
Drug Synergy Screen and Network Modeling in Dedifferentiated
Liposarcoma Identifies CDK4 and IGF1R as Synergistic Drug
Targets

Martin L. Miller1, Evan J. Molinelli1,2, Jayasree S. Nair3, Tahir Sheikh3, Rita Samy1,
Xiaohong Jing1, Qin He1, Anil Korkut1, Aimee M. Crago4, Samuel Singer4, Gary K.
Schwartz3,5, and Chris Sander1

1Computational Biology Center

Corresponding Author: liposarcoma_combo@cbio.mskcc.org will reach the principal authors.

SUPPLEMENTARY MATERIALS
Fig. S1: WDLS/DDLS tumors and the two cell lines used in this study have complex DNA copy number alterations.
Fig. S2: EC50 determination using a cell metabolic activity assay shows good agreement between biological replicates.
Fig. S3: Effects of PD0332991 and NVP-AEW541 in DDLS8817 and LPS141 cells.
Fig. S4: CDK4 inhibition causes G1 cell cycle arrest in LPS141 cells.
Fig. S5: Phosphorylation of AKT in DDLS8817 cells is consistently suppressed for at least 24 hours after PI3K inhibition.
Fig. S6: Examples of determining the appropriate drug concentration for RPPA-based proteomic profiling in DDLS8817 cells.
Fig. S7: Western blot testing of antibodies used in the RPPA assay shows no apparent cross-reactivity.
Fig. S8: mRNA expression of nodes in the network fall in the top half of all genes in both cell lines used.
Fig. S9: DNA copy number analysis of network genes shows copy gains in multiple genes and amplification of CDK4.
Fig. S10: Schematic illustration of the computational analysis on a fictional 4-node system.
Fig. S11: Network models are not over-fitted to prior knowledge interactions.
Fig. S12: BP improves performance of prior knowledge interactions alone.
Fig. S13: BP inference is minimally sensitive to drug-specificity.
Fig. S14: Liposarcoma-specific network models are predictive of cell response to drugs.
Fig. S15: Many of the drug combinations with the strongest predicted synergy scores are categorized in accordance with experiments.
Fig. S16: Combined inhibition of the CDK4 and IGF1R nodes is predicted to be synergistic by the network models.
Fig. S17: Combination treatment enhances repression of mTOR signaling compared to single drug treatment.
Fig. S18: Inhibition of EGFR and CDK4 has synergistic effects on cell metabolic activity and effects are enhanced in a triple
perturbation adding an IGF1R inhibitor.
Fig. S19: Combining CDK4 inhibition with MEK or ERK inhibition does not result in synergistic effects on cell viability based on
cell metabolic activity.
Fig. S20: Many of the top 100 models predict synergistic effects of combined CDK4 and IGF1R inhibition.
Table S1: Drugs used in the synergy screen (cell viability) and the proteomic screen (RPPA).
Table S2: Dose-response measurements of single and paired drug perturbations using the Resazurin assay.
Table S3: Combination index (CI) scores.
Table S4: Drugs used in follow-up experiments.
Table S5: Interactions in the prior knowledge network.
Table S6: Bayesian-derived models have many interactions in common with BP-derived models.
References: 58 - 96

Competing interests: S.S. is an advisory committee member of Pfizer, and G.K.S. has served on an Advisory Board for Pfizer for the
development of PD0332991 in liposarcoma.

Data and Materials Availability: Gene Expression Omnibus: GSE50749 (Illumina gene expression array experiments) and
GSE50750 (Agilent 244k Comparative Genomic Hybridization array experiments). RPPA data: http://cbio.mskcc.org/~miller/SI/.

Author contributions: Conception and design: M.L.M., E.J.M., S.S., G.K.S., and C.S. Development of methodology: M.L.M.,
E.J.M., A.K., G.K.S., and C.S. Acquisition of data: M.L.M., J.S.N., T.S., R.S., X.J., and Q.H. Analysis and interpretation of data:
M.L.M. and E.J.M. Writing of the manuscript: M.L.M., E.J.M., J.S.N., A.M.C., S.S., G.K.S., and C.S. Administrative, technical, or
material support: M.L.M., T.S., R.S., X.J., Q.H., A.M.C., and S.S. Study supervision: G.K.S. and C.S.

Publisher's Disclaimer: This manuscript has been accepted for publication in Science Signaling. This version has not undergone final
editing. Please refer to the complete version of record at http://www.sciencesig-naling.org/. The manuscript may not be reproduced or
used in any manner that does not fall within the fair use provisions of the Copyright Act without the prior, written permission of
AAAS.

NIH Public Access
Author Manuscript
Sci Signal. Author manuscript; available in PMC 2014 April 25.

Published in final edited form as:
Sci Signal. ; 6(294): ra85. doi:10.1126/scisignal.2004014.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://cbio.mskcc.org/~miller/SI/
http://www.sciencesig-naling.org/


2Tri-Institutional Training Program in computational Biology and Medicine

3Laboratory of New Drug Development, Department of Medicine

4Sarcoma Disease Management Program, Department of Surgery

5Melanoma and Sarcoma Service, Department of Medicine, Memorial Sloan-Kettering Cancer
Center

Abstract

Dedifferentiated liposarcoma (DDLS) is a rare but aggressive cancer with high recurrence and low

response rates to targeted therapies. Increasing treatment efficacy may require combinations of

targeted agents that counteract the effects of multiple abnormalities. To identify a possible

multicomponent therapy, we performed a combinatorial drug screen in a DDLS-derived cell line

and identified cyclin-dependent kinase 4 (CDK4) and insulin-like growth factor 1 receptor

(IGF1R) as synergistic drug targets. We measured the phosphorylation of multiple proteins and

cell viability in response to systematic drug combinations and derived computational models of

the signaling network. These models predict that the observed synergy in reducing cell viability

with CDK4 and IGF1R inhibitors depend on activity of the AKT pathway. Experiments confirmed

that combined inhibition of CDK4 and IGF1R cooperatively suppresses the activation of proteins

within the AKT pathway. Consistent with these findings, synergistic reductions in cell viability

were also found when combining CDK4 inhibition with inhibition of either AKT or epidermal

growth factor receptor (EGFR), another receptor similar to IGF1R that activates AKT. Thus,

network models derived from context-specific proteomic measurements of systematically

perturbed cancer cells may reveal cancer-specific signaling mechanisms and aid in the design of

effective combination therapies.

INTRODUCTION

Liposarcoma is the most common type of soft tissue sarcoma (1). Among the subtypes of

liposarcoma, dedifferentiated liposarcoma (DDLS) is associated with the lowest survival

rate (2) and often recurs or metastasizes despite treatment with surgery, radiation, or

chemotherapy (3). As response rates to classical chemotherapeutics are low (4), targeted

agents have increasingly been under pre-clinical and clinical investigation for DDLS

treatment (3). Unfortunately, drugs directed to kinases such as vascular endothelial growth

factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR) (for example,

sorafenib), and BCR-ABL (for example, imatinib) show limited response in phase II trials

(5, 6). Profiling of DDLS reveals complex DNA copy number changes across the genome as

well as recurrent focal alterations, including a high frequency (~90%) 12q13-15

amplification that harbors the CDK4 and MDM2 oncogenes (7), which respectively encode

cyclin-dependent kinase 4 (also known as cell division kinase 4) and mouse double minute 2

homolog, an E3 ubiquitin ligase. We previously evaluated the selective oral inhibitor of

CDK4 and CDK6 (from here on referred to simply as CDK4), PD0332991, in a phase II

clinical trial in patients with well-differentiated liposarcoma (WDLS) and DDLS and found

prolongation of progression-free survival (8). However, the response rate remains low,

suggesting that PD0332991 needs to be combined with other drugs to enhance its anti-tumor
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efficacy, exemplified by the advances in treatment of estrogen receptor-positive and human

epidermal growth factor receptor 2-negative (ER+/HER2−) advanced breast cancer with

PD0332991 and the aromatase inhibitor Letrozole (clinical trial number NCT01740427).

Targeted therapies are revolutionizing cancer treatment by acting on patient-specific genetic

alterations with fewer side effects than conventional cytotoxic chemotherapy. Despite these

advantages, single-target therapies for cancer often have limited clinical success because of

resistance, such as with HER2-targeted therapies for breast cancer (9, 10). In the case of

limited initial treatment response (referred to as primary resistance), combination therapy

with two or more targeted drugs improves efficacy (11, 12), such as the combination of the

HER2-specific antibody trastuzumab with the receptor tyrosine kinase (RTK) inhibitor

Lapatinib in HER2-positive metastatic breast cancer (13). Ongoing clinical trials with

combination therapies include BRAF and MEK [mitogen activated kinase (MAPK) kinase]

inhibition for BRAF mutant melanoma (clinical trial number NCT01072175) (14),

phosphoinositide-3 kinase (PI3K) and MEK inhibition for PIK3CA/KRAS mutant colorectal

cancer (clinical trial number NCT00996892), and AKT and MEK inhibition for advanced

solid tumors (clinical trial number NCT01021748). The improvements of combination

therapy are most likely because of cooperative inhibition of the multiple cellular signaling

events typically altered in cancer (15–17). In DDLS, for example, in addition to the CDK4

and MDM2 amplicon, there are complex genetic rearrangements, including partial deletion

of chromosomes 11q and 19q, suggesting that several dysregulated pathways are likely

involved in DDLS pathogenesis (18, 19). Targeting multiple pathways with combinations of

drugs therefore represents a relevant strategy for DDLS treatment and could potentially lead

to higher response rates and better clinical outcomes. Moreover, by targeting two different

pathways converging on a common phenotype, such as cell proliferation, it is possible to

obtain a more-than-additive (synergistic) response compared to the individual agents alone

(15, 20), sometimes referred to as the parallel pathway inhibition model (17, 21, 22).

Synergistic drugs have the potential to not only increase the rate of initial treatment response

(16, 23), but also reduce the concentration of each needed to elicit a given effect and

consequently improve the therapeutic index (24).

The issue of how best to optimize drug combinations becomes particularly acute in

developing combinations of drugs that have distinct cell cycle effects. In a process termed

cell cycle-mediated drug resistance, a cell cycle inhibitor that blocks cell growth in one

phase of the cell cycle (such as G1) can then antagonize a second drug that exerts its

cytotoxic effect within another phase of the cell cycle (such as mitosis) (25). For example,

the pan-CDK inhibitor flavopiridol, which induces a G1 cell cycle arrest, essentially

prevents mitotic spindle poisons such as paclitaxel or docetaxel from exerting their anti-

tumor effects during mitosis (26, 27). A similar inability to enhance the effect of cell cycle-

specific chemotherapies is shown for the CDK4 inhibitor PD0332991 (28). Thus,

combinations of cell cycle inhibitors with conventional chemotherapy or with small-

molecule inhibitors that could similarly affect the cell cycle are not intuitive.

With the goal of identifying effective, synergistic drug combinations for DDLS treatment,

we performed a synergy screen with fourteen targeted drugs in a cell line derived from a

DDLS patient with the 12q13-15 amplicon. Out of several identified synergistic drug pairs,
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we focused on an unexpected synergy observed with paired CDK4 and IGF1R inhibition. To

investigate the possible mechanisms underlying this synergy, we applied our recently

developed hybrid experimental and computational approach for deriving context-specific

signaling models (29, 30). In a three-step process we: 1) performed combinatorial drug

perturbations and used high-throughput reverse-phase protein arrays (RPPA) to measure the

response of a panel of thirteen proteins and phosphoproteins, 2) derived network models

based on the perturbation profiles and prior knowledge of signaling pathways, and 3)

quantitatively simulated the effects of perturbations on signaling events through our models.

The network model was used to predict the key regulatory proteins mediating the synergy,

which were then assessed experimentally. Although our cell line-specific models may not be

generalizable to other contexts, our results illustrate the potential for computationally

assisted design and analysis of systematic perturbation screens to efficiently explore

therapeutically relevant drug combinations. We anticipate that such integrated approaches to

combinatorial therapeutics may provide translational opportunities for further development

of DDLS treatment.

RESULTS

Drug combination screen identifies synergistic drug targets in DDLS

To investigate synergistic drug interactions in DDLS, we selected a tumor-derived cell line,

DDLS8817, which contains several genomic alterations characteristic of DDLS, including

amplification of 12q13-15 and partial loss of segments in chromosomes 3p and 19q (19)

(fig. S1). We then chose fourteen small-molecule drugs (table S1 and Fig. 1) that target

proteins within the canonical mTOR (mammalian target of rapamycin), PI3K/AKT, and

MAPK pathways, which are altered across a wide range of cancers (31). In addition, some

of these drugs are under preclinical and clinical investigation for treatment of various

sarcoma subtypes, including drugs targeting CDK4 (8), PDGFR (platelet-derived growth

factor receptor) (5), and IGF1R (32), although only partial therapeutic responses have been

observed.

To determine potential non-additive effects (indicating the existence of common

mechanisms, known as epistasis), the activity of combined agents is typically compared to

single agent activities and related to a null expectation model that assumes no interaction

between the drugs (24). The most commonly used null expectation models are Loewe

additivity and Bliss independence (15), whereby effects can be categorized as additive,

synergistic, or antagonistic. For this study, we measured synergy by the Loewe additivity-

based combination index (CI) score, which can handle cases where two drugs act on targets

regulating a common pathway (33) (Fig 1A). We then performed a systematic dose-response

screen of single and combined agents at seven different concentrations administered for 72

hours and estimated the effect on cell viability using metabolic activity-based Resazurin

assay. Using more than 10,000 cell viability measurements of the effect of all single and

dual drug perturbations (table S2), CI scores were calculated for each drug combination on

the basis of half-maximal effective concentration (EC50) values obtained from sigmoid-

fitted dose-response curves (Fig. 1B and fig. S2). CI scores less than 0.75 were considered

synergistic, larger than 1.5 antagonistic, and the rest were considered additive (Fig. 1B and
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table S3). In some cases, CI scores could not be calculated; for example, the mTOR inhibitor

rapamycin arrested cells in a dose-independent manner. Using these CI score cut-offs, we

identified 9 synergistic drug-drug interactions (out of a possible 91), which corresponds with

previous reports in which 4–10% of the combinations were synergistic (34–37). The

synergistic pairs included combined inhibition of epidermal growth factor receptor (EGFR)

and IGF1R, MEK and either PI3K or AKT, among others [inclusively, AKT and MEK,

ERK and HDAC (histone deacetylase), ERK and MET, IGF1R and CDK4, IGF1R and

EGFR, IGF1R and STAT3 (signal transducer and activator of transcription 3), MEK and

MET, PDGFR and MEK, PI3K and MEK].

CDK4 and IGF1R are synergistic drug targets in DDLS

We decided to further investigate the particular combination of CDK4 and IGF1R inhibition

using the small molecules Ryuvidine and AG538 because of the recurrent CDK4 amplicon

in DDLS and the clinical relevance of CDK4 inhibition for treatment of liposarcoma. In

addition, the IGF1R target was a surprising combination candidate with CDK4 inhibition,

because the two molecules are generally presumed to control cell survival through separate

pathways [the AKT/mTOR pathway by IGF1R, and the retinoblastoma (RB) pathway by

CDK4].

We first tested whether the main drug targets were driving the identified synergy and

whether it was exclusive to the DDLS8817 cell line. To investigate this, we used alternative

inhibitors, PD0332991 (a CDK4 inhibitor) and R1507 (an IGF1R antibody) in two DDLS

cell lines, DDLS8817 and LPS141 (fig. S1 and table S4). Mixing serial dilutions of R1507

and PD0332991 in all combinations (dose matrix) and measuring their effect on cell

metabolic activity (as an indication of cell viability) after 6 days of drug treatment, we

calculated CI scores using CompuSyn (38), and found that these drugs were synergistic in

both cell lines (average CI scores were 0.34±0.19 for DDLS8817 and 0.63±0.17 for

LPS141) (Fig. 2). In addition, the IGF1R small molecule inhibitor NVP-AEW541 appeared

to be synergistic in combination with PD0332991, although this was more prominent for

LPS141 than for DDLS8817 (fig. S3) most likely because of a higher baseline abundance of

IGF1R in LPS141. Finally, in LPS141, PD0332991 but not IGF1R inhibition alone (neither

by inhibitor NVPAE nor by antibody R1507) induced G1 cell cycle arrest, with greater

effects from combined treatment (fig. S4). These results indicate that the synergy of CDK4

and IGF1R inhibitors is most likely mediated by inhibition of the main targets rather than

off-target effects, and support the findings of our initial screen in an independent cell line

and with different agents targeted to the same molecules.

RPPA assay provides proteomic profiles for DDLS-specific network modeling

We next investigated possible mechanisms underlying the observed CDK4 and IGF1R

inhibitor synergy by building network models of signaling pathways in DDLS. The

approach consisted of profiling the cellular response (proteomic and phenotypic

measurements) to a series of drug-pair perturbations, followed by computational

transformation of the data into network models that quantitatively link proteins in signaling

network circuits (29, 30).
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For the first profiling step, we used the same cell line and the same set of drugs as in our

initial drug synergy screen. In an effort to reveal interactions at relatively low doses, we

selected drug concentrations that inhibited phosphorylation of the presumed target by 40%

(IC40) at 24 hours (fig. S5–S6 and table S1). Of note, the protein IC40 values used here were

roughly one order of magnitude lower than the drugs’ IC40 values for cell viability.

We then treated DDLS8817 cells with all individual drugs and all possible pairs of drugs,

resulting in a total of 105 different perturbations, not counting biological replicates and

untreated controls (Fig. 3A). Biological replicates of cellular lysates were spotted in 5-fold

dilution series using the RPPA platform, and the abundance of more than 100 different

proteins and phosphoproteins were assessed with a panel of antibodies (39). A final set of 13

antibodies was chosen for read-outs based on quality control of slides, correlation between

biological replicates, response to drug perturbation, and evidence of the protein being

relevant for liposarcoma tumor biology (Fig. 3B). This final set of antibody read-outs shows

the overall pattern of increased (green) and decreased (blue) phosphoprotein abundance over

the range single and dual drug perturbations. Several consistent patterns emerge across

similar drug conditions (horizontal “bars”, such as repression of phosphorylated AKT (at

Ser473) in the majority of drug pairs with the AKT inhibitor (conditions 15–27) as well as

repression of phosphorylated MAPK (at Thr202) with pairs of drugs that include ERK

inhibition (conditions 28–39) or EGFR inhibition (conditions 40–50). Although difficult to

interpret without computational analyses, distinct vertical patterns also appear, such as

repression of multiple phosphoproteins with combined MEK and PI3K inhibition (condition

74) – a drug combination that was also found to have a synergistic reduction in cell viability

(Fig. 1B). We tested the selected set of RPPA antibodies using Western blotting and found

no apparent cross-reactivity to non-target antigens in the cell lines used (fig. S7). In addition,

we profiled the two cell lines for mRNA expression using microarrays and found that the

expression of the network genes ranked in the top half of all genes (fig. S8). Finally, we

found multiple DNA copy numbers gains in the network genes and no homozygous

deletions were detected (fig. S9). Together these observations on transcript, copy number,

and protein abundance indicate that all selected genes were expressed at “steady state” in

unperturbed conditions.

Proteomic data and prior knowledge interactions provide quantitative models of signaling
pathways in DDLS

For inferring DDLS-specific network models, we utilized existing information on protein

interactions from several databases (40–42) and information on signaling pathways involved

in sarcoma (18). With this information, we constructed a prior knowledge network of

interactions (termed edges) between the selected set of proteins measured by RPPA (termed

nodes) (Fig. 4A and table S5). For simplicity, we represented the combined effects of cell

proliferation, survival, and death as a single node (cell viability).

We next derived quantitative network models using three types of data: the perturbation-

response profiles (Fig. 3B), the drug-target relationships (table S1), and the list of prior

knowledge interactions (Fig. 4A). To maintain flexibility to infer interactions that are

consistent with the experimental data, we softly enforced the prior knowledge interactions,
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such that inconsistent interactions could be rejected. We inferred interactions into a give

‘target’ node one at a time by searching the data for weighted subsets of possible “source”

nodes that collectively co-vary with the target node. Technically, this was done by

minimizing a bipartite cost function that penalizes 1) discrepancies between model-predicted

and measured values and 2) a large number of interactions. In this way, edges are numerical

parameters representing the relative influence of one node on the state of another,

representing logical but not necessarily direct biological interactions. Explicitly searching all

possible subsets of source nodes is computationally prohibitive due to combinatorial

explosion of possibilities. Therefore, we used a statistical inference algorithm called Belief

Propagation (BP), which is designed to find the most probable interactions in large systems

(30) (described in fig. S10). The output of the BP method is a probability distribution for

each of the N2 possible parameters, which we used to collect an ensemble of network

models with the most probable interactions.

To visualize the inferred ensemble of network models, we plotted all of the highly probable

interactions, with the edge width representing the inferred interaction strength (Fig. 4B).

Qualitatively, we observed a fairly complex network of interactions with several phospho-

proteins acting as hubs [for example, AKT at pSer473, p70S6 kinase (p70S6K) at pThr389,

and glycogen synthase kinase α and β (GSK3α/β) at pSer21] and without any obvious

modular or isolated pathways. The majority of the prior knowledge interactions (26 of 34)

were consistent with the data (fig. S11) and were within the inferred network. Supporting

this, models based on prior knowledge alone performed better than random models as

estimated by the mean squared error between measured and model estimated data points

(fig. S12). The rejected interactions were mostly those connecting the drugs (represented as

activity nodes; for example, aPDGFR) to their presumed targets. Although some of this

discrepancy may result from use of low drug concentrations, in some cases the measured

phosphorylation site may not be affected by drug treatment despite the target being inhibited

(for example, the abundance of phosphorylated MEK may not be affected by a MEK

inhibitor). Although drug specificity is crucial for accurate network modeling, we found that

off-target effects could be tolerated (fig. S13). Thus, using our network inference approach,

we developed context-specific DDLS network models that can be used to simulate effects of

perturbations.

Network models are predictive of cellular responses to drugs

To use the models for prediction, a collection of quantitative models were generated via

sampling the probability distributions for each parameter and subsequently optimizing with

a gradient descent method. Out of a collection of 1000 distinct network models, we then

used the 100 best performing models (lowest error) to estimate how well the models

quantitatively link nodes (measured proteins) in the network to the cell viability node. To

assess this in our models, an inhibitory perturbation (single or paired) was simulated by

applying a negative force on the target node(s), which in turn propagated changes to all

other linked nodes sequentially, thus simulating a cascade of signaling events. To avoid

over-fitting this test was performed using a cross-validation procedure in which we

generated network models, where all measurements of paired drug perturbations involving

the drug in question were left out (using “leave-k-out” cross-validation). We found that the
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network modeling approach was reasonably accurate in predicting the effect of any pairwise

node perturbation on cell viability (fig. S14). This indicated that central signaling

connectivities were captured in a biologically relevant manner, because the predicted cell

viability outcome depends on how information is propagated in the network models.

Network models capture synergy and recapitulate the CDK4 and IGF1R inhibitor
synergism

We next investigated if the network models were able to identify epistatic (synergistic and

antagonistic) interactions in the data. Applying a similar leave-k-out approach, possible

epistatic effects on cell viability were determined by inhibiting two nodes at various

strengths in all permutations. We determined epistatic effects in the network models,

synergy (S), as the difference between the effect of the paired simulated perturbations (Zsim)

and the Loewe additivity surface (Zloewe); S = A,B (Zsim Zloewe), where Zloewe was derived

from the added effects of the single node perturbations (43). For example, when applying

this approach to investigate the effects of combined inhibition of the ERK activity (aERK)

and 4EBP1-pSer65 nodes, we find that cell viability is inhibited more than expected over the

additive independence model (Fig. 5A and B). Although it was not experimentally tested,

this epistatic interaction was derived non-trivially from the input data and shows the ability

to model and predict new potential synergistic drug targets. We then calculated S for all

possible node pairs and found that our network models were able to capture epistasis as

numerous synergistic and antagonistic effects were identified (Fig. 5C). Although S is

unitless and can be used only for comparisons within the same dataset, the overall trend of

the distribution is similar that found experimentally (Fig. 1B). This indicates that the

modeling approach is not over- or underestimating synergistic effects; however, further

efforts are needed to confirm this observation. We then compared predicted versus

experimentally tested drug combinations. Although there were several miscategorized

predictions, many of the drug combinations with the strongest predicted synergistic and

antagonistic effects were categorized in accordance with the experiments (fig. S15).

Similar to the experimental results, the network models predicted a synergistic effect from

combined inhibition of IGF1R and CDK4 (Fig 5C, fig. S16). Although the predicted

efficacy, unlike the experimental synergy, was relatively modest, it was significantly

different from synergy scores determined from perturbing the same nodes in random but

similarly parameterized models (fig. S16C). Thus, the models effectively recapitulated the

phenotypic observations for combined CDK4 and IGF1R inhibition.

Models predict that the AKT pathway is involved in mediating CDK4-IGF1R drug synergy

In an effort to identify important network features mediating the synergy of IGF1R and

CDK4 inhibition, we systematically altered the network models to find the interactions that

were essential for the synergistic effect on the cell viability node. Each interaction observed

in at least one of the top 100 models was removed in turn, then the synergy calculation was

repeated. The interactions whose removal resulted in the most pronounced drop in the

overall synergy score were ranked (Fig. 6). This analysis yielded several important insights.

First, most of the model interactions did not contribute to the synergy. Second, in agreement

with the parallel pathway hypothesis model for drug synergy (17, 21, 22), the most
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important interactions formed two seemingly parallel and non-overlapping pathways

controlling cell viability. The most essential interactions were those linking the drug targets

(aCDK4 and aIGF1R) to cell viability either directly or through downstream effectors such

as RB-pSer780 (for aCDK4) and S6-pSer235 (for aIGF1R). Although some of these

interactions are likely indirect and did not occur in the average network, they do represent

strong causal connection between the drug-target and the predicted control over cell

viability. In addition, this analysis suggested that control of the phosphorylation of AKT at

Ser473 by activated EGFR (phosphorylated at Tyr992) also plays an important role in

mediating the synergy. The connections between AKT-pSer473, p70S6K-pThr389, S6-

pSer235, and cell viability, represent the canonical AKT/mTOR-pathway cascades regulating

cell proliferation (44, 45) and are consistent with IGF1R-mediated cell proliferation

regulation through this pathway. These predictions suggested that AKT was involved in

mediating part of the observed synergy. Therefore we decided to investigate this in further

detail.

AKT pathway-mediated control over cell viability is likely involved in the CDK4 and IGF1R
inhibitor synergy

To begin interrogating the molecular pathways that might explain the CDK4 and IGF1R

inhibitor synergy, we investigated effects of their inhibition on IGF1R, PI3K/AKT, and

mTOR signaling in the two cell lines, DDLS8817 and LPS141. To address specificity

issues, we used two IGF1R inhibitors (the IGF1R antibody R1507 and the small molecule

IGF1R inhibitor NVP-AEW541) and the CKD4 inhibitor PD0332991 as well as CDK4-

targeted siRNA. Under all of the conditions tested, the IGF1R inhibitor and antibody

decreased the abundance of phosphorylated AKT (Fig. 7, A and B). With R1507, this

decrease in phosphor-AKT was coincident with decreased IGF1R abundance, more

markedly in LPS141 cells, which have a high baseline abundance of IGF1R. PD0332991 or

CDK4 siRNA alone resulted in variable suppression of mTOR signaling with a decrease in

both phosphorylated S6 (at Ser235-236) and pS6K (at Thr389) under some of the conditions

tested. However, with the combination treatment of PD0332991 and R1507 there was

evidence of enhanced inhibition of mTOR signaling indicated by decreased S6

phosphorylation (pSer235-236) and S6K phosphorylation (pThr389) (fig. S17B and C) as well

as a similar, but non-significant, trend for suppression of phosphorylated AKT (fig. S17A).

These data suggest that dual blockade of CDK4 and IGF1R signaling results in cooperativity

such that two pro-survival pathways are inhibited. Despite the MAPK pathway being

downstream of IGF1R, the same drug combination did not appear to cooperatively suppress

the phosphorylation of ERK (Fig. 7A).

On the basis of these observations and our modeling results, we hypothesized that

combining PD0332991 with inhibitors of the AKT pathway would also be synergistic.

Indeed, measuring cell viability after 6 days of drug treatment, we found that combined

AKT and CDK4 inhibition with MK2206 and PD0332991 resulted in a synergistic effect in

both DDLS8817 and LPS141 (Fig. 7, C and D). Consistent with this, inhibiting EGFR,

which is upstream of AKT, also synergized with PD0332991 (fig. S18A). In addition, in a

triple drug perturbation, we observed cooperative effects of combining CDK4 inhibitor,

IGF1R inhibitor, and EGFR inhibitor (fig. S18, B and C). In contrast, neither the MEK
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inhibitor AZD6244 nor the ERK inhibitor FR180204 synergized with PD0332991, because

the effects of these dual drug perturbations were comparable to single PD0332991 treatment

(fig. S19), arguing that the MAPK pathway is not a point of convergence in the CDK4 and

IGF1R inhibitor synergy. Taken together, these observations indicate that part of the

synergistic mechanism may result from a more-than-additive suppression of phosphorylated

AKT (at Ser473) and that the added anti-proliferative effect may involve inhibition of the

AKT pathway rather than the MAPK pathway.

DISCUSSION

In this work we used a perturbation-based systems biology approach to analyze drug

combination effects in DDLS. Performing a drug synergy screen in a patient-derived cell

line, we identified CDK4 and IGF1R as synergistic drug targets. To investigate potential

mechanisms of this synergy, we applied an integrated experimental-computational approach

to infer network models from rich perturbation response profiles. We used these network

models to quantitatively describe signaling pathways in DDLS and model the observed

CDK4-IGF1R drug synergy. Both predictions and experiments suggest that AKT or

effectors of AKT are involved in mediating this more-than-additive effect. Although other

mechanisms are likely involved and further methodological developments are needed, these

results reveal the power of network pharmacology approaches for identifying and modeling

drug synergy.

Several features of this work may contribute substantially to the discovery and analysis of

effective combination therapies. We have extended the conventional drug synergy screening

approach by combining cell viability measurements with high-throughput proteomic

measurements of systematically perturbed cancer cells. This enables us to apply our

powerful probability-based BP algorithm to derive network models that integrate both prior

knowledge of pathways and direct measurements of signaling events in the system of

interest. In this way, we infer network models of signaling connectivities in a context-

specific manner. This integrated experimental-computational approach is predictive of cell

viability outcome to network perturbations and allows for modeling and predicting

mechanisms of synergistic drug combinations, which is typically not possible with other

approaches. Although the generalizability of our models remains untested, our approach is

generalizable to other contexts, and we are currently modeling oncogenic signaling in

several additional cancer types.

The applicability of our approach is exemplified by the discovery and modeling of the

CDK4 and IGF1R drug synergy. Increasing evidence points to CDK4 as a major oncogenic

driver in DDLS (7, 18, 19), however, because IGF1R is not frequently altered in DDLS (7),

this drug combination would not likely be identified using standard genomic screening

methods. On the basis of these results, we are continuing preclinical investigations in DDLS

with paired CDK4 and IGF1R inhibition as well as devising clinical trials with

multicomponent therapy consisting of PD0332991 combined with either IGF1R or EGFR

inhibition. Both experiments and model simulations indicate that CDK4 and IGF1R

inhibitors operate through separate survival pathways (through RB and AKT/mTOR,

respectively) supporting the parallel pathway hypothesis for synergism (17, 21, 22). In this
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light, we expect that the combination therapies suggested here may improve response rates

in the initial treatment phase and thereby reduce primary resistance. Moreover, because

CDK4 inhibition but not IGF1R blockade arrests cells in G1 (fig. S4), this particular

combination may avoid problems of cell cycle-mediated drug resistance (25).

The network models predicted that regulation of AKT’s effect on cell viability is critical for

the observed CDK4 and IGF1R drug synergy. The AKT pathway is one of the major

downstream pathways of IGF1R (46), and indeed we found that IGF1R inhibition with

R1507 or NVP-AEW541 represses phosphorylation of AKT and downstream members of

the AKT/mTOR pathway (p70S6K, S6). Consistent with the literature, CDK4 inhibition

repressed phosphorylated RB (Fig. 7A) and had little to no repressive effect on the AKT/

mTOR pathway by itself. However, the mTOR pathway was cooperatively repressed by

paired inhibition of CDK4 and IGF1R compared to single treatment alone and a similar

trend was observed for the AKT pathway (fig. S17). While AKT is known as an upstream

regulator of cyclin D1 and CDK4 activity (47), CDK4 does not, to our knowledge, directly

control AKT pathway activity. In this light, it is surprising that the paired perturbation has a

more-than-additive suppressive effect on this pathway. This suggests the existence of an

unknown connectivity or feedback mechanism, although further research is required to

evaluate this idea. In accordance with the premise that the control of the AKT pathway

contributes to the CDK4 and IGF1R inhibitor synergy, we found that combined inhibition of

CDK4 and AKT or its upstream regulator EGFR resulted in a synergistic repression of cell

proliferation. In contrast, combining CDK4 inhibition with either MEK inhibition or ERK

inhibition showed no cooperative effects, eliminating the MAPK pathway by itself as a

mechanism driving the synergy.

Designing the experimental setup for large-scale profiling, as performed here, requires a

range of choices with respect to cell-type, growth conditions, drug selection, drug

concentrations, assays, and so on. We chose clinically relevant cell lines and drugs for this

study. However, some of the drugs used in the screen were not identical to those under

preclinical development. For example, we used the CDK4 inhibitor ryuvidine in the synergy

screen instead of the more specific and clinically relevant PD0332991. We found greater

synergy with PD0332991 and R1507 than with ryuvidine and AG538, possibly reflecting

differences in specificities. Similarly, the CDK4-AKT synergy and the CDK4-EGFR

synergy were not observed in the original screen in which the CDK4 inhibitor was ryuvidine

(Fig. 1B), but were observed in the follow-up experiments using PD0332991 (Fig. 7, C and

D). Differences in the experimental setup, including different time points (3 versus 6 days)

and different drug specificities, may explain some of this discrepancy. Another choice in the

experimental design was in the determination of drug concentrations for the RPPA-based

protein profiling, which was done on the basis of changes in the abundance of drug target

proteins detected by Western blot. Ideally, the RPPA-assay itself should be used for this

purpose, because targets of certain drugs elicited only moderate responses, possibly because

of sensitivity differences between RPPA and Western Blot.

Increasingly, there is a demand for developing data-driven network inference algorithms that

link signaling events to phenotypic outcomes (17, 48). Our modeling approach falls in

between fully parameterized mass action kinetic models (49, 50) and “black box” machine-
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learning models (51), offering significant predictive power while maintaining biological

interpretability (30). We utilize probability distributions for each possible model interaction,

calculated from an iterative BP algorithm, and thereby identify likely interactions and

parameterize hundreds of predictive models. The ability to quickly construct these models

frees us from relying on a single model and enables us to attach probabilities to predicted

outcomes and construct alternative hypotheses. For example, multiple models (20 of the 100

lowest-error models) predicted strong synergy when inhibiting the CDK4 and IGF1R nodes

(fig. S20). Although these 20 models may differ in some predicted outcomes, they all

predicted that tight control of AKT from IGF1R inhibition and other upstream regulators is

essential for the observed synergism.

For deriving DDLS network models, we incorporated existing background knowledge of

protein interactions as it 1) reduces the search space of all possible interactions, 2) enables

capturing cascades of signaling events with finer granularity, and 3) facilitates assigning

directionality between correlated events. However, heavy restrictions from prior knowledge

come with disadvantages. For example, common protein interactions described in other

contexts may not exist in the system of interest. To balance between the use of prior

knowledge and the ability to infer new interactions, we use flexible constraints so our

method is able to accept or reject each prior knowledge interaction based on its fit with the

experimental data and the inferred parameters. For example, an edge between

phosphorylated RB (pSer807-RB) and cell viability was encoded as a prior knowledge

interaction but was not present in the average of the 1000 network models. The lack of

identification of this interaction could possibly result from technical issues with the RPPA

assay, low drug concentration, or off-target effects of ryuvidine. However, this edge was

present in 49 of the top 100 models and thus narrowly missed being an average interaction,

showing the importance of using an ensemble of models and not a single averaged model.

Nevertheless, in our follow-up experiments, we recapitulated the CDK4-RB interaction as

RB (phosphorylated at Ser780 and Ser807) was suppressed by PD0332991 and by CDK4-

directed siRNA (Fig. 7A). We found that the selected set of prior knowledge interactions

enhanced model performance (fig. S12), but at the same time the models were not overfit to

prior information (fig. S11). We realize that the final selection of prior knowledge

interactions is qualitative and additional known interactions could have been included for

better performance. However, in our case the performance of prior information alone was

small compared to overall performance of BP-derived models trained on both data and prior

knowledge (fig. S12 and table S6).

Drug specificity is a fundamental element of our modeling approach, and some of the drugs

used in this work may have off-target effects. Whereas known off-target effects can directly

be incorporated in to the modeling approach, unknown off-targets may pose challenges in

interpretation and general predictive power of the network models. We found that lack of

drug specificity does not prohibitively confuse the inference of interactions since the BP

method can infer interactions from the correlations in the data itself (fig. S13). Hereby, our

modeling strategy can effectively predict on-target, off-target, and/or indirect drug effects

since each drug is represented in the models as an “activity node”. Specificity is primarily a

problem for predicting outcome of response to perturbation, since this requires knowing

which elements are being perturbed for any drug. Nevertheless, we were able to correctly
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predict the CDK4-IGF1R synergy outcome using models that were derived from

perturbation data that included the CDK4 inhibitor Ryuvidine, which is known to have non-

specific effects. In the future, we expect that by looking at response to different drugs acting

on the same primary target, we can disambiguate signals that are due to changes in the

known target from those that are due to off-target effects.

Our network modeling approach recapitulated the experimentally observed CDK4-IGF1R

drug synergy as well as several of the strongest predicted non-additive combinations (fig.

S15). However, several predictions were miscategorized. With the current modeling

approach, we did not expect to accurately predict synergy. The major problem is that only

cell viability measurements from one drug concentration (the one used in the RPPA screen)

could be incorporated during model training, making it challenging to predict synergy from

data obtained from two single drug and one drug-pair perturbations. On the experimental

side, seven different concentrations for both single and paired drugs were used. Furthermore,

the experimental synergies were determined using high drug concentrations while the

models were trained to data collected from low drug concentrations (roughly 10-fold lower).

These discrepancies were limitations with our experimental design and model

implementation, which we expect to solve in future work. Other limiting factors for the

miscategorizations include: 1) different measurement time point between the RPPA and the

cell viability screen (24 versus 72 hours), 2) important regulators that were not measured

and therefore absent from the derived networks, and/or 3) the experimental or computational

approaches may have technical limitations. Future work will aim to address this by

incorporating multiple doses and time-points. With further experimental and algorithmic

improvements, the number of measured proteins in the networks can in principle be

expanded to handle hundreds of nodes. Furthermore, the approach can be extended to

predict synergy and mechanisms beyond the set of tested drugs. This is possible because all

measured proteins, whether they are perturbed or not, become part of the network models. In

this way, the set of possible predictions is further expanded to include any measured protein,

enabling efficient computational screening and identification of combinatorial interventions.

This study was an interdisciplinary study to find clinically relevant drug combinations for

treatment of DDLS, explore the use of computational modeling to predict synergistic or

efficacious drug combinations, and identify biological mechanisms driving synergistic drug

combinations. As our data indicate, our integrated approach has contributed with several

advancements in these areas. For future studies, we are planning to further test and optimize

the CDK4 and IGF1R drug combination as a potential DDLS treatment, while

simultaneously developing the data-driven modeling strategy for predicting new drug targets

and drug combinations.

MATERIAL AND METHODS

Cell lines and drugs

The LPS141 and DDLS8817 cell lines were derived from high-grade retroperitoneal

dedifferentiated liposarcoma tumors (52). All cells were maintained in DMEM medium

supplemented with antibiotics and 10% fetal bovine serum (FBS). A set of 14 small

molecule drugs was selected for the drug synergy screen and RPPA proteomic assay with
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DDLS8817 cells (table S1). For follow-up experiments with DDLS8817 and LPS141 cells,

an additional 7 drugs were used (table S4).

DNA copy number and mRNA expression profiling

RNA and DNA from asynchronously growing DDLS8817 and LPS141 cultures were

isolated with RNEasy and DNEasy kits per manufacturer’s specifications (Qiagen). DNA

copy number profiling was performed using the 244K Agilent array-comparative genomics

hybridization (aCGH) platform, and standard circular binary segmentation (R/bioconductor

DNAcopy library) was analyzed using the RAE algorithm (53). Transcript profiling was

performed using the Illumina HT 12 V3 microarray platform and data was processed with

the BeadStudio software version 3.3.7.

Resazurin cell viability assay

Although strictly a measure of cell metabolic activity, the resazurin assay is widely used as a

measure of cell viability. DDLS8817 cells were seeded in 100 μL volume per well of 96-

well plates (1000 cells/well) and grown for 24 hours. Cells were then inhibited with seven

different concentrations (2 fold dilution) of single and dual drug agents in six replicates by

adding 100 μL of drug solution per well. After 72 hours, resazurin (Sigma-Aldrich) was

added to each well at a final concentration of 44 μM and incubated for 2–3 hours at 37°C.

The fluorescent signals were measured with a SpectraMax microplate reader (Molecular

Devices Corp.) using 530 nm excitation wavelength and 590 nm emission wavelength. Cell

viability was normalized to control cells treated with drug vehicle (DMSO). The Resazurin

assay measures mitochondrial metabolic activity and correlates well with the number of

cells (54).

CCK-8 colorimetric cell viability assay

Similar to the resazurin assay, the CCK-8 assay measures cell metabolic activity and is

widely used as a measure of cell viability. The assay was done as per the manufacturer’s

protocol (Dojindo Molecular Technologies, Inc.). Briefly, 1700 cells were plated in 100 μL

volume per well of a 96-well plate, and treatments were done 24 hours after plating. After 3

or 6 days of drug treatment, 10 μL of CCK-8 solution was added to each well and further

incubated at 37°C for 1 to 4 hours. This assay quantifies the amount of formazan dye

generated by the activity of cellular dehydrogenases, which is directly proportional to the

number of living cells. Cell viability was measured using Spectra Max 340 PC (Molecular

Devices Corp.) with optical density at 450 nm.

siRNA transfection

500,000 cells were plated on 60-mm plates, and transfections using lipofectamine

RNAiMAX (Invitrogen) were performed according to the manufacturer’s protocol. CDK4

siRNA and control siRNA were purchased from Santa Cruz Biotechnology. Combination

treatments with drugs were done 24 hours after transfection.
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Flow cytometry

For cell cycle analysis cells were trypsinized, washed, and fixed in 75% ice-cold ethanol

after 24 hours of drug treatment. Cells were stained with propidium iodide (50 μg/mL)

containing RNase (5 μg/mL) for the measurement of DNa content. Samples were analyzed

on a FACScan (Becton Dickinson) for cell cycle distribution using the Cell Quest software.

For this analysis 10,000 events were examined per sample.

Protein extraction and immunoblotting

Cell lysates were prepared by lysing both floating and adherent cells in RIPA buffer [50

mmol/L Tris, pH 7.4, 150 mmol/L NaCl, 1% NP-40, 1 mmol/L EDTA, 0.25% Sodium

deoxycholate, with protease inhibitor cocktail tablet (Roche)], allowed to lyse on ice for 10

min, syringed, and cleared by centrifugation in a microcentrifuge at 13,000 rpm for 10 min

at 4°C. 25 μg protein was fractionated by SDS-PAGE and transferred onto Immobilon

membranes (Millipore). Equal protein loading was confirmed by Amido black staining (Bio-

Rad). After blocking with 5% nonfat milk, membranes were probed with primary antibodies.

The following antibodies were used in this study: phosphorylated 4EBP1 (pSer65),

phosphorylated AKT (pSer473), AKT, CDK4, GAPDH, GSK3α/β (pSer9/pSer21), IGF1R,

phosphorylated EGFR (pSer992), phosphorylated MEK (pSer217), PKCα, phosphorylated

RB (pSer780), phosphorylated RB (pSer807/pSer811), RB, phosphorylated S6 (pSer235-236),

S6, phosphorylated S6K (pThr389), S6K, phosphorylated STAT3 (pTyr705), and

phosphorylated SRC (pTyr527) from Cell Signaling Technology; phosphorylated ERK

(pTyr204) and ERK from Santa Cruz Biotechnology. Bound primary antibodies were

detected with horseradish peroxidase–conjugated secondary antibodies (GE Healthcare UK

Limited) and visualized by enhanced chemiluminescence reagent (GE Healthcare UK

Limited).

RPPA assay

Drug concentration for the RPPA screen were based on the IC40 of targets or downstream

targets measured by Western blotting or based on information obtained from literature/

manufacturer (table S1). IC40 was chosen in order to maximize the possibility of capturing

synergistic and antagonistic effects of drug combinations while operating within the linear

dynamic range of the antibody-based measurements. DDLS8817 cells were grown in 6-well

plates to around 60% confluence. Cells were inhibited with drugs and harvested after 24

hours by collecting and freezing the cell pellet. Non-perturbed control cells were treated

with drug vehicle (DMSO) for 24 hours. Cells were thawed, lysed and protein

concentrations were determined by the Bradford assay (BioRAD). Protein concentrations

were adjusted to 1–1.5 mg/mL and denatured in 2% SDS for 5 minutes at 95°C. Each

condition was analyzed in duplicates from two independent biological samples. The RPPA

assay was performed at the RPPA core facility at MD Anderson Cancer Center, where cell

lysates were spotted on nitrocellulose-coated slides as described previously (39) and stained

with approximately 100 different antibodies.
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RPPA data analysis

The antibody staining intensities were quantified using the MicroVigene automated RPPA

module (VigeneTech). Data handling consisted of correction of systematic spatial effects

due to the location of the sample on the chip (55), conversion of dilution series to a single

intensity readout (56), replicate averaging, and z-score scaling within each antibody readout.

Z-score scaling was chosen as a normalization method as it robustly captures both activating

and inhibiting effects over the entire series of perturbations (>600, including replicates,

untreated controls, and additional drugs), and hereby minimizes the risk of systematic errors

that may arise when normalizing to a subset of conditions, such as untreated controls.

Supporting this, we found a better correlation between biological replicates when z-score

normalizing compared to normalizing to untreated controls. After data handling, a subset of

the total panel of antibody-stained chips was selected by first removing chips that were

unevenly stained, saturated, or under exposed. Second, antibody readouts for which at least

10 conditions produced a z-score with an absolute value greater than one were retained.

Finally, antibodies with a Pearson correlation coefficient above 0.5 between biological

replicates or antibodies that were present in the prior knowledge network were selected.

Combination index score

Based on cell viability measurements, we used the combination index (CI) score to

determine if two drugs had synergistic, antagonistic, or additive effects. The CI score is well

suited for estimating effects of drug combinations as it is based on the concept of dose-

substitution and can handle cases where the two drugs are the same, act on the same target,

or act on targets converging in a common pathway (15). The CI score,

 measures the fractional shift between the combination doses (C1 and

C2) and the single agent’s inhibitory concentration for a given level of inhibition (ECX,1 and

ECX, 2). For this study, we used the half maximal effective concentration (EC50), which was

the drug concentration that induced a response halfway between the maximum and

minimum observed effect of the condition with the largest inhibitory effect (either single or

dual). To obtain a confidence estimate, CI scores were also calculated at EC45 and EC55

levels and standard deviations of the CI scores were reported (table S3). If a single agent did

not reach the chosen effect level (% inhibition level of the condition with the largest effect),

we assumed no effect of this drug and its contribution to the combination dose became

negligible (C1 = 0 and C1 = 0). In cases where neither single nor dual perturbation resulted

in an inhibitory effect less than 25% of control levels, CI scores were not determined and

reported as “not a number” (NaN). For cell viability experiments where all mixtures of two

serially diluted agents (dose matrix) were performed, CompuSyn was used for calculation of

CI scores at various effect levels (38).

Network modeling

Cell viability in response to drug intervention is mediated through coordinated changes in

the concentrations of proteins and phospho-proteins. We modeled these connected changes

as a set of coupled nonlinear ordinary differential equations (ODEs) (fig. S7). Each model

variable (or network node) represents the z-score of a biological entity, where the z-score is
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a measure of significant change from the average abundance measurement across a large set

of drug conditions from which 105 conditions were kept for modeling. Positive and negative

values correspond to concentrations above and below the average response, respectively.

Our models capture epistasis-like effects and the tendency of a system to return to the

baseline state, which we observe to be nearly identical to the untreated as well as average

condition. The dynamics are driven by perturbations represented as external forces (ui) on

one or more model variables (xi), which drive the system of equations to a unique steady-

sate. The steady state is taken to be the model predicted outcome to the perturbation.

We have incorporated the use of so-called “activity nodes”, which represent the kinase

activity of proteins (30). These activity nodes are introduced to distinguish between

phosphorylated and active states of kinases. For example, MEK can be in a phosphorylated

but not active state, where phosphorylated MEK does not propagate signals to its

downstream effectors. In this example, kinase activity of MEK (aMEK) is altered with drugs

but not directly measureable with antibody. Without readouts of activity, there is no

evidence to determine regulators of such activity nodes. Consequently, all activity-nodes

have only outgoing interactions and represent the points of entry of the various drugs on the

network.

Network model parameterization

The models are fully parameterized by an N-by-N weigh matrix (W), which contains signed

values (wij) representing an interaction from model variable xj on to model variable xi. Given

that our model equations are abstractions from the underlying biochemistry of signaling

events, we expect that multiple models can fit the collected dataset. We define a

probabilistic description of model space that rewards fitness to experimental data and

agreement with prior knowledge.

The experimental and simulated outcomes for a perturbation condition μ are denoted  and

. There are KN2
 possible configurations of this weight matrix, where K is the number of

possible parameter assignments for a single interaction. Explicit calculation of this

probability distribution is computationally prohibitive given the large number of possible

model configurations.

Model construction

We adapted the BP inference method for approximating the probability distributions for

each possible parameter (wij). A detailed description of our application of BP to perturbation

data is provided elsewhere (30). We constructed 1000 high probability models by sampling

from the BP-calculated probability distributions (fig. S7). We kept only the top 100 models
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after parameter refinement with gradient descent (57) and ranking by performance metrics

on the training set, and only these 100 low error models are used for direct simulation and

prediction.

Average network models

We used an average network model for qualitative visual analysis of our inference results.

An average model is simply the concatenation of all interaction parameters whose expected

value from the BP probability distribution is non-zero. For this work, only average edges

with interaction strength above or below 0.1 in the set of 1000 models were shown. Note

that, average network models do not capture mutually exclusive interactions, as an average

model may contain two interactions that never co-exist in the individual models. The

sparsity of the networks is tunable through the parameter λ, such that larger values of λ
yield sparser networks. In this work, we set λ and β equal to 2 and 3, respectively.

Leave-k-out cross validation

To estimate genuine power of our models to predict response to drug combinations, we

partitioned the full dataset into a training set and test set. Test sets consist of all drug pair

conditions involving a drug of interest, thereby leaving a training set consisting of all other

conditions including the drug of interest applied alone. We constructed a unique set of 100

top performing models for a training set, with which we predict and compare against the

withheld test set data.

Model prediction of cell viability outcome and synergy

We modeled single target inhibition with a constant external force (ui as in the equation in

fig. S7) on a single node in the interconnected system. Roughly, the value of the external

perturbation is related to the expected deviation from average, such that the simulated effect

of the cell viability node (ECV) in the presence of inhibition of node  is expressed

relative to 0 (average). To obtain synergy scores for a combination of inhibition of node A

and B, we subjected the models to 8 increasing strengths of each perturbation and all 8-by-8

strength combinations. We estimated non-additive effects by calculating the difference

between the simulated effects (Zsim) and the Loewe additivity surface (Zloewe), derived from

adding the effects of single agent perturbations (43). The synergy score was taken to be the

sum of the differences across all 8-by-8 conditions; . The unitless

score, S, is only a relative measure of synergy and does not map directly to CI values. As

our modeling approach does not explicitly incorporate drug concentrations, CI scores could

not used as a synergy measure for the computed perturbation effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Drug combination screen identifies synergistic and antagonistic drug targets in the dedifferentiated liposarcoma cell line,

DDLS8817. (A) Example of CI score calculation of paired drug perturbation using the MEK inhibitor, SL327 (MEKi), and the

AKT inhibitor, AKT inhibitor VIII (AKTi). Cell viability was estimated after 72 hours of drug treatment by the Resazurin assay

that measures cellular metabolic activity. Error bars represent standard deviation of at least four biological replicates. (B) CI

scores for a drug synergy screen performed in DDLS8817 cells using 14 targeted inhibitors (“Inh” or “i” in the labels). CI scores

were derived as described in (A) and categorized as synergistic (<0.75, red), antagonistic (>1.5, blue), or additive (green). In

some cases CI scores could not be calculated (gray). Inset shows distribution of CI scores. A complete list of targets and

secondary targets of the drugs used are provided in table S1. Each CI score represents data from seven different drug doses of

single and paired drug treatments with at least four biological replicates per condition.
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Figure 2.
IGF1R and CDK4 are synergistic drug targets in DDLS. (A) Dose-response effects of the CDK4 inhibitor PD0332991 and the

IGF1R antibody R1507 on inhibition of cell viability in DDLS8817 cells estimated after six days of drug treatment using the

CCK-8 assay that measures cell metabolic activity (upper panel). Each condition represents at least four biological replicates. CI

scores were calculated at various effects (lower panel). (B) Performed as in (A) in the DDLS cell line LPS141.
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Figure 3.
Systematic drug treatments and large-scale proteomic profiling in DDLS8817. (A) Experimental design of 14 individual and 91

pairwise drug perturbations with a set of targeted small molecule drugs. (B) Response of 13 proteins or phosphoproteins

[phosphorylated at the indicated residue(s)] after 24 hours of drug treatment as shown in (A) assessed by RPPA. The effect on

cell viability was estimated with the resazurin assay (measures cell metabolic activity) after 72 hours of drug treament. All read-

outs were z-score normalized. Each condition represents the mean of two biological replicates.
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Figure 4.
Network inference of proteomic data profiles and prior knowledge interactions provides signaling models specific to DDLS. (A)
A network of prior knowledge interactions (edges) between the selected set of protein read-outs (nodes) measured by RPPA and

their connection to cell viability, as measured by metabolic activity assays in Fig. 3B. (B) Inferred network models from

perturbation-response data and prior knowledge information with the line width reflecting the most probable interactions. The

network represents the average network of the 100 lowest error models. Predicted interactions (gray) and prior knowledge

interactions that are retained (blue) and rejected are indicated. Nodes that are perturbed but not observed are termed “activity

node” and preceded by an “a” (for example, aAKT) and represent the presumed, direct target of the drugs applied.
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Figure 5.
Synergistic effects are captured in the network models, and the experimentally observed CDK4-IGF1R drug synergy is

recapitulated. (A) Example of calculation of model-based synergy scores (S) by in silico perturbation of the 4EBP1_pSer65

(phospholyrated at Serine 65) and ERK encoded as an activity node (aERK, external drug node). These nodes were inhibited

with eight different perturbation strengths (u) in all possible combinations and the effect was recorded as the response on the cell

viability node (z-score). (B), Non-additive synergy effects (Synergy of model) were determined as the difference between the

effect of the paired inhibition and the added effects of the two single node inhibitions (S=−0.24 for aERK and 4EBP1_pSer65).

(C), Computed synergy scores for all node-pairs where each synergy scores was determined from 64 unique perturbations as in

(A). Synergy scores were categorized into three classes, where S<−0.20 was considered synergistic (red), >0.20 antagonistic

(blue), and otherwise additive (green). The synergy score for IGF1R and CDK4 node inhibition is highlighted (S=−0.23).
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Figure 6.
Simulation of information flow in network models predicts several important interactions mediating the synergy of CDK4 and

IGF1R inhibition, including AKT pathway members. Network edges ranked by their contribution to the model-simulated

synergy between CDK4 and IGF1R inhibitors. Each edge was removed in turn and the effect on the cell viability synergy score

was recalculated and expressed as the percent suppression of original synergy score. The leave-edge-out calculations were

performed using the 100 lowest error models.
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Figure 7.
The AKT pathway is likely involved in the synergy of CDK4 and IGF1R inhibitors. (A) Western blot of DDLS8817 and

LPS141 cells inhibited for 12 hours with 10 μg/mL R1507 (IGF1R antibody), 1uM PD0332991 (CDK4 inhibitor), and siRNA-

mediated knockdown of CDK4. (B) Similar to (A), except cells were inhibited for 24 hours with 1 μM NVP-AEW541 (IGF1R

inhibitor) and PD0332991. Western blots shown are representative data of at least two independent experiments. (C) Dose-

response measurements of cell metabolic activity using the CCK-8 assay (correlates with cell viability) of DDLS8817 cells after

drug treatment for 6 days with the AKT inhibitor MK2206 and the CDK4 inhibitor PD0332991. The combination index (CI)

score is indicated and was determined at EC50 levels indicated by dashed lines. Error bars represent standard deviation of six

biological replicates. (D) Similar to (C) but in LPS141 cells.

Miller et al. Page 31

Sci Signal. Author manuscript; available in PMC 2014 April 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


