrying

peptides is approximately the same between vaccinated and placebo subjects. We count the
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number of positions exceeding threshold T among placebo subjects, then multiply by the

ratio of the number of vaccinated subjects to placebo subjects. The resulting quantity is an

estimate of FP among vaccinated subjects, allowing an estimate of the false discovery

proportion FP/FP+TP.

If our thresholding approach properly controls the FDR, then this quantity should

approximately equal the nominal FDR. Figure 5 shows the estimated FDR against the

nominal FDR for different normalization methods, after pepStat smoothing. The Z-scale,

amino acid count, and quantile normalization methods give approximately correct FDR

control and appear well suited for our thresholding technique. Linear model-based

normalization and no normalization show poor FDR control with the threshold method.

Thus taking into account the ROC analysis and FDR estimation, our Z-scale normalization

appears to be preferable to competing methods.

3.2. Visualization and summary analysis

We compare three positivity-calling methods. First we apply our FDR based thresholding

procedure to smoothed and unsmoothed baseline-corrected, Z-scale normalized intensities.

Next, we apply a two-component Gaussian mixture model (GMM) to the unsmoothed data

as employed in the rapmad method of Renard et al. (2011). The upper 95th percentile of the

“null signal” distribution provides a threshold. Lastly we use a cutoff of mean plus two

standard deviations on unsmoothed data, as suggested in Reilly and Valentini (2009).

Figure 3 traces the percentage of subjects in RV144A marking positive calls for each

peptide. Each peptide is indexed as a function of its position in HIV reference sequence

HxB2, contained in the PEP.db package. The R package HIV.db provides an annotation

database for HIV, while the Pviz package facilitates data visualization of protein profiles

along with annotations. On Figure 3 we show one landmark annotation track, although other

tracks containing different annotations can easily be added.

In panel B of Figure 3 our 10% FDR based threshold is stringent on unsmoothed data,

making relatively few false positive calls in placebo groups. In return, the method has

somewhat diminished power for detecting responses in vaccinated subjects. Using smoothed

data in panel A with our FDR-based thresholding procedure, we see a dramatic increase in

vaccine group response rates in anticipated immunogenic regions compared to unsmoothed

data. Meanwhile, placebo subjects in the RV144a dataset still show very low levels of false

positive calls after smoothing. With the smoothed data, four distinct response peaks arise in

the RV144a vaccine group, corresponding to the C1, the V2/V3 loops, and the C5 regions.

Vaccinated RV144a subjects also show very low levels of false positive calls in the gp41

protein, where we expect no signal due to its exclusion as a vaccine protein component. Our

smoothing procedure dramatically reduces noise in the data, leading to higher sensitivity for

our positivity calling procedure.

Panel C shows the results of a GMM-based threshold on unsmoothed data. We detect much

higher response rates in anticipated immunogenic regions, but in return we generate very

high response rates across all subjects in most peptides. The two-SD method on unsmoothed

data in panel D falls somewhere between, also showing high response rates in immunogenic
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regions but still generating high levels of false positive calls. Supplementary figure 1

demonstrates that a GMM-based model does not neatly capture a “signal” distribution, but

rather seems to model heavy tails observed in the intensity distribution. When applied to the

smoothed data, the GMM threshold produces very low sensitivity, while the two-SD method

has comparable sensitivity to our thresholding technique at the expense of low specificity

(supplementary figure 2).

The four largest response peaks among the HVTN subjects correspond again to the C1 and

V3 regions but also include the C3/V4 region and the immunodominant (ID) region of gp41.

Our visualization framework, Pviz, quickly allows us to compare where responses differ

between vaccines. The first panel of Figure 6 immediately shows that these specific

HVTN204 vaccinees did not show a V2 loop response shown to be negatively correlated

with infection in the RV144 secondary analyses (Haynes et al., 2012). Supplementary figure

3 shows the performance of the two-SD and GMM thresholding on the smoothed data,

although these methods were not designed to be applied this way.

Pviz, which inherits all plotting options of the Bioconductor package Gviz, can also visualize

subject-specific peptide intensities. Figure 2 shows a heatmap of subject-level normalized

and baseline- corrected intensities as a function of HxB2. The data are again broken down

by the treatment information where the four hotspots can be seen as vertical bars in the

vaccine group but not in the placebo group. Heatmap plots can also help visualize the

correlation among localized responses. Here it can be seen that for the RV144, people

generating a V2 response often also generated a response for V3 and C5.

3.3. Importance of baseline measurements

We explored the importance of baseline control samples for positivity calls in addition to

normalization. In the RV144 data, among twenty placebo subjects, seventeen showed

correlations greater than .9 between pre and post-treatment Z-scale normalized median-

summarized peptide intensities, and all were at least .7 or greater. Figure 7 demonstrates

these high correlations, showing the pre vs. post- normalized peptide intensities for 2

placebo and 2 vaccinated subjects. Most pre/post peptide intensities align around the

diagonal line y = x, indicating the presence of consistent non-specific binding that should

not be ignored. Signal carrying peptides can be observed for the two vaccinees as points

above the diagonal line. Because of such high correlations, subtracting baseline intensities

from post-treatment intensities dramatically reduces variability among unbound peptides

(Figure 8). Panels A and B show concordant peptide effects across subjects before and after

treatment, except on peptides against which subjects produce antibodies. In panel C, effects

for non-reactive peptides collapse around zero after subtracting baseline measurements. In

the presence of high correlation, baseline subtraction reduces signal variability and helps

separate bound from unbound peptides. Similar patterns can be observed in the HVTN data

(data not shown).

In both the RV144 and HVTN data, baseline controls were pre-vaccination samples from all

subjects. In experiments where such paired samples are not available (e.g. natural infection)

we recommend the use of a pool of baseline (or negative) controls, averaged to generate a

reference control for all slides. In Figure 9 we compare RV144a ROCs from using
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individual baselines, pooled baseline controls, a secondary antibody control, and no baseline

control, after Z-scale normalization. Pooled baseline control ROCs were generated by

repeatedly sampling n = 1, 5, 10, 20 or all control samples, and computing an average ROC.

Subject-specific baseline controls give the highest ROC. Pooled baseline controls perform

nearly as well, with larger pools performing slightly better than smaller pools. After about n

= 10 baseline subjects, ROC gains are minimal and sample-to-sample ROC variability is

relatively small (Figure 10). Without any baseline control the ROC is quite poor, especially

at low false positive rate values where high true positive rates are most valuable. The

secondary antibody control performs worst of all methods. This control is not well

correlated with subject peptide responses, and subtraction tends to increase rather than

decrease index variability. Subject serum contains primary antibody prior to treatment, and

secondary antibody controls alone likely fail to capture primary/secondary antibody

reactions that produce non-specific signals. Baseline controls are very important for making

subject-specific positivity calls, and if possible we recommend using subject-specific

peptide intensity measurements taken at baseline, or prior to treatment.

4. Conclusion

We have developed an integrated analytical pipeline for peptide microarray data including

normalization, subject-specific positivity calls, and data aggregation and visualization. Our

pipeline was primarily developed for HIV related studies, but its flexible design can be used

easily with other studies. Our Z-scale normalization routine, implemented in pepStat,

quickly and effectively removes systematic biases from slides while also helping to remove

some effects of non-specific binding. Although only applicable to slide layouts comprising

overlapping n-mers, the pepStat sliding mean window is a simple and powerful tool for

detecting weak antibody binding hotspots by borrowing strength from neighboring peptides

and reducing signal variability. Hotspot detection can lend insight to the cause of a

treatment's efficacy and/or give direction to targeted future analyses. For example, after the

pre-specified RV144 correlates analyses on vaccinees’ serum identified V2 vaccine-elicited

IgG antibodies indirectly correlating with HIV risk of infection, detection of a V2 loop

response on the RV144 peptide microarray led further validity to the observation and

increased interest in assessing whether or not V2 antibodies are also vaccine-induced

mechanistic correlates of protection (Haynes et al., 2012). Detecting a peptide microarray

V2 loop response in the RV144 data also facilitated a targeted analysis of vaccine-induced

sieving effects against HIV-1 viruses (Rolland et al., 2012).

Our principled FDR method of setting positivity thresholds improves calling specificity over

previous methods and gives the threshold a concrete interpretation, even when our sliding

window technique is not applicable. GMM based thresholds depend strongly on normality

assumptions, which may not hold after preprocessing. Our thresholding technique depends

on a looser assumption of symmetry of non-reacting peptides about zero, which

approximately holds after our Z-scale normalization. Renard et al. (2011) recommend

techniques for removing unreliable spots and spots reactive with secondary antibody. Such

preprocessing may bring the data closer to normality, but, lacking the appropriate historical

training data and empty slide data, we did not explore these techniques. Although our sliding
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mean technique improves hotspot detection, more sophisticated modeling techniques could

help share additional information between subjects and improve the sensitivity of peptide

positivity calls.

In addition, we demonstrate the utility of using baseline control methods when making

subject-specific positivity calls. Subject-specific baselines perform well in the presence of

high pre and post-treatment response correlations (e.g. > .7), which can be diagnosed with

simple scatter plots and summary statistics. Our results also suggest that pooling as few as

ten randomly sampled baseline controls is an adequate substitute.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Distribution Symmetry
Boxplots of Z-scale normalized peptide indices for fifteen randomly selected vaccines and five randomly selected placebo

subjects from RV144 data. Responses are approximately symmetric about zero from subject to subject, with long right tails

indicating peptide binding in vaccined subjects.
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Figure 2. Signal Summary
Heatmap entries are un-normalized RV144a peptide indicies. Rows represents single subjects, columns represent a position in

HxB2 alignment. Subjects are divided into blocks based on treatment assignment. Darker hues correspond to higher levels of

response. Placebo subjects show no clear response patterns, while vaccinated subjects show four distinct vertical bands

corresponding to responses in the C1 region, V2/V3loops, and the C-terminus of gp120.

Imholte et al. Page 17

J Immunol Methods. Author manuscript; available in PMC 2014 September 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. RV144a Response
Percentage of subjects with positive response at position p in HxB2 alignment, for RV144a data. The GMM and mean plus two

standard deviation (twoSD) calling methods make peptide specific calls. pepStat makes position specific calls in panel B and

peptide specific calls in panel A. The Rapmad and twoSD methods call many more placebo false positives than pepStat.
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Figure 4. RV144 ROC Analysis
Five receiver operating characteristics (ROCs) are generated from response indices for the RV144a and RV144b datasets, using

various normalization methods with smoothed and unsmoothed data. Taller curves imply better discrimination between bound

and unbound peptides. The “Z-scale” normalization method narrowly beats out all the other methods in most cases, with linear

model normalization typically doing nearly as well.
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Figure 5. FDR Estimation
We use placebo data in RV144a to estimate the false discovery proportion (FDP) for thresholds generated by our FDR method.

Curves represent the estimated FDP at various nominal false discovery rate (FDR) levels. The FDP is a random quantity, but

should usually be close to the FDR. The amino acid count-model and the Z-scale model show good FDR control.
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Figure 6. HVTN Response
The percentage of subjects with positive response at position p in HxB2 alignment, for RV144a data. The Rapmad and mean

plus two standard deviation (twoSD) calling methods make peptide specific calls on unsmoothed data, while for pepStat we

show calls on smoothed and unsmoothed data. For Rapmad and twoSD methods, we plot the average percentage of response for

peptides sharing common HxB2 positions. Rapmad generates a great number of likely noisy calls. The twoSD method produces

cleaner calls, but appears less sensitive than the pepStat method.
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Figure 7. Baseline Correlation
Scatterplots of pre versus post-treatment Z-scale normalized peptide intensity values, from randomly sampled placebo and

vaccinated subjects. The red line is the identity line. Unbound peptides correlate very strongly between samples within subject,

demonstrating that subject-specific controls can dramatically reduce response variability. Points well above the line y = x in

vaccinated subjects likely correspond to bound peptides.
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Figure 8. Baseline Correction
In RV144a, we plot three tracks of across-subject Z-scale normalized peptide intensity means as a function of their HxB2

position: means of peptides in pre-treatment samples, means of peptides in post-treatment samples, and the mean of the

differences. A smoother line tracks overall trends. By visual inspection one sees that the pre and post-treatment tracks are highly

similar. The differences are tightly centered around zero, except at positions experiencing a vaccine response. This indicates the

presence of weak nonspecific effects that normalization cannot remove.
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Figure 9. Correction Comparison
ROCs based on different baseline correction methods, using Z-scale normalized peptide intensities in RV144a. “Pooled”

methods are based on sampling n pre-treatment subjects and averaging their peptide responses as a single baseline control. For

“pooled” methods, the displayed ROC is the average of 25 ROCs generated by randomly sampling n subjects. Individual

specific baseline controls clearly outperform other methods, but we see that pooling baselines with n as small as 10 can produce

reasonable results. Notably, a secondary antibody-only control performs poorly.
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Figure 10. Pooled ROC Variability
ROCs based on the “Pooled” baseline correction method, using Z-scale normalized peptide intensities in RV144a. Each black

line is an ROC generated by randomly sampling n pre-treatment subjects for use as an averaged baseline. The blue line is a

smoother applied to the set of black ROCs, giving an “average” ROC for a given sample size. This gives an idea of the

variability associated with using a sample size of n as a pooled baseline control. ROC variability decreases quickly as sample

sizes increase.
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Table 1

Area under curve (AUC) for the ROCs of normalization methods on baseline corrected intensity values, before

smoothing and after smoothing. Best performing methods are highlighted in bold.

RV144 A
Unsmoothed

RV144 B
Unsmoothed

RV144 A
Smoothed

RV144 B
Smoothed

Z-scale .659 .792 .779 .907

Linear Model .668 .788 .762 .889

Quantile .662 .789 .776 .898

None .649 .789 .716 .876

AA count .632 .739 .751 .857
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