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Abstract

Clinical diagnoses of complex diseases may often encompass multiple genetically heterogeneous 

disorders. One way of dissecting this heterogeneity is to apply latent class (LC) analysis to 

measurements related to the diagnosis, such as detailed symptoms, to define more homogeneous 

disease sub-types, influenced by a smaller number of genes that will thus be more easily 

detectable. We have previously developed a LC model allowing dependence between the latent 

disease class status of relatives within families. We have also proposed a strategy to incorporate 

the posterior probability of class membership of each subject in parametric linkage analysis, which 

is not directly transferable to genetic association methods. Under the framework of family-based 

association tests (FBAT), we now propose to make the contribution of an affected subject to the 

FBAT statistic proportional to his or her posterior class membership probability. Simulations 

showed a modest but robust power advantage compared to simply assigning each subject to his or 

her most probable class, and important power gains over the analysis of the disease diagnosis 

without LC modeling under certain scenarios. The use of LC analysis with FBAT is illustrated 

using autism spectrum disorder (ASD) symptoms on families from the Autism Genetics Research 

Exchange, where we examined eight regions previously associated to autism in this sample. The 

analysis using the posterior probability of membership to a LC detected an association in the 

JARID2 gene as significant as that for ASD (p = 3×10−5) but with a larger effect size (odds ratio = 

2.17 vs. 1.55).
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Introduction

Genetic heterogeneity within clinically-defined disease phenotypes remains an important 

obstacle to the identification of genes responsible for complex diseases, particularly for 

psychiatric disorders [Owen et al. 2007, Bearden et al. 2004]. This has led researchers to 

collect various measurements related to the diagnosis, such as detailed symptoms or 

endophenotypes. Latent class (LC) analysis [Clogg 1995] has previously been applied to 

such measurements to define more homogeneous disease sub-types, influenced by a smaller 

number of genes that will thus be more easily detectable (see for instance Fanous et al. 

[2008] and Todd et al. [2001]). However, traditional latent class models assume 

independence between subjects and, in family studies, this assumption is likely to be 

violated since the chosen symptoms are expected to be heritable. Hence, assuming 

independence does not use all available information to define disease classes. This led us to 

develop a latent class model allowing dependence between the latent disease class status of 

relatives within extended families [Labbe et al. 2009, Tayeb et al. 2011]. We modeled 

dependence between related individuals at the class level and assumed that the class of an 

individual only depends on the class of his or her two parents, like the genotype of an 

individual only depends on the genotype of his or her parents.

We previously investigated the use of LC-derived phenotypes in genetic linkage analysis 

[Bureau et al. 2008]. Our simulation study showed that the latent class approach can provide 

a substantial gain in power to detect disease genes over the standard heterogeneity approach 

of Smith and identity-by-descent sharing methods applied to the disease diagnosis. Taking 

into account familial dependence in the latent class model generally provided greater power 

than assuming independence. In addition to simply assigning subjects to their most probable 

class to define LC phenotypes, we have also proposed to incorporate the posterior 

probability of class membership of each subject in parametric linkage analysis by treating 

that probability as a covariate of the disease penetrance [Bureau et al. 2008]. That approach 

improved the power to detect genes over assigning subjects to their most probable class.

In addition to linkage analyses, family-based association studies have previously been 

performed on LCs, by assigning subjects to their most probable class [Todd et al. 2003]. The 

approach using posterior class probabilities that improved the power in parametric linkage 

analysis is not directly transferable to genetic association methods, where hypothesis tests 

are formulated in terms of expected numbers of transmitted alleles or genotypes instead of 

recombination fractions. Hence, our first objective was to present an approach to use the 

posterior probability of disease class membership in family-based association tests (FBATs), 

and to compare its power to that of the simple approach of assigning subjects to their most 

probable class.

Our second objective was to apply FBAT to the LCs derived from autism symptoms in 

families from the Autism Genetic Resource Exchange (AGRE), using both the proposed 

approach with the posterior probability of class membership and the simple approach of 

assigning subjects to their most probable class. We tested association in eight regions 

previously associated to autism spectrum disorder (ASD) in that sample.
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Methods

Latent class model

We refer the reader to Labbe et al. [2009] and Tayeb et al. [2011] for a detailed description 

of the latent class model with familial dependence. Briefly, for family i, Yi = (Yi1, …, Yini) 

is the matrix of phenotypic measurement vectors and Ci = (Ci1, …, Cini) is the vector of 

unobserved latent classes of the ni family members. Phenotypic measurements Yi may be 

traits that are observable on every subject, or they may be symptoms observable only on 

subjects affected by a disease, as in the analyses presented here. The model was designed to 

deal with systematically missing symptoms in unaffected subjects. Given the latent class Cij, 

the symptom vector Yij of a subject is assumed independent of the symptoms of all other 

family members. Familial dependence is modeled at the latent class level, by letting the class 

of a non-founder depend on the class of his or her parents, that is P(Cij|Ci1, …, Cij−1, Cij+1, 

…, Cini) = P(Cij|Ci,m(j), Ci,p(j)) where m(j) and p(j) denote the mother and father of subject j, 
respectively. Various parameterizations of the model and maximum likelihood estimation 

using an EM algorithm are described in Labbe et al. [2009] and Tayeb et al. [2011]. The 

estimated model is used to compute the posterior probability of membership to disease class 

k, Zijk = P(Cij = k|Yi = yi) for subject j in family i.

FBAT reminder

The general FBAT statistic is a score statistic taking the form

(1)

in which Xij denotes some function of the genotype of the jth offspring in nuclear family i at 

the marker being tested, Tij is the same subject’s trait value, and μij is the expectation of Tij 

under the chosen null hypothesis. The expectation μij may be a function of covariates 

[Lunetta et al. 2000]. In studies of dichotomous traits, Tij = 1 for affected subjects and 0 

otherwise. The contribution of an affected subject to the test statistic is therefore equal to 1 − 

μij. In the classical transmission disequilibrium test (TDT) [Spielman et al. 1993], each 

affected subject contributes 1, i.e. μij = 0. A Z statistic with a standard normal distribution 

under the null hypothesis is obtained by standardizing the statistic S:

(2)

where each family contribution to E[S] and Var[S] is computed from the conditional 

distribution of Si given the sufficient statistic for the parental genotypes, under the chosen 

null hypothesis.

Bureau et al. Page 3

Genet Epidemiol. Author manuscript; available in PMC 2014 April 25.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



Using the latent class posterior probabilities in association analysis

A first straightforward approach is to assign each subject to his or her most probable class, 

and then perform separate analyses for each class. Here we distinguish the affection status 

assigned for association analysis from the disease diagnosis. For example, we perform an 

association analysis on class 1 by assigning the affection status “affected” to all subjects 

diagnosed with the disease for which class 1 has the highest posterior probability and any 

other affection status (i.e. “unaffected” or unknown) to all other evaluated subjects. In this 

approach, we set μij = 0 as in the TDT, so that only subjects assigned the “affected” status 

contribute to the analysis.

Although straightforward, this approach has the inconvenience of not taking into account the 

uncertainty of the class assignment. The form of the FBAT statistic suggests to use μij to 

make the contribution of an affected subject proportional to his or her posterior probability 

Zijk to belong to the disease class k under study. We achieve this by setting

(3)

The contribution of a subject to the FBAT statistic for class k then becomes:

(4)

and the FBAT statistic can be rewritten

(5)

i.e., the posterior class probability is treated as a quantitative trait in affected subjects. When 

Zijk = 1, the subject belongs to class k with certainty, which is equivalent to assigning the 

subject to class k, while a value Zijk = 0 has the same effect as setting the affection status to 

unknown.

Simulation Study

Simulation study setup

Genetic disease class model—We considered disease models with two and four 

disease susceptibility (DS) variants all in different genes unlinked to each other. Each DS 

variant caused its own disease class. In addition to the genetic disease classes, an additional 

class contained the non-genetic disease cases, i.e. cases with low risk genotypes at all loci. 

The two latent class models are labelled 2G3C and 4G5C indicating the number of DS 
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variants and the number of disease classes involved. The 2G3C model had a dominant and a 

recessive DS variant. The 4G5C model had two DS variants with additive allelic effects on 

the log-risk (i.e. multiplicative effects on the risk scale) in addition to a dominant and a 

recessive DS variant. The genetic models of disease for each variant under the two models 

are shown in Table 1. DS allele frequencies were obtained under the following constraints: 

fixed population prevalence of the disease, Hardy-Weinberg equilibrium at each disease 

locus and equal probabilities of carrying a high-risk genotype at either gene in the 

population.

Symptom distribution—For the 2G3C model, we used the same within-class multivariate 

normal distributions for a set of five symptoms as in previous simulation studies [Bureau et 

al. 2008, Labbe et al. 2009]. For the 4G5C model, we specified mean symptom vectors and a 

within-class covariance structure such that the Mahalanobis distance between classes ranged 

from 2.7 to 4.2 within-class standard deviations (SDs) for a SD equal to σ = 10 and from 1.7 

to 2.8 SDs for σ = 15. The mean and 95 percent probability interval of each symptom in 

each class is shown in Supplementary figure 1.

Family structure, ascertainment, and marker genotypes—We simulated samples 

of nuclear families with two children, both affected. Parents had no phenotypic information. 

We simulated biallelic markers with the same frequency as the DS variants. Marker 

genotypes were observed for all family members. For each of the two genes, we simulated 

one marker in perfect linkage disequilibrium with the DS variant, a second with a squared 

correlation r2 = 0.8 and a third in linkage equilibrium with the other two. The phenotypes 

and marker genotypes of the family members were simulated using the computer package 

Simla [Schmidt et al. 2005] for the 2G3C model and our own program in the R statistical 

environment (www.r-project.org) for the 4G5C model, applying the ascertainment criterion 

that the nuclear family contains exactly two affected children.

Latent class models fitted to the simulated data—Latent class models with familial 

dependance were fitted to simulated symptom data on the nuclear family offsprings exactly 

as in Bureau et al. [2008] and Labbe et al. [2009], with selection of the best model among 

models with one to five classes by likelihood cross-validation. Traditional latent class 

models assuming independence between subjects were not fitted, since we have shown 

previously that they are inferior to latent class models with familial dependance to classify 

subjects.

Association analysis—We tested association of the markers to disease classes with the 

two approaches described above (i.e. using the latent class posterior probabilities as a 

quantitative trait and assigning subjects to their most likely class), and association to the 

affected/unaffected disease phenotype. All analyses were performed using the FBAT 

package (www.biostat.harvard.edu/~fbat). The null hypothesis of no association in the 

presence of linkage was specified [Lake et al. 2000] given the linkage to the disease present 

in the simulated families. We used a nominal significance level of 5 × 10−8. Analyses were 

performed under the additive (on the log scale), dominant and recessive models (with respect 
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to the minor allele). We applied a Bonferroni correction to adjust for the number of latent 

classes analyzed.

Simulation results

The distribution of the number of classes selected in the various analyses is shown in 

Supplementary figure 2. The model selection procedure selected most often the correct 

number of classes, except for the 4G5C model with σ = 15 where four classes were selected 

more often than five. Under the 4G5C model, the two siblings were in the same class in 74 

percent of sibling pairs. The sibling pair class concordance observed when assigning 

subjects to their most likely class was very close to this true concordance proportion, both 

with σ = 10 (73 percent concordance) and σ = 15 (75 percent concordance). The mean of the 

highest posterior probability across subjects and replicates was 0.951 (0.894) for the 2G3C 

model and 0.897 (0.802) for the 4G5C model with σ = 10 (σ = 15), respectively.

The Type I error rate of the association tests estimated by pooling together the results for the 

four markers in linkage equilibrium with each of the DS variants of the 4G5C model 

respected nominal levels (Table 2). The power to detect association to the DS variants of the 

4G5C model is presented for markers correlated at r2 = 0.8 (Figure 1) and r2 = 1.0 

(Supplementary figure 3) with the DS variant. The same results for the 2G3C model are 

shown in Supplementary figures 4 and 5. For each DS variant, the power is presented for 

analyses under the correct model (dominant on panel A, recessive on panel C and additive 

on panel E) and, for the dominant and recessive DS variants, under the additive model 

(panels B and D). Using phenotypes derived from latent classes (first four bars from the left 

on each panel) provided greater power than treating all symptomatic subjects as affected (bar 

marked “orig.”), except for the dominant DS variant of the 4G5C model with σ = 15. As 

expected, the power gain was greater with a smaller within class SD (σ = 10) than with a 

larger one (σ = 15). Using the posterior class probability provided a modest power 

advantage compared to simply assigning each subject to his most probable class, an 

advantage which was consistently observed for the dominant, recessive and additive DS 

variants, with σ = 10 and σ = 15, and under all three analysis models. When using 

phenotypes derived from latent classes, the power to detect the recessive DS variant was 

greater under the additive than the recessive model for the marker at r2 = 0.8 (Figure 1C and 

D and Supplementary figure 4). We investigated this unexpected advantage of the additive 

model to detect the simulated recessive DS variant, and determined that it was due to a 

combination of a larger number of informative transmissions and a smaller impact of 

genotype misclassification (Supplementary figure 6). For a marker perfectly correlated with 

the DS variant, the recessive model remains sligthly more powerful than the additive model 

(Supplementary figures 3C and D and 5C and D). By contrast, in the analysis of the original 

affection status, the recessive model performed a lot better to detect the recessive DS variant.

Application to autism

Previous association studies in the AGRE dataset

Two research teams recently reported family-based genomewide association studies of ASD 

in samples comprising families from AGRE. Weiss et al. [2009] combined a sample of 801 
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AGRE families with a sample of 341 families from the US National Institutes of Mental 

Health (NIMH) repository, and performed genomewide single nucleotide polymorphism 

(SNP) genotyping using the Affymetrix 5.0 array. Wang et al. [2009] instead genotyped only 

the AGRE sample using the Illumina HumanHap 550 array, and restricted their analysis to a 

subset of 780 families that they inferred to be of European ancestry based on the genotype 

data. None of these studies obtained genomewide significant results in their primary study 

sample. Weiss et al. [2009] reported seven genome regions where they obtained p-values < 

10−5, which they followed-up in additional samples. Wang et al. [2009] only report the 

5p14.1 region where they obtained a genomewide significant signal after combining their 

AGRE sample with an autism case-control cohort. We decided to examine the association in 

these eight regions reported by these two studies using the solution from the application of 

our LC model with familial dependence to measurements from the Autism Diagnostic 

Interview-Revised (ADI-R) [Lord et al. 1994] in the AGRE family sample.

Latent class analysis of the AGRE dataset

LC modeling of ADI-R measurements, including the selection of symptoms to include in the 

analysis, is described in detail in Labbe et al. [2009] and Bureau et al. [2008], where we 

reported an LC analysis restricted to nuclear families. With the extension of our model to 

multigenerational pedigrees [Tayeb et al. 2011], we were able to include extended pedigrees 

from AGRE in our analysis [Bureau et al. 2007], all other modeling choices remaining the 

same as in the nuclear family analysis. We use here the latent class solution from the latter 

analysis including extended pedigrees. In order to insure that children included in the 

analysis meet a minimum level of autistic symptoms, we performed our primary analysis on 

the children who satisfy the ADI-R autism spectrum disorder (ASD) definition 2 in Risi et 

al. [2006]. The sample is comprised of 757 nuclear families with 1 to 5 siblings with autism 

spectrum disorder (ASD), 13 first cousin pairs, 3 uncle-niece pairs, 8 sib pairs plus first 

cousin, 3 sib trios plus first cousin and 3 more complex families illustrated in Supplementary 

Figure 7, for a total of 787 families. The model selection procedure selected a seven-class 

model. The mean of the highest posterior probability was 0.557. In 70 percent of the sibling 

pairs the two siblings were assigned to the same class. Figure 2 shows the distribution of 

symptoms in the 4 classes containing at least 100 genotyped ASD subjects when assigning 

these subjects to their most likely class.

FBAT analysis of latent classes in AGRE dataset

We elected to use the Illumina HumanHap 550 array genotype data from the Wang et al. 

[2009] study because genotypes were available for more families (777 out of 787) used in 

our latent class analysis than the Weiss et al. [2009] data. We included in our analysis SNPs 

within 300 kilobases from the SNP with the strongest association signal in the seven regions 

reported in Table 1 of Weiss et al. [2009] and the 5p14.1 region reported by Wang et al. 

[2009]. We required SNPs to have less than ten Mendelian errors and greater than 95% 

complete genotypes to be included in the analysis. The threshold of ten Mendelian errors 

was established by Weiss et al. [2009] for the AGRE dataset as eliminating biases detectable 

on a quantile-quantile (QQ) plot of the −log10 of the observed and expected p-values. After 

removing these SNPs, we identified unlikely double recombinants using Merlin [Abecasis et 

al. 2002] and deleted genotypes identified as unlikely by applying the default criterion of the 
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pedwipe option of Merlin. The 95% completeness criterion was then applied again to the 

cleaned genotypes. We applied the same analysis described in the section on the Simulation 

Study Setup using the FBAT package, except that we tested the composite null hypothesis of 

no association or no linkage, as in the original analyses. In addition, we fitted logistic 

models to estimate odds ratios, since the FBAT framework allows only to perform 

association tests and not to estimate association parameters. To estimate odds ratios for 

latent classes, we had to define the affected subjects based on the assignment of subjects to 

their most likely class. We opted for the likelihood function of Dudbridge [2008] for a 

dichotomous phenotype implemented in the Unphased computer package (www.mrc-

bsu.cam.ac.uk/personal/frank/software/unphased). Partial genotype data were included, but 

the odds ratios were estimated using only the likelihood for the genotypes of the children 

conditional on the genotypes of the parents to achieve robustness to population substructure. 

Extended pedigrees were broken down into nuclear families by the FBAT and Unphased 

packages. We tested association of the 1113 SNPs satisfying quality criteria in the eight 

regions to the four largest classes and to the ASD phenotype. We used the additive model for 

our primary analysis as in the original analyses. Since the criteria for an affected individual 

used in the studies of Weiss et al. [2009] and Wang et al. [2009] are not precisely defined in 

their reports, we used the Risi et al. [2006] definition of ASD mentioned above as phenotype 

for comparison with the LC-derived phenotypes.

Among the eight tested regions, a p-value < 10−5 was achieved only for class 7, which is 

characterized by high levels of symptoms on qualities of reciprocal social interaction and 

communication and language, but low levels of restricted and repetitive, stereotyped 

interests and behaviors. This result was obtained under the additive model and using the 

posterior class probability with rs13193457 at 6p24-p23 (Figure 3). Less significant p-values 

were obtained with the dominant and recessive models (not shown). When applying a 

conservative Bonferroni correction for testing four classes, the p-value remains at the same 

level as that for the ASD phenotype (p = 3 × 10−5)(Table 3). That SNP is only weakly 

correlated to the SNPs rs13208655 and rs7766973 detected by Weiss et al. [2009] in the 

region (r2 = 0.09 and 0.12 respectively), based on data from the HapMap CEU sample 

(www.hapmap.org) (Supplementary Figure 8). Although the two SNPs detected by Weiss et 

al. [2009] are not on the Illumina HumanHap550 array, they are captured by the SNPs 

rs6459404 and rs6921502, and these do show an association to the ASD phenotype in our 

analysis (Figure 3 and Table 3). Table 3 also shows that odds ratio are larger for class 7 than 

for the ASD phenotype, not only for rs13193457 but also for three other neighboring SNPs. 

In the case of rs6921502 and rs6459404, the odds ratio is larger despite a less significant 

signal for class 7 than for the ASD phenotype, because fewer subjects contribute importantly 

to class 7 signals. Testing association to haplotypes formed by rs6921502, rs6459404 and 

rs13193457 revealed that the rs6921502 G and rs6459404 C alleles form an associated 

haplotype (p = 9.8 × 10−4) distinct from a haplotype defined by the rs13193457 A allele 

(which has a protective effect, p = 1.0 × 10−5). The observation that p-values from a multi-

marker test [Rakovski et al. 2007] of the five SNPs in Table 3 are more significant than the 

lowest p-values obtained from tests of individual SNPs is additional evidence of the 

presence of multiple distinct association signals. All of these SNPs are located within the 

same JARID2 gene (Supplementary Figure 8).
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Outside of the 6p24-p23 region, p-values were subtantially less significant, both for LC-

derived phenotypes and the ASD phenotype. The next smallest p-value was obtained also for 

class 7 with the SNP rs1909655 at 10q21 under the allelic model (p = 4 × 10−4).

Discussion

We have proposed an approach to use the posterior probability of class membership derived 

from LC analysis in family-based association studies by making the contribution to the 

FBAT statistic of an affected subject proportional to his or her posterior probability of 

belonging to the class being analyzed. Simulations under models of genetic heterogeneity 

revealed small but robust power gains with this approach compared to assigning subjects to 

their most probable class. The power gains over the analysis of the affected/unaffected 

phenotype without LC modeling were important under certain simulation scenarios. This 

power improvement only applies to disease subtypes caused by a smaller number of genes 

than the original definition of the disease. Power losses are expected when subtyping the 

disease does not reduce the genetic complexity, due to the reduced sample size within each 

class. In the AGRE dataset, using LCs derived from autism symptoms produced association 

with a LC as significant as with the ASD phenotype in the JARID2 gene, and using the 

posterior probability of membership to the class gave a more significant signal than 

assigning subjects to their most likely class. The increase in signal coming from the 

incorporation of the uncertainty in the class assignment when testing association to latent 

classes in this particular dataset is consistent with the power improvement obtained in 

simulations.

Lunetta et al. [2000] use standard score test theory for exponential family models to take 

covariate effects into account. The expectation μij is then determined by the regression of the 

trait on the covariates under the null model excluding the marker genotype effect. With a 

dichotomous trait, this assigns a small contribution 1 − μij to an affected subject whose 

affection is well predicted by the covariates, and a large contribution to an affected subject 

poorly explained by the covariates. Our proposal to substitute the posterior probability of 

class membership Zijk for 1 − μijk is not derived from score test theory, but pursues the same 

intuitive goal as the covariate adjustment. Here however, Zijk is not an explanatory variable 

for the trait unrelated to the genetic marker being tested, it is instead an indication of 

membership to a disease class, influenced by a gene that one wants to detect by testing the 

marker. This is the justification for making the contribution of affected subjects to the FBAT 

statistic proportional to Zijk. Differences between using the posterior probability as 

phenotype and assigning subjects to their most likely class are expected to become more 

important as the posterior probabilities get further away from 1 and 0. It was indeed the case 

that the Z score mean difference was slightly larger with σ = 15 than with σ = 10 (data not 

shown). This did not always translate into larger power differences because of ceiling and 

floor effects when power is near 1 or 0.

While the FBAT framework provides this intuitive way to take into account uncertainty in 

LC assignment for hypothesis testing, it has the inconvenience of not providing estimates of 

association parameters. Assigning subjects to their most likely class remains an option 

allowing the use of any statistical method for association analysis in families.
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In the AGRE analysis, the larger odds ratios obtained with class 7 for SNPs in the JARID2 

gene indicate that LC analysis partially succeeded in creating more genetically 

homogeneous disease classes. Members of the same family tend to be assigned to the same 

class in both the simulated data and the AGRE dataset, as expected if they share the same 

DS genotypes. However, within-family heterogeneity is also expected in traits as complex as 

ASD due to segregation of multiple genes and to sporadic, non-genetic cases, and it is an 

advantage of our LC model that it offers the flexibility to assign different subjects from a 

same family to different classes when their symptom patterns differ [Labbe et al. 2009].

The association signals that we obtained in the JARID2 gene and in the other regions 

examined were weaker than those reported by Weiss et al. [2009]. The most likely 

explanation is that the Weiss et al. [2009] sample was larger, including an NIMH sample in 

addition to the AGRE sample that we analyzed. Slight differences between the definitions of 

ASD in the two analyzes, the contribution to the FBAT statistic of families with missing 

parental genotypes which were excluded from the TDT performed by Weiss et al. [2009], 

and the different SNPs used may also explain differences in results. At this level of 

significance, findings from a genomewide association study are likely to be false positives. 

However, what is noticeable here is that a signal as strong as the signal with the ASD 

phenotype could be obtained with a latent class in regions selected based on the strength of 

association with the ASD phenotype. If JARID2 is truly involved in ASD, our LC analysis 

suggests that it could affect reciprocal social interaction and communication and language, 

providing a refinement of the phenotype. The LC analysis also highlighted association to a 

different JARID2 haplotype than the Weiss et al. [2009] study.

In the present study, we focused on symptoms observable only on diseased subjects. In many 

contexts, the use of traits related to the disease phenotype and which are also observable on 

unaffected subjects, often called endophenotypes [Gottesman and Gould 2003], may be 

more appropriate than the use of symptoms to define genetically homogeneous sub-types of 

disease [Szatmari et al. 2007]. Our LC modeling approach is equally applicable with 

endophenotypes, as explained in Labbe et al. [2009].

With the present extension, the LC model with familial dependence that we have previously 

proposed to deal with genetic heterogeneity is now applicable to the two major types of 

genetic analysis in families: linkage and association. We have demonstrated in both cases an 

advantage from using the posterior probability of class membership to account for 

uncertainty of class assignment in the analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We gratefully acknowledge the resources provided by the Autism Genetic Resource Exchange (AGRE) Consortium 
and the participating AGRE families. The Autism Genetic Resource Exchange is a program of Cure Autism Now 
and is supported, in part, by grant 1U24MH081810 from the National Institute of Mental Health to Clara M. 
Lajonchere (PI). We are grateful to Michelle Liu (Toronto Hospital for Sick Children), Olaf Stein and Veronica 
Vieland (Ohio State University) for their advices regarding autism symptoms and diagnosis, and the AGRE dataset. 

Bureau et al. Page 10

Genet Epidemiol. Author manuscript; available in PMC 2014 April 25.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



This work was supported by grant NPE-80219 from the Canadian Institutes for Health Research. A. Bureau and A. 
Labbe are supported by scientist awards from the Fonds de la recherche en santé du Québec.

References

Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin–rapid analysis of dense genetic maps 
using sparse gene flow trees. Nat Genet. 2002; 30(1):97–101. [PubMed: 11731797] 

Bearden CE V, Reus I, Freimer NB. Why genetic investigation of psychiatric disorders is so difficult. 
Current Opinion in Genetics and Development. 2004; 14:280–286. [PubMed: 15172671] 

Bureau A, Labbe A, Croteau J, Merette C. Using disease symptoms to improve detection of linkage 
under genetic heterogeneity. Genet Epidemiol. 2008; 32(5):476–86. [PubMed: 18330904] 

Bureau, A., Tayeb, A., Croteau, J., Mérette, M., Labbe, A. Generalization to extended pedigrees of a 
latent class model with familial dependence for improved detection of linkage under heterogeneity. 
International Genetic Epidemiology Society 2007 annual meeting, Genetic Epidemiology; 2007. p. 
619

Clogg, CC. Latent class models. In: Arminger, G.Clogg, CC., Sobel, ME., editors. Handbook of 
statistical modeling for the social and behavioral sciences. New York: Plenum Press; 1995. p. xxip. 
592

Dudbridge F. Likelihood-based association analysis for nuclear families and unrelated subjects with 
missing genotype data. Hum Hered. 2008; 66(2):87–98. [PubMed: 18382088] 

Fanous AH, Neale MC, Webb BT, Straub RE, O’Neill FA, Walsh D, Riley BP, Kendler KS. Novel 
linkage to chromosome 20p using latent classes of psychotic illness in 270 irish high-density 
families. Biol Psychiatry. 2008; 64(2):121–7. [PubMed: 18255048] 

Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic 
intentions. American Journal of Psychiatry. 2003; 160(4):636–645. [PubMed: 12668349] 

Labbe A, Bureau A, Merette C. Integration of genetic familial dependence structure in latent class 
models. The International Journal of Biostatistics. 2009; 5(1):Article 6.

Lake SL, Blacker D, Laird NM. Family-based tests of association in the presence of linkage. Am J 
Hum Genet. 2000; 67(6):1515–25. [PubMed: 11058432] 

Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a 
diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. 
J Autism Dev Disord. 1994; 24(5):659–85. [PubMed: 7814313] 

Lunetta KL, Faraone SV, Biederman J, Laird NM. Family-based tests of association and linkage that 
use unaffected sibs, covariates, and interactions. Am J Hum Genet. 2000; 66(2):605–14. [PubMed: 
10677320] 

Owen MJ, Craddock N, Jablensky A. The genetic deconstruction of psychosis. Schizophr Bull. 2007; 
33(4):905–11. [PubMed: 17551090] 

Rakovski CS, Xu X, Lazarus R, Blacker D, Laird NM. A new multimarker test for family-based 
association studies. Genet Epidemiol. 2007; 31(1):9–17. [PubMed: 17086514] 

Risi S, Lord C, Gotham K, Corsello C, Chrysler C, Szatmari P, Cook J, EH, Leventhal BL, Pickles A. 
Combining information from multiple sources in the diagnosis of autism spectrum disorders. J Am 
Acad Child Adolesc Psychiatry. 2006; 45(9):1094–103. [PubMed: 16926617] 

Schmidt M, Hauser ER, Martin ER, Schmidt S. Extension of the simla package for generating 
pedigrees with complex inheritance patterns: Environmental covariates, gene-gene and gene-
environment interaction. Stat Appl Genet Mol Biol. 2005; 4(1):Article15. [PubMed: 16646832] 

Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: the insulin gene 
region and insulin-dependent diabetes mellitus (iddm). Am J Hum Genet. 1993; 52(3):506–16. 
[PubMed: 8447318] 

Szatmari P, Maziade M, Zwaigenbaum L, Merette C, Roy MA, Joober R, Palmour R. Informative 
phenotypes for genetic studies of psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet. 
2007; 144B(5):581–8. [PubMed: 17219386] 

Tayeb A, Labbe A, Bureau A, Merette C. Solving genetic heterogeneity in extended families by 
identifying sub-types of complex diseases. Computational Statistics. 2011

Bureau et al. Page 11

Genet Epidemiol. Author manuscript; available in PMC 2014 April 25.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



Todd RD, Lobos EA, Sun LW, Neuman RJ. Mutational analysis of the nicotinic acetylcholine receptor 
alpha 4 subunit gene in attention deficit/hyperactivity disorder: evidence for association of an 
intronic polymorphism with attention problems. Mol Psychiatry. 2003; 8(1):103–8. [PubMed: 
12556914] 

Todd RD, Rasmussen ER, Neuman RJ, Reich W, Hudziak JJ, Bucholz KK, Madden PA, Heath A. 
Familiality and heritability of subtypes of attention deficit hyperactivity disorder in a population 
sample of adolescent female twins. Am J Psychiatry. 2001; 158(11):1891–8. [PubMed: 11691697] 

Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS, Salyakina D, Imielinski M, Bradfield 
JP, Sleiman PM, Kim CE, Hou C, Frackelton E, Chiavacci R, Takahashi N, Sakurai T, Rappaport 
E, Lajonchere CM, Munson J, Estes A, Korvatska O, Piven J, Sonnenblick LI, Alvarez Retuerto 
AI, Herman EI, Dong H, Hutman T, Sigman M, Ozonoff S, Klin A, Owley T, Sweeney JA, Brune 
CW, Cantor RM, Bernier R, Gilbert JR, Cuccaro ML, McMahon WM, Miller J, State MW, 
Wassink TH, Coon H, Levy SE, Schultz RT, Nurnberger JI, Haines JL, Sutcliffe JS, Cook EH, 
Minshew NJ, Buxbaum JD, Dawson G, Grant SF, Geschwind DH, Pericak-Vance MA, 
Schellenberg GD, Hakonarson H. Common genetic variants on 5p14.1 associate with autism 
spectrum disorders. Nature. 2009; 459(7246):528–33. [PubMed: 19404256] 

Weiss LA, Arking DE, Daly MJ, Chakravarti A. A genome-wide linkage and association scan reveals 
novel loci for autism. Nature. 2009; 461(7265):802–8. [PubMed: 19812673] 

Bureau et al. Page 12

Genet Epidemiol. Author manuscript; available in PMC 2014 April 25.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



Fig. 1. 
Power to detect association to a disease-susceptibility (DS) variant with a marker correlated 

at r2 = 0.8 in simulations of an heterogeneity model with four DS variants (4G5C model). 

Datasets contain 400 families with two affected siblings and parents with no phenotypic 

information. Genotypes of all family members are observed. For latent class (LC)-derived 

phenotypes, p-values were multiplied by the number of classes. The significance level was 

set to 5 × 10−8. Results are based on 400 replicates. Panel A shows the results of an analysis 

under the dominant model, panel B, D and E results under the additive model and panel C 

results under the recessive model. Error bars represent exact 95% confidence intervals. The 

first four bars from the left on each panel represent power using LC-derived phenotypes: P: 

posterior probability of class membership used as a quantitative trait in affected subjects, C: 

most probable class used as phenotype, σ: within-class standard deviation. The rightmost bar 

(orig) represents power using the original phenotype where all symptomatic subjects are 

affected.
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Fig. 2. 
Distribution of symptoms in latent classes formed using four ADI-R items. SOC3: Item 3 of 

the subdomain “qualities of reciprocal social interaction”; COM1: Item 1 of the subdomain 

“communication and language”; BEH1 and BEH2: Items 1 and 2 of the subdomain 

“restricted and repetitive, stereotyped interests and behaviors”. The distribution of BEH1 is 

shown for 6 year old males, and the distribution of BEH2 for 6 year old children (no 

adjustment for sex). SOC3 and COM1 were not adjusted for any covariate. The distributions 

are shown for the 4 classes containing at least 100 genotyped ASD subjects when assigning 

these subjects to their most likely class.
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Fig. 3. 
Association of SNPs to latent class 7 and to the ASD phenotype at 6p24-p23 in the AGRE 

sample. FBAT results under the additive model. For latent class 7 phenotypes, p-values were 

multiplied by 4, the number of tested classes.
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Table 1

Values of the parameters of the genetic heterogeneity models used in the simulation study.

DS variant mode of inheritance risk allele frequency relative Dd risk DD

Model 2G3Ca (φb = 0.009, Kc = 0.015)

1 Dominant 0.029 7.4 7.4

2 Recessive 0.239 1 7.4

Model 4G5C (φ = 0.008, K = 0.01)

1 Dominant 0.011 4 4

2 Recessive 0.147 1 4

3 Additive 0.032 2 4

4 Additive 0.032 2 4

a
See text for definition of the model labels.

b
Risk of disease in subjects with low risk genotypes at all loci.

c
Population prevalence of the disease.
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