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Purpose: The purpose of this paper is to implement a noise-weighted filtered backprojection (FBP)
algorithm in the form of “convolution” backprojection, but this “convolution” has a spatially variant
integration kernel.
Methods: Noise-weighted FBP algorithms have been developed in recent years, with filtering being
performed in the Fourier domain. The noise weighting makes the ramp filter in the FBP algorithm
shift-varying. It is not efficient to implement shift-varying filtration in the Fourier domain. It is known
that Fourier-domain multiplication is equivalent to spatial-domain convolution. An expansion method
is suggested in this paper to obtain a closed-form integration kernel.
Results: The noise weighted FBP algorithm can now be implemented in the spatial domain efficiently.
The total computation cost is less than that of the Fourier domain implementation.
Conclusions: Computer simulations are used to show the three-term expansion method to approx-
imate the filter kernel. A clinical study is used to verify the feasibility of the proposed algorithm.
© 2014 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4870989]
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1. INTRODUCTION

The filtered backprojection (FBP) algorithm has been in use
for several decades.1–5 It is the workhorse of x-ray CT im-
age reconstruction. A drawback of the FBP algorithm is that
it may produce very noisy images. Algorithms based on op-
timization of an objective function are able to incorporate
the projection noise model and produce less noisy images
than the FBP algorithm. Usually these algorithms are itera-
tive algorithms.6–10 In order to shorten the computation time
of an iterative algorithm, effort has been made to transform a
regular iterative algorithm into an iterative FBP algorithm.11

Another approach to noise control is to apply an adaptive
filter or nonlinear filter to the projection measurements.12, 13

We recently developed a noniterative FBP algorithm that can
model the projection noise on a view-by-view or ray-by-ray
basis.14, 15

One drawback of the noise-weighted FBP algorithm pre-
sented in Ref. 15 is that the modified ramp filtering must be
implemented in the Fourier domain, because we did not know
the expression of the spatial-domain “convolution” kernel.
It is not efficient to implement shift-varying filtration in the
Fourier domain. Projection data at each view must be filtered
multiple times (say, 11 times) if the Fourier domain filtering
method is used as suggested in Ref. 15.

It is known that Fourier-domain multiplication is equiva-
lent to spatial-domain convolution. In principle, any FBP al-
gorithm with Fourier-domain filtering can find its equivalent
FBP algorithm that performs filtering in the spatial domain as
convolution, if the convolution kernel can be readily obtained.

This paper will implement the noise-weighted FBP algo-
rithm presented in Ref. 15 in the form of “convolution” back-
projection. However, this “convolution” is not a true convolu-

tion operation, because the integration kernel varies according
to the noise variance. An expansion method will be suggested
in this paper to obtain a closed-form integration kernel so that
the “convolution” can be computed efficiently.

2. METHODS

Section 2.A will review and summarize what we already
know about the noise-weighted FBP algorithm, according to
our recent publications.14–20 Section 2.B is the main contri-
bution of this paper, and the Fourier-domain filtering in the
noise-weighted FBP algorithm will be converted into spatial-
domain filtering in the form of a dot product, which is similar
to convolution.

2.A. Noise-weighted FBP algorithm

The noise-weighted FBP algorithm was derived based on
minimizing the following weighted least-squares objective
function v( f ) with a data fidelity term and a Bayesian penalty
term:

v(f ) = ‖[Rf ](s, θ ) − p(s, θ )‖2
w

+β ‖f (x, y) ∗ ∗c(x, y) − g(x, y)‖2 , (1)

where the image to be reconstructed is f(x, y) and its Radon
transform is [Rf](s, θ ), which is defined as5

[Rf ](s, θ ) =
∞∫

−∞

∞∫
−∞

f (x, y)δ(x cos θ + y sin θ − s)dxdy.

(2)

In Eq. (2), δ is the Dirac delta function, θ is the detec-
tor rotation angle, and s is the line-integral location on the
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detector. The Radon transform [Rf](s, θ ) is the line-integral
of the object f(x, y). Image reconstruction is to solve for the
object f(x, y) from its Radon transform [Rf](s, θ ). The first
term in Eq. (1) is the data fidelity term that encourages the
Radon transform of f(x, y) to be close to the measured projec-
tions p(s, θ ). In the first term, the norm is the conventional L2

norm with a weighting function w. The second term in Eq. (1)
is the Bayesian term that encourages a filtered version of f(x,
y) to look like a prior image g(x, y), and the parameter β con-
trols the relative importance with respect to the first term.

The function c(x,y) is a symmetric image domain convolu-
tion kernel and “**” represents the image domain 2D convo-
lution. If c(x,y) is the 2D Dirac delta function δ(x, y) = δ(x)
· δ(y), then the Bayesian term encourages f(x, y) to be similar
to g(x, y). For example, f(x, y) can be a high-noise dynamic
image and g(x, y) can be a low-noise slow-motion image by
averaging images from adjacent time frames.

If g(x, y) = 0 and c(x, y) = δ(x, y), the Bayesian regulariza-
tion term encourages a minimum norm solution. [Note: There
was a mistake in the Appendix A of Ref. 19 where we said
that when c(x, y) = 1 the regularization term encourages a
minimum norm solution.] If g(x, y) = 0 and c(x, y) is a Lapla-
cian kernel (i.e., the sum of second-order partial-derivative
kernels), the regularization term encourages a smooth
image.

After minimizing the objective function (1) by using the
calculus of variations,21 the optimal solution f(x, y) must sat-
isfy an Euler-Lagrange equation,19 which is an integral equa-
tion and may not have an explicit solution if the weight-
ing function w depends on both variables s and θ . If we
restrict that the weighting function w only depends on θ

with tan θ = ωy/ωx, not on s, an explicit solution of the
optimal solution f(x, y) can be obtained in the Fourier
domain:

F (ωx, ωy) = w(θ ) · B(ωx, ωy) + β · G(ωx, ωy) · C(−ωx,−ωy)
w(θ)√
ω2

x+ω2
y

+ β · |C(ωx, ωy)|2

=
√

ω2
x + ω2

y · B(ωx, ωy) + β · C(−ωx,−ωy )
√

ω2
x+ω2

y

w(θ) · G(ωx, ωy)

1 + β ·
√

ω2
x+ω2

y ·|C(ωx,ωy )|2
w(θ)

, (3)

where B, C, F, and G are the 2D Fourier transform of b, c,
f, and g, respectively. The derivation of Eq. (3) was given in
Refs. 18 and 19. It is interesting to see two extreme cases of
Eq. (3). In the case of β = 0, Eq. (3) becomes

w(θ )F (ωx, ωy) = w(θ ) · B(ωx, ωy)
√

ω2
x + ω2

y

or (assuming w(θ ) �= 0)

F (ωx, ωy) = B(ωx, ωy)
√

ω2
x + ω2

y. (3a)

In the case of β = ∞, Eq. (3) becomes

F (ωx, ωy)|C(ωx, ωy)|2 = G(ωx, ωy) · C(−ωx,−ωy)

or

F (ωx, ωy) · C(ωx, ωy) = G(ωx, ωy). (3b)

Equation (3a) enforces the data fidelity term in the objec-
tive function (1) and Eq. (3b) enforces the Bayesian penalty
term in Eq. (1). Here b(x, y) is the pure backprojection of the
raw projections without any filtering. Using the Central Slice
Theorem,5 an FBP algorithm can be readily obtained from
Eq. (3) as

f (x, y) =
π∫

0

q(s, θ )|s=x cos θ+y sin θdθ, (4)

where q is the filtered version of the combined data pcombined:

pcombined(s, θ ) = p(s, θ ) + β

w(θ )
· pg(s, θ ) (5)

and the convolution kernel hw(θ)(s) for the filter is a modified
ramp filter kernel and is defined as

hw(θ)(s) = 1D Inverse Fourier Transform

×
⎧⎨
⎩ |ω|

1 + β · |ω|·|C1(ω)|2
w(θ)

⎫⎬
⎭ . (6)

Thus, the function q used in Eq. (4) is the convolution of
pcombined and hw(θ)(s) with respect to variable s:

q(s, θ ) = pcombined(s, θ ) ∗ hw(θ)(s). (7)

It is interesting to notice that when β = 0, the filter defined
in Eq. (6) is reduced to the conventional ramp filter and the
noise weighting is not effective. Therefore, it is important to
include a Bayesian term in the objective function if you intend
to enforce noise weighting in an FBP reconstruction.

In Eq. (6), C1(ω) is a central section of C(ωx, ωy). If c(x, y)
= δ(x, y), then C1(ω) = 1. In Eq. (5), the secondary data pg(s,
θ ) are generated from the prior image g(x, y) by first convolv-
ing with the filter kernel c(x, y), second performing forward
projection, and third ramp filtering. In order to understand the
reason that a ramp filtering procedure is needed in generation
of pg(s, θ ), we notice that b(x, y) is the backprojection of p(s,
θ ); g(x, y) is the backprojection of pg(s, θ ) [at this moment,
let us temporally assume c(x, y) = δ(x, y)]; b(x, y) is a blurred
image; g(x, y) is a sharp image as f(x, y).

In the rest of the paper except Sec. 2.E, we will only con-
sider the case of c(x, y) = δ(x, y) and g(x, y) = 0 for the sake
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of simplicity. In this special case, we have

hw(θ)(s) = 1D Inverse Fourier Transform

of

{
|ω|

1 + |β|
w(θ) · |ω|

}
, (8)

and

f (x, y) =
π∫

0

[p(s, θ ) ∗ hw(θ)(s)]
∣∣
s=x cos θ+y sin θ

dθ. (9)

We denote the filter’s Fourier-domain transfer function as

Hw(θ)(ω) = |ω|
1 + β

w(θ) · |ω| . (10)

The above discussion is under the assumption that the
noise weighting w(θ ) is a function of view angle θ . This view-
by-view noise-weighting scheme can be extended to a ray-by-
ray noise weighting scheme in an ad hoc manner.15 For ray-
based noise weighting, w is a function of the ray: w = w(ray)
= w(s, θ ). At each view angle θ , we quantize the ray-based
weighting function into n + 1 values: w0, w1, . . . , wn, which
in turn give n + 1 different filters as defined in Eq. (10). That
is,

Hk(ω) = |ω| /(1 + β · |ω| /wk), for k = 0, 1, . . . , n.

(11)

Using these n + 1 filters, n + 1 sets of filtered projections are
obtained. Before backprojection, one of these n + 1 projec-
tions is selected for each ray according to its proper weight-
ing function. Only one backprojection is performed using the
selected filtered projections.

2.B. Spatial domain implementation

In general, if the spatial-domain kernel size is very small
(e.g., in a three-point averaging filter) the spatial-domain im-
plementation is faster. In tomography, the practical (ramp fil-
ter) kernel’s size is twice the data size and the Fourier-domain
implementation is faster. However, if the filter is spatially
variant, the Fourier-domain method may not have an advan-
tage. Let the detector size be N. If the filter is shift invariant,
the spatial domain convolution takes O(N2) arithmetical op-
erations, while the FFT/IFFT method computes can it with
O(N log N) operations. However, if the filter is shift variant,
the spatial domain implementation still takes O(N2) arithmeti-
cal operations, while the FFT/IFFT method computes it using
O(N2 log N) operations.

At the end of Sec. 2.A, the spatially varying filter was
implemented by Fourier-domain multiplication, using n + 1
filters with the help of quantization. In our previous imple-
mentations, the value n was selected as 10. Without using the
quantization method, one would use 1024 filters to filter the
projections 1024 times, if there were 1024 detection channels
(or detection cells) on the detector. Therefore, it is not effi-
cient to perform filtering in the Fourier domain if the filter is
shift variant.

On the other hand, it is much more efficient if filtering
is implemented in the spatial domain as integration when
the kernel is spatially varying. If the integration kernel has
a closed-form expression, the computation cost for spatial-
domain filtering is the same as that of convolution, both using
a dot product for implementation.

A routine method to find a discrete filter kernel hw(n) is
to evaluate the following integral,5 which is the 1D inverse
Fourier transform of the transfer function defined in Eq. (10)
with w(θ ) replaced by w(s, θ ) and s replaced by integer n:

hw(n) =
1/2∫

−1/2

Hw(s,θ)(ω)e−i2πnωdω

= 2

1/2∫
0

ω

1 + β

w
· ω

cos(2πnω)dω, (12)

where we used the property that the transfer function Hw(ω)
is an even function. After quantization, w in Eq. (12) is wk. It
is unlikely that the integral in Eq. (12) has an explicit closed-
form expression.

Our method is to find a finite expansion of the function
Hw(ω) and the expansion should have closed-form inverse
Fourier transform. Since 1 / (1 + β0ω) with β0 > 0 is a mono-
tonically decreasing function on [0, 1/2], we have decided to
use the following approximation:

ω

1 + β0 · ω
≈ ω

3
(e−β0ω + e−β1ω + e−β2ω) with β0 = β

w
,

(13)

where the parameters β1 and β2 are to be determined. The
range of ω is [0, 1/2]. The approximation Eq. (13) is already
exact at ω = 0. We further request that Eq. (13) to be exact at
ω = 1/4 and ω = 1/2. Thus, we have two unknowns (β1 and
β2) and two equations:

1

1 + β0/2
= 1

3

(
e−β0/2 + e−β1/2 + e−β2/2

)
, (14)

1

1 + β0/4
= 1

3

(
e−β0/4 + e−β1/4 + e−β2/4

)
. (15)

Solving these two equations yields

β1 = −4 · ln

(
A + √

2B − A2

2

)
and

β2 = −4 · ln

(
A − √

2B − A2

2

)
, (16)

where

A = 3

1 + β0/4
− e−β0/4 and B = 3

1 + β0/2
− e−β0/2.

(17)

Medical Physics, Vol. 41, No. 5, May 2014



051906-4 Gengsheng L. Zeng: Noise-weighted spatial domain FBP algorithm 051906-4

Using the above results and an integral table, the closed-form filter kernel (12) can be obtained as (n �= 0):

hw(n) = 2

3

1/2∫
0

ω(e−β0ω + e−β1ω + e−β2ω) cos(2πnω)dω

= −2

3

2∑
k=0

(−1)ne− βk
2
(
β3

k + 4βkπ
2n2 + 2β2

k − 8π2n2
) − 2β2

k + 8π2n2(
β2

k + 4π2n2
)2 , (18)

and

hw(0) = −
∑
n�=0

hw(n) = −
2∑

n=1

hw(n). (19)

The purpose of Eq. (19) is to guarantee that Hw(0) = 0. The
filter kernel hw(n) is an even function with respect to index n.

If we take the limit of β → 0, Eq. (18) reduces to

h(n) =

⎧⎪⎪⎨
⎪⎪⎩

1/4 n = 0

0 n = ±2,±4,±6, . . .

−1/(πn)2 n = ±1,±3,±5, . . .

, (20)

which is the well-known convolution kernel for the conven-
tional ramp filter.

2.C. Selection of β and weights w

The newly derived FBP algorithm’s filter kernel depends
on β0 = β/w(s, θ ), which in turn depends on the Bayesian
term control parameter β and the current ray weighting factor
w(s, θ ).

The principle of selecting both β and w(s, θ ) is exactly
the same as that for the Fourier-domain implementation. Both
methods can use the same β and w(s, θ ) values. There is
a trade-off consideration for the objective function (1). A
larger β value emphasizes the regularization Bayesian term
more, and usually encourages a smoother image with a lower
resolution. Setting β to zero or an extremely small positive
value results in a high resolution but noisy image. As dis-
cussed in Ref. 16, the FBP algorithm is somewhat equivalent
to an iterative algorithm with an iteration number of infinity.
Also, when β = 0, the relative noise weighting is not effec-
tive. By “relative” we mean that the projection rays compete
with each other, and some rays are emphasized while oth-
ers are de-emphasized by assigning a set of weights w(s, θ ),
one for each ray. The weights are also relative, meaning that
you can scale the weights w(s, θ ) by a constant value. How-
ever, this scaling value affects the selection of the value of
β. Usually, the weights w(s, θ ) are selected as the recipro-
cal of the noise variance (or a function of the variance) of the
projection.

One may argue that in an iterative algorithm the noise
weighting is always effective, regardless whether there is a
Bayesian term or not. When a system of linear equations is
not consistent due to noise, noise weighting is commonly used
to define an acceptable “solution.” When a linear system has
a unique solution, the noise weighting should not affect the

final (unique) solution. However, an iterative algorithm can
only present a result with a finite number of iterations. Even
though the final solution is unique, the noise weighting can
alter the path towards to unique solution. Because the final
solution is usually very noisy, early algorithm termination
is the most common method for regularization. The effects
of multiple convergent paths and early termination make the
noise weighting effective in an iterative algorithm, regardless
whether there is an explicit Bayesian regularization term or
not. An effective regularization is always applied in one way
or another.

One may ask under what conditions an imaging system can
provide a unique (but maybe noisy) solution. An imaging sys-
tem is usually modeled as an over-determined linear system,
in which the number of unknowns (i.e., the image pixels) is
less than the number of equations (i.e., the number of detec-
tion rays or cells or channels). Due to noise, this linear system
is inconsistent and it does not have a solution. Let such a sys-
tem be denoted in the matrix form as

AX = P, (21)

where X is a vector contains all unknown image pixels, A is
the projection matrix, and P is the array of noisy projections.
However, its associated normal equation or weighted normal
equation shown below, respectively, can give a unique least-
squares solution:

AT AX = AT P or AT WAX = AT WP, (22)

where W is a certain weighting matrix. As discussed in
Ref. 16, an FBP algorithm can be viewed as a solution to
the least-squares problem, which is the unique solution to the
“normal equation,” which is formulated in the continuous im-
age domain.

2.D. The case of c = δ and g �= 0

In the case of c = δ and g �= 0, the Bayesian term en-
courages a solution f(x, y) that looks like g(x, y) as much as
possible while satisfies the projections as much as possible.
For this special situation, Eq. (3) becomes

F (ωx, ωy) =
√

ω2
x + ω2

y

1 + β ·
√

ω2
x+ω2

y

w(θ)

×
[
B(ωx, ωy) + β

w(θ )
· G(ωx, ωy)

]
. (23)
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From the derivation in Sec. 2.B, we conclude that the fil-
ter kernel hw(n) for this case is the same as that defined in
Eqs. (18) and (19). The only change is to replace the projec-
tions p(s,θ ) by the combined projections

pcombined(s, θ ) = p(s, θ ) + β

w(θ )
· pg(s, θ ), (24)

where the secondary data pg(s, θ ) are generated from the prior
image g(x, y) by first performing forward projection and then
ramp filtering.

2.E. The case of c being a Laplacian filter and g = 0

If the filter c in Bayesian term of Eq. (1) is not a delta func-
tion δ, but is a Laplacian filter, which is a second-order deriva-
tive filter and is usually used as an edge detector, this Bayesian
term penalizes sharp edges and high frequency noise. The 1D
Fourier transform of the Laplacian kernel is ω2. Thus, the
modified ramp filter for this case will have a Fourier-domain
transfer function as

Hw(θ)(ω) = |ω|
1 + β

w(θ) · |ω|3 . (25)

This function (25) has a faster high frequency gain drop-off
rate than Eq. (10). Unfortunately, for this situation, the fol-
lowing approximation

ω

1 + β0 · ω3
≈ ω

3
(e−β0ω + e−β1ω + e−β2ω) with β0 = β

w

(26)

is rather poor. The Taylor expansion approximation

ω

1 + β0 · ω3
≈ ω(1 + aω + bω2) with β0 = β

w
(27)

is also poor if β0ω > 1. A third option is the following expan-
sion approximation

ω

1 + β0 · ω3
≈ ω

3
(e−β0ω

2 + e−β1ω
2 + e−β2ω

2
) with β0 = β

w
.

(28)

The range of ω is [0, 1/2]. The approximation (28) is already
exact at ω = 0. We further request that Eq. (28) to be exact
at ω = 1/24/3 and ω = 1/2. Thus, we have two unknowns (β1

and β2) and two equations:

1

1 + β0/8
= 1

3
(e−β0/8 + e−β1/8 + e−β2/8), (29)

1

1 + β0/16
= 1

3
(e−β0/16 + e−β1/16 + e−β2/16). (30)

Solving these two equations yields

β1 = −16 · ln

(
A + √

2B − A2

2

)
and

β2 = −16 · ln

(
A − √

2B − A2

2

)
, (31)

where

A = 3

1 + β0/16
− e−β0/16 and B = 3

1 + β0/8
− e−β0/8.

(32)

It can be verified that the fit (28) is satisfactory. The problem
is that the definite integral

hw(n) = 2

3

1/2∫
0

ω(e−β0ω
2 + e−β1ω

2 + e−β2ω
2
) cos(2πnω)dω

(33)

can only be expressed in terms of the special function erf
called the “error function.” One could use a lookup table for
the function erf or use further approximation of the function
erf.

To date we do not yet have any good results for this spe-
cial case: either the fits (26) and (27) are poor, or the in-
verse Fourier transform (33) does not have a closed-form
expression. The example in Sec. 2.E shows that the spatial-
domain filtering method developed in Sec. 2.B is not univer-
sal, and it can be inefficient if no closed-form kernels are
available. In this case, it is better to use the Fourier-domain
filtering.

2.F. Kernel for curved-detector fan-beam
FBP algorithm

The discussion so far is about the development of a mod-
ified ramp filter that is suitable for the parallel-beam or
flat-detector fan-beam imaging geometries. For the curved-
detector fan-beam imaging geometry, its convolution ker-
nel hcurve(n) is a scaled version of the parallel-beam or
the flat-detector fan-beam geometry’s convolution kernel
h(n):5

hcurve(n) =
[

n/D

sin(n/D)

]2

h(n), (34)

where D is the fan-beam focal length. Applying the curved-
detector fan-beam relationship (34) to the newly developed
noise-weighted kernel (18) yields

hcurve,w(n) = −2

3

[
n/D

sin(n/D)

]2 2∑
k=0

(−1)ne− βk
2
(
β3

k + 4βkπ
2n2 + 2β2

k − 8π2n2
) − 2β2

k + 8π2n2(
β2

k + 4π2n2
)2 . (35)
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3. IMPLEMENTATION AND DATA SETS

3.A. Implementation of the proposed FBP algorithm

Like the conventional convolution backprojection FBP al-
gorithm, the proposed FBP algorithm first filters the projec-
tion data with a spatially variant, noise weighted, ramp filter,
and the filtering is performed in the spatial domain by evalu-
ating a dot product. The filtered data are then backprojected
into the image domain. Since the backprojection procedure of
our algorithm is identical to the conventional backprojection,
we only discuss the discrete implementation of the filtering
procedure below.

We denote the discretely sampled projections as pd(n, m),
where n is the index on the detector and m is the index of the
view angle. We use a subscript d to indicate discretely sam-
pled functions. For any fixed view angle m, do the following:

Loop through the detector cell index n:

Step 1: Consider the noise model of pd(n, m) and esti-
mate the variance of the measurement pd(n, m). Let the
weighting factor wd(n, m) be the reciprocal of the vari-
ance (or a function of the variance).

Step 2: Evaluate the spatial-domain filter kernel hw(n) ac-
cording to Eqs. (18) and (19).

Step 3: Calculate filtered projection value qd(n, m) using a
dot product:

qd (n,m) =
∑

k

hw(k − n) · pd (k,m). (36)

Next n.
In forming the spatial-domain filter kernel hw(n), one

needs to select a Bayesian term control parameter β. A larger
β gives a smoother and less noisy image. This value is chosen
by trial-and-error and by incorporating with the selection of
the weighting function w.

3.B. Low-dose cadaver CT data

To illustrate the feasibility of the proposed spatial-domain
filtering FBP algorithm, a cadaver torso was scanned using
an x-ray CT scanner with a low-dose setting. Data were col-
lected with a diagnostic scanner (Aquilion ONETM, Toshiba
America Medical Systems, Tustin, CA; raw data courtesy of
Leiden University Medical Center).

The imaging geometry was curved-detector cone-beam,
the x-ray source trajectory was a circle of radius 600 mm. The
detector had 320 rows, the row-height was 0.5 mm, each row
had 896 channels, and the fan angle was 49.2◦. A low-dose
noisy scan was carried out. The tube voltage was 120 kV and
current was 60 mA. There were 1200 views uniformly sam-
pled over 360◦. The reconstructed image array was 840 × 840
and the image resolution was 0.5 mm. The noise weighting
factor for this data set was chosen as w = exp(−0.3 p), where
p is the line-integral measurement. The Bayesian term control
parameter β was chosen as 1.0 × 10−7.

Only the central slice of image volume was reconstructed.
The images were reconstructed by the conventional fan-beam
FBP algorithm without noise weighting and by the proposed

FBP algorithm with noise weighting using spatial-domain
modified ramp filtering.

3.C. Computer simulations

An analytical image reconstruction algorithm uses a low-
pass filter to adjust the trade-off between the noise (and
artifact) and spatial resolution. Some spatial resolution is lost
when some noise is suppressed. We argue that the iterative
image reconstruction algorithms have the similar trade-off ef-
fects. To illustrate this point, an iterative weighted Landwe-
ber algorithm was also implemented for the comparison
purposes.22

We used a computer generated phantom that contained a
row and a column of small dots (see Fig. 3). The projection
line integral data were generated analytically noise-free. The
motivation of using a noise-free data set is to better study
the spatial resolution degradation effects of the reconstruc-
tion algorithms. There were 1200 views uniformly sampled
over 360◦. There were 896 detection channels on the detector.
The reconstructed image array was 840 × 840 and the im-
age resolution was 0.5 mm. Even though the data were noise-
free, the noise weighting factor for this data set was chosen
as w = exp(−0.3 p), where p is the line-integral measure-
ment. The same noise weighting factor was used for both the
weighted FBP algorithm and the iterative Landweber algo-
rithm. The weighted FBP algorithm used the exactly same
parameters that had been chosen for the clinical data stated in
Sec. 2.B. Both ray-by-ray noise weighting and view-by-view
noise weighting methods were presented. In the view-by-view
weighting method, the maximum line-integral p for each view
was chosen to determine the weighting factor for every ray in
this view. The iterative algorithm used two different numbers
of iterations: 500 and 5000, respectively.

4. RESULTS

Figure 1 shows the Fourier-domain transfer functions of
four filters according to approximation (13), for β0 = 0.1, 1,

FIG. 1. Four pairs of Fourier-domain transfer functions according to ap-
proximation (13). The original functions represented by the left-hand side of
Eq. (13) are shown in solid curves and the three-term expansions represented
by the right-hand side of Eq. (13) are shown in dotted curves.
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5, and 20, respectively. The original functions represented by
the left-hand side of Eq. (13) are shown in solid curves, and
the three-term expansions represented by the right-hand side
of Eq. (13) are shown in dotted curves. Approximations are
shown to be fairly accurate, and more accurate approxima-
tions are obtained for smaller β0 values.

Since an accurate approximation is usually achieved in a
small region close to a point of interest, for example, about
β0ω = 0. In order to obtain a good approximation in a large
region with only few terms, it is important to select the basis
functions that look similar to the original functions to be ex-
panded. This was the reason that we chose {e−βkω} to expand
1/(1 + β0ω), and {e−βkω

2} to expand 1/(1 + β0ω
3). This was

also the reason that we did not use Taylor expansion for 1/(1
+ β0ω) or 1/(1 + β0ω

3), because when β0ω > 1 the approxi-
mation errors are large. Unfortunately, the functions {e−βkω

2}
or {ωe−βkω

2} do not have closed-form inverse Fourier trans-
form expressions.

Figure 2 (first column) shows the conventional (i.e., with-
out noise weighting) fan-beam convolution backprojection re-

construction of a transverse slice in the abdominal region
of the cadaver. The x-rays through the arms are attenuated
more than x-rays in other orientations, and create the left-
to-right streak artifacts in the middle of the image. Figure 2
(second column) shows the reconstruction result using the
proposed noise-weighted FBP with spatial-domain filtering
implementation, using ray-by-ray weighting. The streak ar-
tifacts are effectively removed. Figure 2 (third column) is
the same as the second column except that the view-by-view
weighting is used. Figure 2 (fourth column) is the gold stan-
dard image, which is the conventional fan-beam convolu-
tion backprojection reconstruction using the standard dose
CT data. The tube voltage was 120 kV and current was
500 mA.

Figures 3 and 4 show the reconstruction results of the com-
puter simulation data with the FBP algorithms and the iter-
ative algorithm, respectively. Line profiles are drawn across
the row and column of the small dot to compare the resolu-
tion degradation. The vertical line profiles show worse reso-
lution degradation because a narrower low-pass filter window

FIG. 2. Images reconstructed using low-dose CT clinical cadaver data. (First column) Conventional convolution backprojection reconstruction. (Second column)
Proposed noise-weighted FBP reconstruction with spatial-domain filtering using ray-by-ray weighting. (Third column) Noise-weighted FBP reconstruction with
spatial-domain filtering using view-by-view weighting. (Forth column) Gold-standard: conventional convolution backprojection reconstruction using regular-
dose CT data. (First row) Display with a full gray-scale from minimum to maximum for each image. (Second row) Zoom-in of the first row; the region-of-interest
is indicated in the upper-right image. (Third row) Display of the first row with a narrower gray-scale window. (Forth row) Display of the second row with a
narrower gray-scale window.
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FIG. 3. Images reconstructed using noiseless computer simulated data. (First column) Conventional convolution backprojection reconstruction. (Second col-
umn) Proposed noise-weighted FBP reconstruction with spatial-domain filtering using ray-by-ray weighting. (Third column) Noise-weighted FBP reconstruction
with spatial-domain filtering using view-by-view weighting. (First row) Display with a full gray-scale from minimum to maximum for each image. (Second
row) Line profiles along the horizontal small dots. (Third row) Line profiles along the vertical small dots.
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FIG. 4. Images reconstructed by iterative weighted Landweber algorithm using noiseless computer simulated data. (First column) 500 iterations. (Second
column) 5000 iterations. (First row) Display with a full gray-scale from minimum to maximum for each image. (Second row) Line profiles along the horizontal
small dots. (Third row) Line profiles along the vertical small dots.
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is used in that direction according to the noise model. In the
weighted FBP algorithm, a larger line integral p associates
with a narrower window. The ray-by-ray weighting and the
view-by-view weighting have similar effects.

In the iterative algorithm results with 500 iterations, we
can make the same observation: the vertical line profile shows
worse spatial resolution than the horizontal profile. This is be-
cause the iterative algorithm improves the spatial resolution
as the iteration number increases. The noise weighting fac-
tors control the step sizes of image update at each iteration.
A larger weight causes faster convergence rate of resolution
recovery. Nonconstant weights cause nonuniform resolution.

When the iteration number approaches to infinity, the al-
gorithm will converge to a final image with uniform spa-
tial resolution. In this situation, the noise will be amplified
and the image will be too noisy to be useful in practice.
Like the analytic algorithm, the iterative algorithm also uses
the noise/resolution trade-off relationship to suppress noise by
sacrificing some resolution.

5. CONCLUSIONS

This paper developed a spatial-domain implementation
method for our previously proposed noise-weighted FBP al-
gorithm. Owing to the spatially variant nature of noise weight-
ing, the filter in the FBP algorithm varies from ray to ray and
it is not very efficient to implement it in the Fourier domain.

We have a closed-form representation for the filter’s
Fourier domain transfer function; however, we do not have a
closed-form representation for its spatial domain counterpart.
We agree that one could always use the “numerical” spatial-
domain kernel that is obtained by taking the inverse Fourier
transform of the known transfer function. Since our filter is
spatially variant, this numerical approach is not computation-
ally efficient. If we chose this approach, there would be no
advantage to implement the filtering procedure of an FBP al-
gorithm in the spatial main.

Our “second best” solution is to derive an approximate,
closed-form, spatial-domain kernel. There is no theoretical
base that a three-term exponential function is the optimal
selection for this “second best” solution. We chose the ex-
ponential function because the numerically obtained spatial-
domain kernel visually looks an exponential function. Why
three terms? Because we found that three terms are accurate
enough to approximate the numerically obtained kernel.

In spatial-domain implementation, filtering is achieved by
performing a dot product of the projections with an integra-
tion kernel. This kernel function is discrete for a discrete im-
plementation. To be efficient (meaning, fast computation), we
require the kernel have an explicit closed-form expression.
It is unlikely that the noise-weighted ramp filter |ω|/(1 +
β0|ω|) has a closed-form inverse Fourier transform, but it can
be accurately approximated by (|ω| /3) · (e−β0|ω| + e−β1|ω| +
e−β2|ω|), which has a closed-form inverse Fourier transform
expression. Thus, an explicit expression of the integral kernel
can be obtained.

This approach of obtaining a closed-from integration ker-
nel is not universal. We gave a counter-example of a noise-

weighted ramp filter |ω|/(1 + β0|ω|3), for which we were un-
able to find a closed-from integration kernel.

The noise-weighted FBP algorithm and the iterative gra-
dient algorithm are two approaches that try to minimize the
same quadratic objective function. They have their own ad-
vantages and disadvantages. The noise-weighted FBP algo-
rithm is faster, while the iterative algorithm can better model
the projection physics. We have reported some results to com-
pare these two approaches.17, 20 Unfortunately, for few-view
applications, the FBP algorithms including noise-weighted
FBP algorithm do not perform well.
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