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Purpose: The authors propose a method whereby serially acquired DCE-MRI, DW-MRI, and FDG-
PET breast data sets can be spatially and temporally coregistered to enable the comparison of changes
in parameter maps at the voxel level.
Methods: First, the authors aligned the PET and MR images at each time point rigidly and nonrigidly.
To register the MR images longitudinally, the authors extended a nonrigid registration algorithm by
including a tumor volume-preserving constraint in the cost function. After the PET images were
aligned to the MR images at each time point, the authors then used the transformation obtained
from the longitudinal registration of the MRI volumes to register the PET images longitudinally. The
authors tested this approach on ten breast cancer patients by calculating a modified Dice similarity of
tumor size between the PET and MR images as well as the bending energy and changes in the tumor
volume after the application of the registration algorithm.
Results: The median of the modified Dice in the registered PET and DCE-MRI data was 0.92. For
the longitudinal registration, the median tumor volume change was −0.03% for the constrained al-
gorithm, compared to −32.16% for the unconstrained registration algorithms (p = 8 × 10−6). The
medians of the bending energy were 0.0092 and 0.0001 for the unconstrained and constrained algo-
rithms, respectively (p = 2.84 × 10−7).
Conclusions: The results indicate that the proposed method can accurately spatially align DCE-
MRI, DW-MRI, and FDG-PET breast images acquired at different time points during therapy while
preventing the tumor from being substantially distorted or compressed. © 2014 American Association
of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4870966]
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1. INTRODUCTION

In recent years there have been dramatic increases in both
the quality and quantity of noninvasive imaging meth-
ods for assessing (and even predicting) the response of
breast tumors to neoadjuvant therapy (NAT). In particular,
dynamic contrast enhanced magnetic resonance imag-
ing (DCE-MRI),1 diffusion weighted MRI (DW-MRI),2, 3

and 18F-fluorodeoxyglucose positron emission tomography
(FDG-PET) (Refs. 4 and 5) have matured to the point where
each modality offers unique and, importantly, complemen-
tary information on several clinically relevant tumor char-
acteristics. Typically, changes in these quantitative imaging
parameters are summarized on a region of interest (ROI)
basis4–10 which discards spatial information on tumor het-
erogeneity. However, there has been an increasing interest in
the study of the tumor at the voxel level rather than the ROI
level.11, 12 Such analysis typically requires temporal and spa-
tial registration of image datasets in order to measure vox-
elwise parameter changes in a meaningful way. In this ef-
fort, we present the first report which presents a method
for rigorous registration of quantitative PET and MRI breast
data acquired during NAT, which is a necessary step to al-
low for a more comprehensive analysis of tumor treatment
response.

2. MATERIALS AND METHODS

2.A. Patient population and data acquisition

Data were acquired from ten patients with Stage II/III
breast cancer enrolled in a IRB-approved clinical study prior
to any treatment (t1), after one cycle of NAT (t2), and at the
completion of NAT (t3). The data were not available at t3 for
five of the patients. Table I provides the clinical characteristics
of the patients included in this study.

PET/CT data were acquired with a GE Discovery STE
(GE Healthcare, Waukesha, WI) using methods previously

TABLE I. Summary of patient data.

Receptor status

Patients Age (yr) Treatment regimens ER PR HER2 Tumor grade Pathologic response Excised tumor size (cm)

1 36 AC → taxol + + + 2 Residual disease 1
2 48 Taxotere + carboplatin + herceptin − − + 3 pCR 0
3 58 Cisplatin + taxol ± everolimus − + − 2 Residual disease 1.7
4 33 AC → taxol + + − 3 Residual disease 1.2
5 39 AC → taxol − − − 3 pCR 0
6 43 Cisplatin + taxol ± everolimus − − + 3 Residual disease 0.7
7 57 AC → taxol − − − 3 Residual disease N/A
8 55 AC → taxol + + − 2 Residual disease 3.5
9 46 Taxotere + carboplatin + herceptin + + + 3 Residual disease 0.3
10 39 AC → taxol + + − 1 Residual disease 2.5

described.13 DW- and DCE-MRI were performed using a
Philips 3T Achieva MR scanner (Philips Healthcare, Best,
The Netherlands) using previously described methods.14, 29

Following the DCE-MRI acquisition, a 3D T1-weighted high-
resolution isotropic volume examination (THRIVE) scan was
acquired. To improve the registration between the PET and
MR data sets, a specially designed device that is an exact
geometric replica of the breast support in the double-breast
radiofrequency coil (In vivo Inc., Gainesville, FL) was con-
structed for PET/CT imaging.13

2.B. Data analysis

While details of the DCE-MRI, DW-MRI, and FDG-PET
analysis are presented in Refs. 15 and 16, the salient features
are as follows. DCE-MRI data were analyzed using the ex-
tended Tofts-Kety relationship17 and a population arterial in-
put function18 to yield estimates of the volume transfer con-
stant (Ktrans), the extravascular extracellular volume fraction
(ve), and the blood plasma fraction (vp), maps. The DW-
MRI data were used to calculate the apparent diffusion co-
efficient (ADC) maps,19 and the FDG-PET data were used
to calculate parametric maps of the FDG standard uptake
value (SUV).20

2.C. Image registration at each time point

Due to its relatively high spatial resolution and tissue con-
trast, we used the THRIVE images to align the PET and
MR data sets acquired at each individual time point. This
was achieved by using a rigid body registration (RBR) algo-
rithm which searches for the optimal rotation and translational
parameters by maximizing the normalized mutual informa-
tion (NMI).21 The obtained transformations between the
DCE-MRI and the THRIVE data, TRBR_DCE, at each time
point (t1, t2, and t3), were directly applied to the Ktrans, ve,
vp, and ADC maps at each time point to put all MRI para-
metric maps into a common image space. As the PET/CT
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and THRIVE images were acquired on different scanners, the
placement of the breast within each scanner resulted in dif-
ferent deformations. Thus, the CT data were first rigidly reg-
istered to the THRIVE images at each time point with the
RBR, then a nonrigid body registration (NRBR) algorithm22

was applied. The RBR and the NRBR algorithms yielded
the transformations TRBR_CT and TNRBR_CT, respectively,
which were applied to the SUV maps from the FDG-PET
data.

2.D. Image registration across time

For a given patient, the two sets (or three sets for five of
the patients) of THRIVE images were serially registered us-
ing the RBR and a modified version of the NRBR algorithm
described above. In the modified algorithm, a constraint term
was computed as a Jacobian determinant over the tumor ROI
and was incorporated into the NMI based cost function:

fcos t = −NMI + α

∑
x

|log(JT (x))|
M

, (1)

where JT(x) is the Jacobian determinant on the current voxel x,
M is the total number of voxels in the area, and α is the weight
of the constraint term. For the patient data sets in this study
we empirically chose α = 0.4. This algorithm was designed to
preserve the tumor volume while maximally registering sur-
rounding tissues23, 24

For all the patients, the THRIVE image at t1 was regis-
tered to the THRIVE image at t2 using both the RBR and
the constrained NRBR algorithm to yield the transformations
TRBR_T1_T2 and TNRBR_T1_T2, respectively. Similarly, the
THRIVE image at t2 was registered to the THRIVE image
at t3 to yield the transformation TRBR_T2_T3 and TNRBR_T2_T3,
respectively, for the five patients whose data at t3 were
also available. To register the THRIVE images at t1 to t3,
TRBR_T1_T2, TNRBR_T1_T2, TRBR_T2_T3, and TNRBR_T2_T3 were then
applied to the THRIVE images at t1. Since the ADC, Ktrans, ve,
vp, CT, and SUV maps at each time point were registered to
their corresponding THRIVE image, these parametric maps
could then be directly placed into a common image space
by applying the transformation obtained from registering the
THRIVE images longitudinally.

2.E. Registration validation

The tumor voxels in the SUV maps were determined by
using a threshold of 40% of the maximum SUV uptake in the
tumor ROIs (chosen based on previous reports25, 26), while the
tumor in the DCE-MRI data was defined as the voxels within
the outlined ROI that showed a postcontrast signal intensity
that was ≥80% (Refs. 27 and 28) of the precontrast signal
intensity.

We qualitatively and quantitatively tested the validity
of our approach. Qualitative assessment was performed by
visual inspection of the alignment of the breast contours and
tumors after registration. Quantitative assessment was done
by calculating: (1) a modified Dice similarity index, (2) the
bending energy,24 and (3) the change in the tumor volume

after registration across time. Since the SUVs estimated from
the FDG-PET data and the DCE-MRI data report on different
aspects of tumor biology and moreover, different strategies
were used to segment the tumor due to the large differences
in the spatial resolutions in the PET and MR images, the
original Dice similarity is not appropriate to compare two
items of the same size. When two tumor regions are not
in the same size, the largest possible Dice occurs when
one segmented tumor region contains the other completed.
Hence, we modified the Dice similarity measure to compare
the degree of overlap between two objects (i.e., the tumor
volumes as determined by PET and MRI) of difference sizes.
That is, the modified Dice similarity is calculated as the
original Dice similarity29 of the tumors between the SUV
and the DCE-MR images divided by the largest possible
Dice:

Dicenew = 2 × n(A ∩ B)

n(A) + n(B)

/
2 × min(n(A), n(B))

n(A) + n(B)

= n(A ∩ B)

min(n(A), n(B))
, (2)

where A and B are two regions and n( ) is the number of
voxels in a region.

The bending energy describes the smoothness of the defor-
mation field. The smoother the deformation field, the lower
the bending energy. The bending energy and change in the tu-
mor volume were calculated after applying the unconstrained
and the constrained NRBR algorithms and compared using
a Wilcoxon rank sum test to determine: (1) if the results re-
turned by the two algorithms were significantly different and
(2) if the algorithms significantly affected the tumor volume.
This second point is of particular interest, as it is imper-
ative that longitudinal registration minimally impact tumor
size so that any changes in tumor size are due to biological
changes and not those artificially induced by the registration
algorithm.

3. RESULTS

The rows of Fig. 1 display the ADC, postcontrast DCE-
MRI, THRIVE-MRI, CT, and the SUV of the FDG-PET im-
ages before (Columns A, B, and C) and after (D, E, and F) reg-
istration for a nonresponder at three time points. As demon-
strated in the figure, there was poor alignment of the breast
contours and the tumors before registration, but after regis-
tration there was excellent alignment of the breast contours
and the tumors between the modalities at all imaging time
points. Figure 2 shows the results of the registration of the pa-
rameter maps Ktrans, ve, vp, ADC, and SUV of the FDG-PET
maps (rows 1–5, respectively) superimposed on the anatom-
ical THRIVE image at three time points for a representative
patient. Note the (visually) excellent alignment which allows
for examination of the variations in intratumoral spatial dis-
tributions of the various parameters.

The median of the modified Dice was 0.92. The medi-
ans of the percentage change in the tumor volumes from t1
to t2 were −9.25% and −1.13% for the unconstrained and
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FIG. 1. Columns A, B, and C correspond to the images before registration
acquired at baseline before initiation of NAT (t1), after one cycle of NAT
(t2), and at the conclusion of NAT (t3). Columns D, E, and F correspond
to the images after both intra- and interscanning session registrations. The
rows correspond to the ADC, postcontrast DCE-MRI, THRIVE-MRI, CT,
and the SUV of the FDG-PET, respectively. The contour of the THRIVE
image at t3 was copied to the other images in order to facilitate visual com-
parison of the registration results. The patient was a nonresponder (i.e., a
non-pCR).

constrained algorithms (p = 0.038), respectively. Similarly,
the medians of the percentage change in the tumor vol-
umes from t2 to t3 were −65.12% and 0.07%, respectively
(p = 0.008). Finally, the medians from t1 to t3 were −56.64%
and 0.84%, respectively (p = 0.008).

The medians of the bending energy from t1 to t2 were
0.0022 and 0.0001 for the unconstrained and constrained

FIG. 2. Parametric maps overlain on THRIVE anatomical scans. The
columns correspond to the images obtained at t1, t2, and t3, respectively.
Five rows correspond to Ktrans, ve , vp , ADC, and SUV. The contour of the
THRIVE at t3 is copied to the other images in order to facilitate comparison
of the registration result. Note the variations in intratumoral spatial distribu-
tions of the various parameters. By performing longitudinal, intermodality
registrations, such comparisons at the voxel level are now possible.

algorithms (p = 0.0003), respectively. Similarly, the me-
dians from t2 to t3 were 0.0422 and 0.0000, respectively
(p = 0.0079). Finally, the medians from t1 to t3 were 0.0973
and 0.0003, respectively (p = 0.0079). The median bending
energy for all the time points was 0.0092 and 0.0001 for
the unconstrained and constrained algorithms, respectively
(p = 2.84 × 10−7).

4. DISCUSSION AND CONCLUSIONS

A survey of the literature reveals that the overwhelming
majority of studies on breast registration focus on the regis-
tration of dynamic scans to correct for bulk motion that oc-
curs during a single imaging session. There are only a few of
studies11, 12, 30, 31 that have made use of longitudinal registra-
tion of breast MRI data. However, these studies either did not
focus on the registration method itself or did not account for
tumor changes observed between scans. Our study is the first
report of a method that enables the longitudinal registration
of multimodal breast images and the corresponding paramet-
ric maps (i.e., Ktrans, ve, vp, ADC, SUV) to a common space,
thereby allowing for a more comprehensive analysis of tumor
behavior at the voxel level. The results of this study are poten-
tially of general interest as more efforts are made to synthesize
multiparametric studies for predicting the response to breast
cancer in the neoadjuvant setting. We showed good alignment
between the images both by visual assessment and by the cal-
culation of the intersection of the tumor volumes, the bending
energy, and the change of tumor volumes. The error in the in-
tersection was mainly due to the differences in positioning of
the breast between the PET and the MRI acquisitions at each
individual time point (i.e., t1, t2, or t3). Another source of er-
ror is that the contrast between the tumor and normal tissues
of low-dose CT images is much lower than the MR images
collected in this study; this brings difficulties during the align-
ment between CT and MR. Ideally, we would want to achieve
a registration error that is within the spatial resolution of the
PET image.

One of the limitations of this study is that the parame-
ter α is selected empirically and cannot (currently) be de-
termined automatically. Moreover, the registration algorithm
may not correct the change in the whole breast volume over
time due to, for example, hormonal fluctuations over the men-
strual cycle. Future technical efforts will focus on automating
the optimal selection of this parameter, as well as employ-
ing external fiducial markers to improve the registration per-
formance. Future clinical efforts will include identifying the
spatial-temporal relationships between the parametric maps at
the voxel level and integrating the relationships between pa-
rameter maps to optimize the prediction of the response of
breast tumors to NAT. The aligned parameter maps can also
be used to initialize and constrain mathematical models of tu-
mor growth and treatment response.32
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