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Introduction

Exercise is one of the mainstay clinical interventions for the prevention and treatment of

cardiovascular disease. Not only does exercise reduce cardiovascular risk factors, such as

diabetes and hypertension, thereby helping prevent heart disease, it also appears to improve

the functional status and outcomes in patients with existing heart disease.1-6 The

cardiovascular benefits of exercise are multifactorial, and include important systemic effects

(Figure 1) on skeletal muscle, the peripheral vasculature, and metabolism, as well as

beneficial alterations within the myocardium itself.7, 8

Many current pharmacological treatments for cardiovascular disease are targeted towards

inhibiting the adverse remodeling process associated with pathological stress. Specifically,

they focus on abrogating the pathological hypertrophy, fibrosis, electrical remodeling, and

cavity dilatation that accompany disease states such as longstanding hypertension and

myocardial infarction.9-11 Interestingly, exercise, like many of these pathological stimuli,

can also induce cardiac and cardiomyocyte hypertrophy. However, growing evidence

suggests that such physiological remodeling, rather than leading to adverse sequelae, may

actually be cardioprotective and that activating pathways associated with exercise can help

to prevent and treat cardiovascular disease.8, 12, 13

In this review, we discuss recent advances in our understanding of the cellular and molecular

mechanisms (Figure 2) that mediate the cardiac response to exercise, including

cardiomyocyte hypertrophy and renewal, vascular remodeling, and alterations in calcium
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handling and metabolism. In addition to classical signaling mechanisms and transcriptional

networks, we describe the role of secreted molecules and miRNAs. Finally, an emerging

theme is that pathways that are either regulated by exercise or that mediate the heart's

response to exercise often also have the potential to mitigate or even reverse cardiac disease.

Thus, we suggest that understanding the effects of exercise more fully may provide useful

biological insights and open the door to new therapeutic approaches aimed at restoring

cardiovascular health.

Physiological Cardiac Remodeling

Exercise is perhaps one of the cheapest — and most effective — interventions for reducing

the morbidity and mortality of cardiovascular disease.14 In fact, as little as 45-75 minutes of

brisk walking each week appears to reduce the relative risk for adverse cardiac events.15, 16

Additionally, exercise-based cardiac rehabilitation is recommended by the American Heart

Association (AHA) as one of the mainstay interventions following acute myocardial

infarction (MI), with maximal benefit derived from early initiation of exercise (as early as

one week post MI-hospital discharge) and from increased duration of exercise

rehabilitation.1-3 Multiple studies have also demonstrated a dose-response relationship

between exercise and cardiovascular benefit, but the shape of that curve, and the optimal

dosage, intensity, frequency, and duration of exercise remain incompletely defined.15, 17, 18

The health benefits of exercise are multifactorial. Studies have demonstrated that physical

activity is effective in reducing adipocyte mass and body mass index as well as positively

affecting insulin sensitivity, glucose uptake by skeletal muscle, and cholesterol profiles.19

Physical activity — aerobic exercise, in particular — has also been associated with

beneficial changes in both the systemic and coronary vasculature, including enhanced

endothelial-mediated vasodilation, improved arterial compliance, and reductions in both

systolic and diastolic blood pressure.20-22 Although these global effects of exercise are all

implicated in improving cardiovascular health, here, we will focus primarily on the cardiac-

specific effects of exercise.

Cardiac Growth

The heart has considerable plasticity9 and its capacity to hypertrophy in response to

pathological stimuli, such as hypertension, aortic stenosis, or genetic mutations, is familiar

to clinical cardiologists. However, a robust hypertrophic response is also seen with

physiological stimuli, including exercise, pregnancy, and postnatal growth. Endurance

exercise and pregnancy, for example, can induce up to a 20% increase in left ventricular

(LV) mass, while, even more impressively, the hearts of Burmese pythons can grow by up to

40% following meals.23, 24

The cellular response to growth signals is often categorized as either hypertrophic — an

increase in cell size — or hyperplastic — an increase in cell number. The adult heart has

traditionally been viewed as capable only of hypertrophic growth; however, recent data from

animal models and human studies suggest that the heart also has a limited capacity to

generate new cardiomyocytes from progenitor cells and existing cardiomyocytes.25-27 In

clinical practice, it is impossible, with current imaging modalities, to distinguish between
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these two distinct mechanisms of growth when characterizing cardiac hypertrophy.

However, animal studies suggest that an increase in both cardiomyocyte size and number

may contribute to heart growth in response to pathological and physiological stimuli.12, 28

Exercise-induced cardiac remodeling is the prototypical example of physiological cardiac

growth, and the hypertrophic response to exercise can broadly be described as either

concentric or eccentric hypertrophy, or a combination of the two. Isometric exercises —

strength training activities like weight lifting — lead to transient increases in systemic

vascular resistance, thereby increasing afterload and predominantly produce concentric

hypertrophy, in which sarcomere fibers are added in parallel with subsequent thickening of

the ventricular wall. Endurance — or isotonic — exercise, such as swimming and running,

present a volume challenge to the heart and tend to result in eccentric hypertrophy, with

increased preload and end-diastolic volume.29, 30 Cardiac MRI studies have suggested that

isometric exercises induce minimal changes in right ventricular (RV) structure and function,

while isotonic exercises lead to a balanced biventricular hypertrophy with symmetric

enlargement of both the right and left ventricles.31 Cardiomyocyte hypertrophy is likely the

dominant contributor to exercise-induced heart growth, and studies have reported an

increase in cardiomyocyte size by up to 17-32% following exercise training.32 As noted

above, however, recent work suggests that exercise also induces markers of cardiomyocyte

proliferation, although the fate and contribution of these newly formed cells remains to be

established.12

A recently described model for studying physiological remodeling is the Burmese python,

which demonstrates an impressive increase in cardiac size — up to 40% — following meals,

which regresses over the subsequent 28 days.24 Emerging data suggest that this increase in

heart size is primarily a hypertrophic, rather than hyperplastic, process, that it is not

associated with the characteristic changes seen in pathological cardiac growth such as

fibrosis and upregulation of the fetal gene program.33 This lends support to the idea that

physiological hypertrophy is primarily an adaptive and beneficial process. Interestingly, new

evidence suggests that some of these postprandial cardiac growth effects are mediated by

secreted lipids,33 which will be discussed in more detail below. It should be acknowledged

that the clinical relevance of post-prandial changes in the Burmese python remain unclear.

Interestingly, the combination of fatty acids identified in python serum also induced

cardiomyocyte hypertrophy in mice.33

Altered Ca2+ Handling

In contrast to pathological cardiac remodeling, in which hypertrophy is associated with

fibrosis, impaired relaxation and contractility, and potential progression to heart failure, both

systolic and diastolic cardiac function are preserved, or even enhanced, in exercise-induced

hypertrophy.

Exercise has been shown to improve cardiomyocyte Ca2+ sensitivity and contractility.34 In

animal models, fractional shortening can increase by as much as 40-50% after endurance

exercise, with concomitant improvements in contraction and relaxation.35 Up-regulation of

SERCA2a, which is characteristically decreased in pathological remodeling, as well as

increased phosphorylation of phospholamban (PLB), which reduces its inhibition of
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SERCA2a, appear to contribute to the observed benefits of exercise on Ca2+ handling.36, 37

Interestingly, studies in animal models suggest that exercise can improve contractility and

normalize SERCA2a function following myocardial infarction.38-40 Structurally,

physiological hypertrophy, unlike pathological hypertrophy, is associated with preservation

of t-tubule density and organization, which allows for coordinated myocyte contraction.41

Vascular Remodeling

Exercise significantly increases myocardial oxygen demand, and induces changes within the

macro- and microvasculature to meet these requirements. While important vascular changes

occur both in the heart and the periphery, here we focus on changes within the heart itself.

Specifically, exercise is associated with increased coronary blood flow and oxygen

extraction, as well as improved endothelial function.42

Endurance training increases coronary blood flow in a number of different ways. Imaging

studies in humans show an increase in the caliber of the large proximal coronary arteries

following exercise, in proportion to the increase in LV mass.43, 44 In patients with coronary

artery disease, endothelium-dependent coronary vasodilation, and subsequently myocardial

perfusion, is improved, albeit not to normal levels.20 Exercise also induces angiogenesis in a

VEGF-dependent manner.45 Capillary density increases following initiation of exercise, but,

after sustained activity, normalizes to the extent of cardiac hypertrophy.46 This is in direct

contrast to pathological cardiac remodeling: while pathological stimuli initially induce

angiogenesis, some studies suggest that coordination of hypertrophy and angiogenesis is

ultimately disrupted, contributing to the progression to heart failure.47, 48 Interestingly,

animal studies have shown that exercise can promote angiogenesis following myocardial

infarction, with significant improvements in myocardial perfusion and pump function.49

Thus some of the beneficial effects of exercise are likely related to increased angiogenesis

and protective changes in the coronary vasculature. A crucial component of these vascular

changes is the up-regulation of nitric oxide (NO) production by vascular endothelial cells.

The precise cellular and biochemical mechanisms regulating NO production and its

downstream effects will be discussed below.

Metabolism

The heart has tremendous energy requirements, both in physiological and pathological

states, and a prominent feature of cardiovascular disease is myocardial metabolic

dysregulation. Notably, pathological remodeling is associated with a switch from fatty acid

metabolism, the primary energy source for the healthy adult human heart, to glucose

utilization, which is the main energy source in fetal life.33 In contrast, energy consumption

and homeostasis is preserved in physiological cardiac remodeling. An acute bout of physical

activity can increase cardiac output as much as six-fold, and this significant ATP demand is

met primarily by mitochondrial oxidative phosphorylation.50 Exercise training promotes

efficient glucose and fatty acid handling, as well as mitochondrial biogenesis via up-

regulation of the glucose sensor AMPK and its downstream target PGC-1α.50
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Cardiomyocyte Renewal

As noted above, multiple studies have demonstrated that the heart does indeed have some

capacity for regeneration and renewal, with data supporting both the proliferation of pre-

existing cardiomyocytes and resident stem cells.25, 51-53 Adult zebrafish and neonatal mice

(up to 7 days old) are able to fully regenerate cardiac muscle following apical resection, with

restoration of contractile function.54, 55 Independent studies involving carbon-14 dating of

genomic DNA from people who were alive during nuclear testing or iododeoxyuridine

incorporation into the DNA of chemotherapy patients suggest that cardiomyocyte renewal

also occurs in humans throughout life.25, 51 However, the physiological signals that regulate

this process remain unclear.

Interestingly, recent collaborative work from our group suggests that the heart's regenerative

potential is dynamically regulated, and that endurance exercise may stimulate

cardiomyocyte proliferation in vivo.12 These studies profiled expression of all known and

putative transcriptional components of the mouse genome in hearts from exercised mice, and

contrasted differentially regulated genes with those altered in response to pressure

overload.12 Intriguingly, a significant subset of altered transcriptional components had

known functions related to cell cycle progression or proliferation in other systems, and

confocal immunohistochemistry confirmed a significant increase in all examined markers of

cardiomyocyte proliferation in exercised hearts.12 These results are reminiscent of the

hippocampal neurogenesis well-documented to occur in response to exercise, which

involves the proliferation of precursor cells.56, 57, 58 Ultimately, cardiocyte lineage tracing

experiments will be needed to determine the sources and fate of new cardiomyocytes that

may form in response to exercise. However, an appealing hypothesis is that exercise may

provide a proliferative and potentially regenerative signal affecting multiple tissues.

Molecular Mechanisms

IGF-1-PI3K-AKT Pathway

Genetic interventions in vitro and in vivo have elucidated many of the pathways that regulate

cardiac growth. Pathological hypertrophy has previously been reviewed in detail,9, 10 and is

associated with activation of G-protein coupled receptors by soluble factors such as

angiotensin II and endothelin, signal transduction via, among others, the calcineurin-

calmodulin axis and the MAPK pathway, and, ultimately, increases in protein synthesis,

cellular growth, and a switch to the fetal gene program.9, 10

Physiological hypertrophy, on the other hand, is mediated primarily by the IGF-1-PI3Kinase

(PI3K)-Akt axis. IGF-1 is produced by the liver, and, to a lesser extent, the heart. Exercise

induces both hepatic secretion of IGF-1 into the bloodstream, as well as cardiac expression

of IGF-1.59, 60 In the heart, IGF-1 binds its tyrosine kinase receptor, IGF-1R, and activates

the PI3K-Akt cascade.61 Mice with constitutive overexpression of IGF-1 develop an

increase in heart size, characterized by both cardiomyocyte hypertrophy and hyperplasia,

and are protected against ischemic injury and heart failure.62-66 Activation of the IGF-1

receptor also recapitulates the physiologic hypertrophic phenotype, with increased

cardiomyocyte size and preserved contractile function.67
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The IGF1-R activates PI3K, which consists of a family of heterodimeric kinases composed

of regulatory and catalytic subunits.68 Specifically, activation of the PI3K(110α) isoform

has been implicated in the development of physiological cardiac hypertrophy. Mice with

constitutively active PI3K(110α) exhibit significantly increased heart weights and are

protected from heart failure after pathological stress, such as aortic banding and myocardial

infarction.8, 69 In contrast, mice with cardiac expression of a dominant negative PI3K(110α)

hypertrophy normally in response to pressure overload, but have blunted cardiac growth in

response to swimming.70 This observation provides important evidence that distinct

intracellular signaling mechanisms mediate physiological and pathological cardiac

hypertrophy. Further support for this model is provided by our recent genome-wide profiling

of transcriptional regulators, which revealed dramatically different profiles associated with

these two kinds of growth.12

Akt1 is a major downstream effector of PI3K and becomes phosphorylated (activated) in

physiological cardiac hypertrophy.68, 71 The effects of Akt1 in the heart are diverse, though

generally beneficial.72, 73 These include inhibiting cardiomyocyte death,72, 73 improving

calcium handling,74 and modulating cardiac growth and metabolism. Interestingly, germline

genetic deletion of Akt1 abrogates the cardiac growth response to exercise, but results in

exacerbated hypertrophy in response to pressure overload.71 Thus Akt1 is required for

physiological hypertrophy, but appears to inhibit pathological hypertrophy in a manner

thought to be mediated through cross-talk with MAPK signaling.71 Most recently, Akt1 has

been implicated in promoting proliferation of cardiac stem cells and cardiomyocytes, largely

through nuclear activation of a Pim1-dependent pathway.75-78 Akt1 also acts downstream of

Nrg1-ErbB4 signaling, which induces cardiomyocyte proliferation in vitro and in vivo.27, 79

In turn, Akt1 exerts pro-proliferative effects via repression of the transcription factor C/

EBPβ and activation of CITED4.12 C/EBPβ interacts with serum response factor (SRF)

contributing to regulation of a so-called “physiological or exercise gene set,” a collection of

genes with known roles in cardiomyocyte hypertrophy and differentiation, including Gata4,

Tbx5, and Nkx2.5, whose expression levels are altered following endurance exercise. In

fact, mice heterozygous for C/EBPβ recapitulate the physiological hypertrophic phenotype,

with both cardiomyocyte hypertrophy and low levels of hyperplasia, suggesting that C/

EBPβ is essential in mediating the cardiac effects of exercise.12

eNOS

Nitric Oxide (NO) is a ubiquitously expressed molecule that modulates multiple

cardiovascular processes, including vascular tone, platelet activation, smooth muscle cell

proliferation, and cardiomyocyte contractility.80 NO is produced by the vascular

endothelium as well as the myocardium, where it is generated by the enzyme endothelial

nitric oxide synthase (eNOS). Multiple studies have shown that eNOS-mediated production

of NO is diminished in patients with heart failure. Interestingly, forced overexpression of

eNOS in animal models can reduce the extent of LV dysfunction and remodeling following

pathological stress, with overall improvements in mortality.81, 82

Exercise training reduces ischemic injury in animal models, and at least part of this benefit

appears mediated by upregulation of eNOS. Exercise increases circulating catecholamines,
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such as epinephrine and norepinephrine, which act on β3-adrenergic receptors to increase

eNOS phosphorylation and activity.13 This increases the bioavailability of the NO

metabolites, nitrite and nitrosothiol, which can then be utilized in times of stress to

antagonize adverse remodeling processes, such as fibrosis and pathological hypertrophy.13

Of note, the cardioprotective effects of exercise in preventing adverse remodeling are not

seen in mice that are deficient in eNOS,13, 83 although this is potentially confounded by a

reduction in the exercise levels achieved by such mice.84 Interestingly, this pathway also

appears essential in promoting the cardioprotective effects of exercise that can persist after

exercise training has ceased.13

Sirtuins, AMPK, and PGC-1α

Sirtuins are a family of NAD-dependent deacetylases, seven of which, Sirt1-7, are found in

mammals and regulate a variety of cellular functions, including metabolism, cell growth,

apoptosis, and aging.85 Sirt1 and Sirt3 are the best studied of the sirtuins in the heart. Sirt1 is

upregulated following exercise, and has pro-growth and pro-survival functions in

cardiomyocytes.86 Sirt3 is a mitochondrial sirtuin, and, like Sirt1, is upregulated with

exercise.87 In the heart, Sirt3 protects against oxidative stress in a Foxo3a dependent

manner, and has also been shown to regulate opening of the mitochondrial permeability

transition pore (mPTP) via deacetylation of cyclophilin D.88, 89 This latter effect is thought

to be protective against age-related cardiac dysfunction, and, in fact, Sirt3 knock-out mice

exhibit accelerated pathological hypertrophy, fibrosis, and heart failure.89

Additionally, Sirt3 regulates cardiac metabolism via activation of AMPK and PGC-1α, both

of which have been shown to inhibit maladaptive cardiac remodeling.88 AMPK is a serine/

threonine kinase that senses energy levels within the cell and, together with its downstream

effector, PGC-1α, coordinates metabolic responses to maintain energy homeostasis.

Animals deficient in AMPK exhibit increased hypertrophy, accelerated heart failure, and

also have increased infarct sizes after coronary artery ligation.90 PGC-1α is a transcriptional

coactivator upregulated with exercise, and a potent inducer of mitochondrial biogenesis and

oxidative phosphorylation. PGC-1α-deficient mice develop early signs of heart failure due

to an inability of the heart to meet energy demands, thus emphasizing the importance of

metabolic and energy homeostasis in cardiac health.50, 91 PGC-1α has also been shown to

regulate a HIF-1-independent pathway of angiogenesis,92 thereby providing a mechanism

for coordinately regulating mitochondrial function and blood supply in exercise.

Myokines, Adipokines, and other Secreted Molecules

Exercise also exerts a number of indirect benefits on the heart, mediated, in part, by

endocrine factors secreted from skeletal muscle and adipocytes, termed myokines and

adipokines, respectively. Fstl1, for example, is a glycoprotein secreted by both skeletal

muscle and cardiac myocytes following exercise. Fstl1 activates the PI3K-Akt pathway in

cardiomyocytes and vascular endothelial cells, and exerts antiapoptotic and vasodilatory

effects.93

A novel hormone and myokine under the regulation of PGC-1α, called irisin, was recently

described,94 and is implicated in some systemic effects of exercise. Following exercise, up-
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regulation of PGC-1α results in increased skeletal muscle secretion of irisin, the proteolytic

cleavage product of the type I membrane protein, FNDC5.94 Irisin plays an important role in

the browning of white adipose tissue and thermogenesis, and may play a role in many of the

beneficial systemic effects of muscle PGC-1α expression, such as protection against age-

related obesity and diabetes.94 Whether irisin also contributes to the cardiac benefits of

PGC-1α will be of great interest for future studies.

Adiponectin is a hormone secreted by adipocytes, and has anti-inflammatory and anti-

hypertrophic effects on the heart. Plasma adiponectin levels are decreased in patients with

obesity and insulin resistance, as well as in associated cardiovascular diseases, such

coronary artery disease and hypertension.95 Interestingly, there is a paradoxical increase in

plasma adiponectin levels in heart failure patients, which has been attributed to

downregulation of the adiponectin receptor (AdipoR1) and subsequent skeletal muscle

adiponectin resistance.96, 97 Exercise training normalizes levels of adiponectin in heart

failure patients, decreases adiponectin resistance, and also reverses heart failure-associated

skeletal muscle wasting, or cardiac cachexia, which is an independent risk factor for

mortality.98-100

In addition to adiponectin, an important regulator of cardiac cachexia is myostatin (MSTN),

a member of the TGFβ superfamily and a potent negative regulator of skeletal muscle

growth.101 Notably, cardiac-specific MSTN knockout mice are protected from pressure-

overload-induced cardiac cachexia, as well as aging-related cardiac fibrosis and

dysfunction.102 We also found that MSTN directly regulates cardiomyocyte growth in a

stimulus-specific way,103 and knockout mice are protected against aging-related cardiac

fibrosis and dysfunction.104 There are also data to suggest that MSTN levels are

dynamically regulated with exercise. In a rat model of heart failure, elevated skeletal and

myocardial MSTN levels associated with heart failure returned to baseline following four

weeks of endurance exercise.105 In human heart failure patients, exercise also resulted in a

significant reduction in skeletal muscle MSTN.106 Thus, it is possible, though speculative,

that a reduction in MSTN and related peptides contributes to the cardiac benefits of exercise.

In addition to proteins and peptides, studies in Burmese pythons have also implicated lipids

as being potential secreted factors that mediate physiological cardiac hypertrophy. As

described above, Burmese pythons exhibit significant cardiac growth following meals. It has

recently been shown that an infusion of three lipids—myristic acid, palmitic acid, and

palmitoleic acid—found to be elevated in the serum of Burmese pythons postprandially, can

induce cardiac growth in the fasting state, thereby recapitulating the hypertrophic phenotype

seen following meals.33 Importantly, these lipids can also induce hypertrophy of cultured

mammalian cardiomyocytes.33 Finally, in a clinical context, the Gerszten laboratory has

recently performed plasma metabolite profiling on subjects before and after exercise.107 In

addition to identifying metabolite signatures of potential clinical utility, these studies also

revealed a subset of exercise-induced metabolites that regulate muscle expression of Nurr77,

a nuclear hormone receptor important in regulating glucose and lipid metabolism.107 These

studies add to growing evidence that metabolites and other small molecules regulate diverse

physiological processes, likely including the cardiac response to exercise.
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miRNAs

Since their discovery a little over a decade ago, miRNAs have become increasingly

recognized for their pivotal roles in the regulation of development and disease.108 Recent

studies identified multiple miRNAs that are highly, and almost exclusively, expressed in the

heart and skeletal muscle.109, 110 Among these are miR-208a, miR-208b, and miR-499,

which comprise a family of myosin heavy chain-encoded miRNAs, collectively termed

Myomirs. These Myomirs have been implicated in a wide array of cardiovascular diseases,

including cardiac hypertrophy, heart failure, arrhythmias, and congenital heart disease.111

In addition, there has also been much interest in examining the role of miRNAs in regulating

the physiological changes of exercise. Multiple studies in both animal models and humans

suggest that miRNAs are dynamically regulated with physical activity, and, moreover, that

acute and chronic bouts of exercise impart differential changes in miRNA expression.112, 113

Of note, miRNAs are also known to be secreted into the bloodstream, both at rest and

following tissue injury.114 Recently, changes in levels of such circulating miRNAs, or c-

miRNAs, have been described following exercise.113 Further studies will be needed,

however, to identify the cellular sources of these c-miRNAs, and also to better characterize

their biological roles. For instance, are c-miRNAs secreted as a byproduct of stress and

tissue injury, or might they also have important endocrine and paracrine functions?

Although exercise has been shown to regulate miRNA expression, the precise role of

miRNAs in regulating physiological hypertrophy and exercise-induced cardiovascular

remodeling remains unclear. It has been shown that miR-1 and miR-133, two of the most

abundant miRNAs in cardiac myocytes, are down-regulated in both pathological and

physiological hypertrophy, suggesting that they may mediate a nonspecific “cardiomyocyte

growth” pathway.115 In a more specific exercise-focused study, female Wistar Rats

subjected to swimming training were found to exhibit up-regulation of miR-29c.116

Interestingly, the miR-29 family targets a number of mRNAs that encode proteins essential

for fibrosis, and up-regulation of these miRNAs has been associated with repression of

fibroblast collagen deposition.117 It is possible, although still speculative, that the miR-29

family might be important in actively suppressing a fibrotic response in exercise-induced

cardiac hypertrophy. Of note, miRNA-29c has also been shown to suppress the PI3K-Akt

pathway.118 While activation of the PI3K-Akt axis is crucial to physiological remodeling, it

is also known that its effects are dependent on the timing and chronicity of Akt activity.119

In particular, chronic Akt overexpression has been linked to maladaptive remodeling and

heart failure. Thus miR-29 could be important in fine-tuning the activity of the PI3K-Akt

axis, thereby maintaining tissue homeostasis and healthy cardiovascular function.

It has become clear that miRNA expression is dynamically, and differentially, regulated by

pathological and physiological processes. This provides important implications for the

development of both diagnostic and therapeutic tools for the treatment of cardiovascular

disease, as will be discussed in more detail below.
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Limitations

While substantial progress has been made in the understanding of exercise physiology,

particularly as it pertains to the heart, certain limitations to these studies deserve mention.

One of the most widely accepted animal models of pathological stress is the use of

transverse aortic constriction (TAC) to increase afterload, thereby mimicking chronic

hypertension or aortic stenosis and resulting in concentric hypertrophy. However, animal

models of endurance training most commonly involve the use of isotonic exercises like

treadmill running or swimming, which primarily result in cardiac growth via eccentric

hypertrophy.30 These different patterns of growth could potentially confound any direct

comparisons made between the two models. Nonetheless, in the absence of more directly

comparable animal models, current studies have still provided important insight into

mechanisms regulating pathological and physiological cardiac hypertrophy.

Most pathological stimuli are chronic persistent, whereas exercise, is intermittent raising the

possibility that the distinct outcomes associated with these stimuli reflect quantitative rather

than qualitative differences in exposure. To address this issue, Rockman and colleagues

cleverly designed a model of intermittent pressure overload in mice. Interestingly, this

induced pathological changes, which – while milder than those seen with persistent pressure

overload – emphasizes the importance of qualitative differences independent of exposure

duration120. Of interest, while most of the cardiac changes associated with endurance

exercise are thought to be cardioprotective, with beneficial adaptations to calcium handling,

metabolism, and vascular remodeling, recent cardiac MRI data identified a link between

lifelong, competitive endurance exercise and an increased prevalence of myocardial fibrosis

with subsequent risk for arrhythmias.121 Such clinical data raise the possibility that too

much exercise may have adverse effects. However, observational data on exercise are

inherently limited by issues such as self-selection and the possibility of unrecognized

confounding. A recent analysis of exercise studies suggests that even moderate exercise may

have adverse effects on risk factors such as systolic blood pressure and HDL in some

subjects (126 of 1,687 analyzed)122. Why this occurs in a subset of subjects and whether

these effects result in adverse clinical outcomes despite the other benefits of exercise remain

unclear. Further studies are needed to delineate the precise shape of the exercise dose-

response curve and characterize the contribution(s) of exercise duration, intensity, and

frequency to cardiovascular effects of exercise.

Finally, as with all experimental animal models, findings in mice may not correlate with

human pathophysiology. The molecular mechanisms of exercise-induced cardiac remodeling

is particularly difficult to study in human beings, due to the limited availability of tissue

samples from healthy subjects. The development of novel technologies to better identify and

characterize secreted peptides, circulating miRNAs, and metabolites can help further our

understanding of exercise-induced changes in humans in the absence of cardiac tissue.

Identification of serum components that are similarly regulated in animals and people such

as the secreted molecule irisin,94 may help establish parallels between human biology and

animal models of exercise.
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Clinical Implications

The beneficial effects of exercise in preventing and treating cardiovascular disease have

long been appreciated. Data from the Framingham Heart Study, for example, show that

exercise, or lack thereof, is an independent risk factor for cardiovascular disease, even after

controlling for its effects on other risk factors, such as hypertension, hyperlipidemia, and

diabetes.123, 124 Additionally, meta-analyses, and, more recently, a large, prospective

randomized controlled trial, HF-ACTION, suggest that exercise training has significant

benefits for patients with coronary artery disease or heart failure.4-6 Of note, in HF-

ACTION, the largest randomized exercise trial to date, heart failure patients randomized to

exercise had improved quality of life and a trend to reduced mortality that was only

significant after adjustment for differences in baseline characteristics4, 5. Nevertheless, some

might argue that we already have a simple prescription for these benefits: exercise.

However, many patients may be unable to exercise, and thus understanding the pathways

that mediate these benefits, and learning how to manipulate them in vivo could yield novel

therapeutic approaches.

Genetic interventions in mice provide evidence that manipulation of pathways to mimic the

changes that occur with exercise can protect against heart failure following pathological

stress. For instance, upregulation of PI3K, Akt1, eNOS, and PGC-1α, as well as repression

of the transcription factor C/EBPβ, all result in preserved cardiac contractility and decreased

mortality after aortic banding or ischemia-reperfusion.8, 69, 82, 125, 126 The beneficial effects

of these interventions are likely multifactorial, involving a combination of pro-growth and

proliferation signals, increased angiogenesis, improved calcium handling and energetics, as

well as suppression of fibrosis — a constellation of changes that encompass the

physiological hypertrophic phenotype. The molecular regulators of these physiological

adaptations may hold promise as potential targets for intervention in the treatment of

cardiovascular disease.

These genetic studies provide important proof-of-concept that benefits accrue from

recapitulating some of the central molecular changes induced by exercise. However, not all

the pathways implicated are ideal candidates for therapeutic targeting. Current attempts at

molecular interventions targeting intracellular molecules have been limited, in part, by the

difficulty of designing small molecules that activate kinases or inhibit nuclear transcription

factors. Moreover, many of these molecules have multi-systemic, pleiotropic effects,

requiring cardiac-specificity to be engineered elsewhere in the system. On the other hand,

secreted factors such as adiponectin, myostatin, or irsin may be more promising drug targets.

Inhibitors of myostatin and related peptides, in fact, are already in clinical trials for the

treatment of skeletal muscle dystrophies, and could conceivably be extended to use in heart

failure patients should additional research support this concept.104, 127

miRNAs are also promising targets for clinical intervention, as, unlike intracellular enzymes

or signaling molecules, they are easily targetable through the use of miRNA mimics and

antagonists (antiMirs). Delivery of both miRNA mimics and antiMirs have been efficacious

in vitro and in vivo, and could potentially be extended to the clinical setting as well.109, 128

Some miRNAs also have the advantage of tissue specificity, and most simultaneously
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modulate multiple signaling cascades via the inhibition of multiple cellular targets.

However, many miRNAs are still ubiquitously expressed, and the efficacy of miRNA

therapy, like that of peptide or small molecule drugs, may be limited by off-target effects on

other organs or pathways.

As a result, there has been much interest in the development of targeted drug delivery tools

to enhance delivery of therapies specifically to the heart. For instance, miRNA mimics,

antiMirs, or other small molecules could be conjugated to targeting peptides or antibodies

for specific uptake by cardiomyocytes. The use of similar nanoparticle drug delivery

systems for the targeted drug delivery of chemotherapeutics to prostate cancer is in clinical

trials,129 and it is conceivable that this technology could be extended for the delivery of

medications to the heart as well. Additionally, adenoviral delivery systems are currently

being investigated as a way to enhance cardiac-specificity as well as for the continuous

expression of a particular gene or miRNA of interest, and a number of clinical trials

involving adeno-associated viral systems for gene delivery are already under way and have

demonstrated a favorable safety profile130 and even a suggestion of efficacy131. Finally,

catheter-based intracardiac delivery is also being explored as a potential drug delivery tool

to increase cardiac-specificity. It seems likely that none of these “exercise mimetics” will

fully reproduce all the benefits of exercise. However, the discovery of novel therapeutic

targets and the development of improved drug delivery technologies may lead to improved

treatments for heart disease, particularly for those patients unable to exercise.

Finally, the exercised heart provides a prototype of the healthy heart that may serve as a

useful tool for gauging the response to therapy. Our initial studies of transcriptional co-

activators altered in exercised hearts demonstrated a distinct pattern from those altered in

response to pressure-overload.12 More extensive profiling of exercised (and diseased) hearts

could ultimately lay a foundation for a systems biology132 approach to cardiac health and

disease, allowing interventions to be judged not simply by their effect on one putative target

but by their ability to recapitulate the healthy profile (or reverse that of disease). Our studies

defined a “physiological gene set” that was characteristically altered in exercised hearts.12

C/EBPβ appeared to function as a hub in this network, and genetically reproducing the

exercise-induced change in C/EBPβ was sufficient to recapitulate the changes seen in

slightly more than half of this gene set, and protected against heart failure.12 As noted

above, the Gerszten laboratory has recently identified plasma metabolite profiles in humans

indicative of exercise performance and cardiovascular disease susceptibility.107 These

signatures may provide a useful gauge of the response to interventions. Taken together,

these studies suggest value in delineating such signatures as a therapeutic road map and aid

to evaluating clinical intervention.

Conclusion

Current pharmacological interventions in clinical use for heart failure are focused on

preventing the maladaptive changes associated with sympathetic overdrive and activation of

the renin-angiotensin-aldosterone system. Emerging technological advancements and a

better understanding of fundamental biological processes have provided us with deepened

insight into the cardiovascular effects of exercise. Indeed, physiological cardiac growth
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appears to encompass not only cardiomyocyte hypertrophy, but also low levels of

cardiomyocyte hyperplasia, as well as increased angiogenesis, alterations in calcium

handling and metabolism, and secretion of paracrine and endocrine mediators. Overall, these

changes are cardioprotective, leading to preserved, possibly even enhanced, cardiac

function, and present an enticing avenue both for identifying therapeutic interventions and

judging their efficacy.
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Figure 1. Overview of the systemic and cardiac-specific effects of exercise
Endurance exercise has multiple systemic effects, ranging from increased skeletal muscle growth to vascular remodeling and

improved energetics. Exercise also exerts direct effects on the heart itself, including increased cardiac growth, protection against

ischemic damage, and modulation of cardiac function, metabolism, and vascular supply. (Illustration by AR)
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Figure 2. Key signaling pathways involved in mediating exercise-induced cardiac remodeling
Exercise activates the IGF1-PI3K-Akt cascade. Signals then converge at the level of the nucleus, resulting in inhibition of the

transcription factor C/EBPβ. Down-regulation of C/EPBβ, in turn, frees SRF to bind target gene promotors, contributing to

activation of an “exercise gene set,” and, ultimately, cardiac growth. Meanwhile, activation of CITED4 may drive

cardiomyocyte proliferation, as does signaling through Nrg1 and ErbB4. Akt also mediates angiogenesis and vascular

remodeling via eNOS, and exerts beneficial metabolic effects through cross-talk with AMPK, Sirt1, and PGC-1α. In

mitochondria, Sirt3, which is activated by exercise, works to protect against age-related cardiac dysfunction. Finally, exercise

also modulates the secretion of circulating factors, primarily from skeletal muscle and adipocytes, such as adiponectin,

myostatin (MSTN), irisin, and Fstl1.
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