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Abstract
PURPOSE: To explore the effects of computed tomography (CT) slice thickness and reconstruction algorithm on
quantification of image features to characterize tumors using a chest phantom. MATERIALS AND METHODS: Twenty-
two phantom lesions of known sizes (10 and 20 mm), shapes (spherical, elliptical, lobulated, and spiculated), and
densities [−630, −10, and +100 Hounsfield Unit (HU)] were inserted into an anthropomorphic thorax phantom and
scanned three times with relocations. The raw data were reconstructed using six imaging settings, i.e., a combination
of three slice thicknesses of 1.25, 2.5, and 5 mm and two reconstruction kernels of lung and standard. Lesions were
segmented and 14 image features representing lesion size, shape, and texture were calculated. Differences in the
measured image features due to slice thickness and reconstruction algorithm were compared using linear regression
method by adjusting three confounding variables (size, density, and shape). RESULTS: All 14 features were signifi-
cantly different between 1.25 and 5 mm slice images. The 1.25 and 2.5 mm slice thicknesses were better than
5 mm for volume, density mean, density SD gray-level co-occurrence matrix (GLCM) energy and homogeneity. As
for the reconstruction algorithm, there was no significant difference in uni-dimension, volume, shape index 9, and
compactness. Lung reconstruction was better for density mean, whereas standard reconstruction was better for
density SD. CONCLUSIONS: CT slice thickness and reconstruction algorithm can significantly affect the quantification
of image features. Thinner (1.25 and 2.5 mm) and thicker (5 mm) slice images should not be used interchangeably.
Sharper and smoother reconstructions significantly affect the density-based features.
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Introduction
With ever evolving technologies of medical imaging, details of
tumor composition and morphology can be better depicted on con-
ventional radiographical images such as high-resolution computed
tomography (CT). Greater tumor details potentially reveal, to certain
degrees, underlying cancer gene expression. However, to date, little
is known about such correlations. Imaging radiogenomics studies
the association of phenotypic radiologic characteristics with cancer
genotype [1–3]. If successful, the radiogenomic characterization, par-
ticularly of solid tumors, will guide drug development through early
imaging evaluation of therapeutic potential, stratify cancer therapy in
a noninvasive fashion, and putatively identify treatments unlikely to
be successful.

Tumor imaging phenotypes can be characterized not only qualita-
tively by radiologist’s eyeballing but also quantitatively by computer
through image feature analysis. Since the early 1970s, texture feature
analysis has been applied to studying radiographical images [4]. In
recent years, there is a renewed enthusiasm in the investigation of
quantitative image features extracted from CT, positron emission
tomography, and magnetic resonance imaging, for a variety of oncology
applications, in particular for predicting disease prognosis and assessing
response to targeted therapies [5–10].

Quantitative image features, especially those statistical texture fea-
tures derived from two-dimensional (2-D) pixel or three-dimensional
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(3-D) voxel values [e.g., Hounsfield Unit (HU) on CT], can be
considerably affected by scanning techniques and image reconstruc-
tion parameters. However, the majority of studies analyze existing
image data sets retrospectively taken from either clinical practice or
clinical trials. These studies often consist of heterogeneous image data
acquired from various scanners using different scanning techniques
and reconstruction parameters. To date, no study has been published
to give an idea of how such imaging heterogeneities might influence
the quantification of image features. The purpose of this work was to
explore the effects of CT slice thickness and reconstruction algorithm
on the quantification of image features using an anthropomorphic
thorax phantom.
Materials and Methods

Phantom Image Data
An anthropomorphic thorax phantom was used in this study

to explore the effects of CT scanning parameters on image fea-
tures defined to characterize tumors [11]. There were 22 phantom
lesions of different sizes (10 and 20 mm in effective diameter), shapes
(spherical, elliptical, lobulated, and spiculated), and densities (−630,
−10, and +100 HU) (Figure 1). Two lesion layouts were built: one
had 12 lesions inserted into the two lungs (6 lesions per lung), and
the other had 10 lesions (4 and 6 lesions per lung). Each layout
thorax phantom was scanned three times on a 16-detector row
scanner (LightSpeed, GE Healthcare, Milwaukee, WI). After one
scan, the thorax phantom was moved out of the scanner bed, slightly
tilted, and returned for another scan. The CT scanning parameters
were 120 kVp, 100 mAs, 16 × 0.625 collimator configuration,
and pitch of 1.375. The raw data of each CT scan were then re-
constructed at six image series that were a combination of three
slice thicknesses and two reconstruction algorithms, i.e., 1.25L,
1.25S, 2.5L, 2.5S, 5L, and 5S. For example, 1.25L represented the
image series reconstructed using 1.25 mm slice thickness and lung
reconstruction algorithm.
Figure 1. The anthropomorphic thorax phantom. (A) The phantom, (B)
phantom CT image, and (D) an example of phantom lesions attache
Lesion Segmentation
To characterize tumors, they needed to first be separated from

surrounding anatomic structures. We used an in-house lung lesion
algorithm to segment each phantom lesion [12]. Briefly, an operator
needs to initialize the algorithm by specifying an elliptical region
of interest enclosing the lesion. An isotropic volume of interest is
derived from the region of interest, and its gradient image is cal-
culated. A marker-controlled watershed transform is applied with
markers derived from the volume of interest. The watershed seg-
mentation result is then morphologically opened to serve as an initial
contour for a geometric active contour. The geometric active con-
tour with a strengthened potential well and a volume-preserving
mean curvature flow term then evolve the contour to a high-gradient
region near the initial contour while keeping the contour smooth.
Figure 2 shows a 20 mm, −10 HU spherical lesion reconstructed
at six different imaging parameter settings and segmented using
this algorithm.
Image Features
Fourteen image features were chosen for this exploratory study.

They represented tumor size, shape, density, and both histogram-
based and spatial density distribution [13–16]. Table 1 briefly explains
the definitions of these image features.
Statistical Analysis
We employed regression method to analyze the effect of slice

thickness and reconstruction algorithm on 14 image features adjust-
ing three confounding factors (size, density, and shape of phantom
lesions). There were 14 dependent variables, which were as follows:
1) uni-dimension, 2) absolute difference of measured volume and true
volume, 3) absolute difference of measured density mean and true
density, 4) density SD, 5) absolute value of density skewness, 6)
absolute value of density kurtosis, 7) compactness, 8) shape index 9
[14], 9) fractal dimension [15], 10) fractal lacunarity [16], 11) gray
level co-occurrence matrix (GLCM) [13] energy, 12) GLCM contrast,
phantom lesions of different shapes and sizes, (C) an example of a
d to vasculature.



Figure 2. One example image containing a 20 mm, −10 HU spherical phantom lesion on (A) 1.25 mm and lung, (B) 1.25 mm and
standard, (C) 2.5 mm and lung, (D) 2.5 mm and standard, (E) 5 mm and lung, and (F) 5 mm slice thickness and standard reconstruction
image series. The segmented lesion contours were overlapped on CT images.
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13) GLCM correlation, and 14) GLCM homogeneity. The inde-
pendent variables were slice thickness (two variables), reconstruction
algorithms (one variable), size (one variable), density (two variables),
and shape (three variables).
Results
Results from the multiple regression analysis are presented in Table 2.
Because the true values of the phantom volume, density, and shape
were provided, we knew that the smaller the Abs of volume difference
Table 1. Definitions of the 14 Image Features.
Feature
 Description
Uni-dimension
 The longest in-plane diameter of tumor in millimeter.

Volume
 The volume of tumor in cubic millimeter.

Density mean
 The arithmetic average of pixel densities in HU.

Density SD
 The sample SD of the densities in HU.

Density skewness
 The skewness of the density distribution.

Density kurtosis
 The kurtosis of the density distribution.

Compactness
 A measure of roundness. It is defined as

Compactness =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Volume3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Surface Area

p

Shape index 9
 The proportion of the “spherical cap” of the nine types of shapes. Let κ1 and κ2 be the principle curvatures; the shape index is defined as

s =
2
π
arctan

κ2 + κ1
κ2 − κ1

� �
κ1 ≥ κ2ð Þ

The feature is the proportion of surface voxels having a shape index in the range [7/8, 1].

Fractal dimension
 A measure of how fractal pattern changes with the scale with which it is measured. A differential box-counting method is used to estimate the fractal dimension

at each voxel. The fractal dimension feature is taken as the mean fractal dimension of all voxels. For an image void of texture, the fractal dimension is 2.

Fractal lacunarity (box size = 3)
 A measure of how patterns fill space (“gappiness”). The “gappiness” is measured at a scale of 3 × 3 × 3 (3 × 3 voxels in space and 3 HU in density). Let P(m)

be the probability of having m points in a box of size 3. The lacunarity is defined as

λ =
M2 − M 2

M 2

where M = ∑m=1
N mP(m) and M2 = ∑m=1

N m2P(m). For an image void of texture, the lacunarity is 0.

GLCM energy (d = 2)
 A measure of homogeneity. A co-occurrence matrix p is populated by the gray-level pairs I[x, y, z] and I[(x,y,z) + offset(2)] inside the tumor at a distance of

2 voxels in all directions (assuming that tumor texture has no preferred direction). The energy is the sum of squares of all entries in the matrix, i.e.,

Energy = ∑
i;j
pði; jÞ2
GLCM contrast (d = 2)
 A measure of the intensity contrast between a pixel and its neighbor over the tumor. The contrast is defined as

Contrast = ∑
i;j
ði − jÞ2pði; jÞ
GLCM correlation (d = 2)
 A measure of how correlated a voxel is to its neighbor over the tumor. The correlation is defined as

Correlation = ∑
i;j

ði − ui Þð j − uj Þpði;jÞ
σiσj

where σi and σj are the marginal SDs.

GLCM homogeneity (d = 2)
 A measure of the closeness of the distribution of elements in the GLCM to the GLCM diagonal. The homogeneity is defined as

∑
i;j

pði; jÞ
1 + ji − jj



Translational Oncology Vol. 7, No. 1, 2014 Variability in CT Characterization of Tumor Zhao et al. 91
and Abs of density mean difference, the more accurate the mea-
surements. Furthermore, the phantom lesions were designed to be
homogenous in density. Therefore, the smaller the density SD and
contrast-related features and the larger the homogeneity-based image
features, the better the measurements.
As shown in Table 2 (the corresponding coefficient table is pro-

vided as an appendix in Table 2A), all 14 features were significantly
different when computed on 1.25 and 5 mm slice images. The 1.25
and 2.5 mm slice thicknesses were significantly better than 5 mm for
volume, density mean, density SD, GLCM energy, and GLCM
homogeneity. As for the reconstruction algorithm, there was no sig-
nificant difference in uni-dimension, volume, shape index 9, and
compactness, but significant differences were found for all density
and density texture features.
Significant difference in uni-dimension was found only between

1.25 and 5 mm slice thicknesses, with a larger measurement value
on 1.25 mm images. This is likely because uni-dimension (i.e., the
maximal diameter) is measured in an axial plane, and an image series
with thinner slices has a better chance of capturing the longest ex-
tent of a lesion than an image series with thicker slices. No signifi-
cant uni-dimension difference was found, however, between 2.5 and
5 mm or between 1.25 and 2.5 mm. For the volume measurement,
statistical difference was found between 1.25 and 5 mm and between
2.5 and 5 mm but not between 1.25 and 2.5 mm. This could be
due to the greater partial volume effects on 5-mm than on 1.25
and 2.5 mm slice thickness images.
The density histogram–based features were significantly affected

by both slice thickness and reconstruction algorithm. More accu-
rate measurements of density mean and density SD on thinner
slice images than on thicker slice images were likely due to the
lesser effects of partial volume. Lung reconstruction was better
for density mean, whereas standard reconstruction was better for
density SD.
Compactness was significantly affected by the thicker slice thick-

nesses (5 vs 1.25 mm and 5 vs 2.5 mm) but unaffected by the thinner
ones (1.25 vs 2.5 mm) or by the reconstruction algorithms (standard vs
lung). This is understandable, as the thicker slice could considerably
distort lesion shape due to the partial volume artifacts. The smaller
values of compactness on the thinner slice images could be due to
the depiction of more details in lesion morphology (e.g., spikes). The
shape index 9 (the proportion of “spherical cap” voxels on surface) was
affected significantly by slice thickness but not by reconstruction
algorithm, which was a direct result of shape being distorted by the
slice thicknesses but being preserved by the reconstruction algorithms
conditioned on slice thickness.

Both slice thickness and reconstruction algorithm significantly
affected fractal dimension and lacunarity. The fractal dimension
reflected the fact that density changed more rapidly in space with de-
creased slice thickness and/or increased noise on sharper images. Fractal
lacunarity described the “gappiness” of density patterns filling space.
The smaller lacunarity on 1.25 and 2.5 mm compared to 5 mm slice
thickness could be due to the narrower dynamic range of lesion den-
sity in thinner slice thickness; standard reconstruction had a smaller
lacunarity value, possibly due to the narrower dynamic range too.

The four features of energy, contrast, correlation, and homogeneity,
taken from the statistical texture method of GLCM, were signifi-
cantly affected by both slice thickness and reconstruction algorithm
to various degrees. For example, the standard reconstruction resulted
in smoother images, therefore larger values of GLCM energy, cor-
relation, and homogeneity. In contrast, the lung reconstruction
resulted in sharper and noisier images and thus a larger value of
GLCM contrast. Although it might initially seem counterintuitive that
larger GLCM energy and homogeneity were observed on 1.25 and
2.5 mm than on 5 mm, the narrower dynamic range of lesion densities
(i.e., more homogeneity) on thinner images could contribute to larger
GLCM energy.
Discussion
Previous studies have considered the effects of CT imaging acquisition
parameters on tumor size measurements (e.g., diameter and volume)
in cancer screening programs as well as therapy response assessment
[17–22]. To the best of our knowledge, this study is the first to re-
port the effects of CT slice thickness and reconstruction algorithm
on quantitative image features that are extracted to characterize
not only tumor diameter and volume but also tumor shape, density,
Table 2. Effects of CT Slice Thickness and Reconstruction Algorithm on Image Features.
Image Features
 Slice Thickness
 Reconstruction Algorithms
1.25 vs 5.00
 2.50 vs 5.00
 1.25 vs 2.50
 Standard vs Lung
F1. Uni-dimension
 §
F2. Abs of volume difference
 †
 †
F3. Abs of density mean difference
 †
 †
 †
 §
F4. Density SD
 †
 †
 †
 †
F5. Abs of density skewness
 §
 §
 §
 §
F6. Abs of density kurtosis
 §
 §
 §
 †
F7. Compactness
 †
 †
F8. Shape index 9
 §
 §
 §
F9. Fractal dimension
 §
 ‡
 §
 †
F10. Fractal lacunarity (box size = 3)
 †
 †
 †
F11. GLCM energy (d = 2)
 §
 §
 §
F12. GLCM contrast (d = 2)
 §
 §
 †
F13. GLCM correlation (d = 2)
 †
 †
 †
 §
F14. GLCM homogeneity (d = 2)
 §
 §
 ‡
 §
*P ≤ .05 and A is smaller than B (A vs B).
†P ≤ .01 and A is smaller than B (A vs B).
‡P ≤ .05 and A is larger than B (A vs B).
§P ≤ .01 and A is larger than B (A vs B).
Otherwise, A and B are not significant (A vs B).
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and density distributions (including spatial distribution) using an
anthropomorphic thorax phantom.

In this pilot study, 14 representative image features were chosen to
characterize tumor size, shape, density, and density distributions.
Knowing the true volume, shape, density, and density homogeneity
of the phantom lesions, we were able to compare certain morphology
and texture features that were computed from CT images obtained
using different reconstruction techniques and parameters and thereby
provide valuable insights into the degrees these imaging settings affect
the quantification of various image features.

The key findings of this study are summarized below. All 14
selected image features were significantly different when computed
on 1.25 and 5 mm slice images. Certain image features, especially
those quantifying tumor size (diameter and volume) and shape
(compactness), were not statistically different when measured on
1.25 and 2.5 mm slice thickness images. The image features of
volume, density mean, density SD, GLCM energy, and GLCM
homogeneity were more accurately measured on 1.25 mm than on
2.5 mm and least accurately measured on 5-mm slice thickness im-
ages. Our findings of the effects of CT slice thickness on phantom
size measurements confirmed the previously reported results of clinical
studies [21,22]. As for the reconstruction algorithm, significant dif-
ferences were found for all density-related image features but not for
tumor size– or shape-related features. Our findings suggest that thin-
ner (1.25 and 2.5 mm) and thicker (5 mm) slice images, as well
as smoother and sharper images, should not be used interchangeably
when studying radiogenomics.
Appendix
Table 2A lists the coefficients of slice thickness and reconstruction algo
and shapes.
Generally speaking, a thicker slice technique introduces larger
partial volume artifacts compared to a thinner slice technique. As a
result, density texture/contrast detail of images will be suppressed
more on thicker slice images due to the oversmoothing effect, which
affects not only the computation of image texture features but also
the identification of (tumor) boundaries. Similarly, a smoother re-
construction algorithm (e.g., standard algorithm) generates smoother
and less noisy images, whereas a sharper reconstruction algorithm
(e.g., lung algorithm) creates sharper and noisier images. These
should explain why differences can occur when calculating the
same image feature on images reconstructed using different imaging
reconstruction techniques and parameters.

There are several limitations to this study. Although we used an
anthropomorphic thorax phantom, compared to real patient’s chest
images, the phantom images had less artifacts induced during the
CT image acquisition procedure. Phantom lesions were designed
homogenous in density and thus lacked image textures. Furthermore,
image features were analyzed on the basis of the results of one seg-
mentation algorithm. Different strategies employed by different
algorithms can affect segmentation results and thus the quantifica-
tions of image features.

Future studies include, but are not limited to, extension of the
14 image features to additional 200+ well-defined quantitative image
features, collaboration with other research teams to compare differ-
ences discovered using different segmentation algorithms and feature
extraction programs, and correlation of quantitative image features
with clinical outcome data (genetic expression).
rithms of the multiple regression adjusted for phantom size, density,
Table 2A. Effects of CT Slice Thickness and Reconstruction Algorithm on Image Features.
Image Features
 Constant
 Slice Thickness
 Reconstruction Algorithms
5.00 (Reference)
 1.25
 2.50
 Lung (Reference)
 Standard
F1. Uni-dimension
 8.8
 0
 .79†
 .49
 0
 0.1

F2. Abs of volume difference
 24.4
 0
 −133.8†
 −134.2†
 0
 −10.5

F3. Abs of density mean difference
 248.7
 0
 −120.9†
 −95.5†
 0
 46.3†
F4. Density SD
 209.0
 0
 −27.2†
 −12.7†
 0
 −10.2†
F5. Abs of density skewness
 .37
 0
 .66†
 .48†
 0
 .12†
F6. Abs of density kurtosis
 .41
 0
 2.09†
 1.20†
 0
 −.88†
F7. Compactness
 .42
 0
 −.01†
 −.01†
 0
 −.001

F8. Shape index 9
 .34
 0
 .13†
 .08†
 0
 .004

F9. Fractal dimension
 1.59
 0
 .06†
 .02*
 0
 −.25†
F10. Fractal lacunarity (box size = 3)
 .22
 0
 −.02†
 −.01†
 0
 −.05†
F11. GLCM energy (d = 2)
 −.01
 0
 .01†
 .01†
 0
 .02†
F12. GLCM contrast (d = 2)
 149.0
 0
 38.2†
 33.8†
 0
 −24.0†
F13. GLCM correlation (d = 2)
 .45
 0
 −.34†
 −.22†
 0
 .12†
F14. GLCM homogeneity (d = 2)
 .17
 0
 .04†
 .03†
 0
 .09†
*P ≤ .05.
†P ≤ .01.
Otherwise, the slope b is not significantly different from zero.
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