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Purpose: Quantitative analysis of cardiac motion is important for evaluation of heart function. Three
dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion
estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation
from 3D echocardiographic sequences is still a challenging problem due to low image quality and
image corruption by noise and artifacts.
Methods: The authors have developed a temporally diffeomorphic motion estimation approach in
which the velocity field instead of the displacement field was optimized. The optimal velocity field
optimizes a novel similarity function, which we call the intensity consistency error, defined as multi-
ple consecutive frames evolving to each time point. The optimization problem is solved by using the
steepest descent method.
Results: Experiments with simulated datasets, images of an ex vivo rabbit phantom, images of in vivo
open-chest pig hearts, and healthy human images were used to validate the authors’ method. Simu-
lated and real cardiac sequences tests showed that results in the authors’ method are more accurate
than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the
tracked crystal positions have good agreement with ground truth and the authors’ method has higher
accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with
an open-access human cardiac dataset showed that the authors’ method has smaller feature tracking
errors than both TDFFD and frame-to-frame methods.
Conclusions: The authors proposed a diffeomorphic motion estimation method with temporal
smoothness by constraining the velocity field to have maximum local intensity consistency within
multiple consecutive frames. The estimated motion using the authors’ method has good temporal
consistency and is more accurate than other temporally diffeomorphic motion estimation methods.
© 2014 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4867864]
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1. INTRODUCTION

Heart disease is the leading cause of the death and morbidity
in the U.S.1 The study of its motion and deformation is impor-
tant for the diagnosis and treatment of heart disease.2 It helps
in understanding the biomechanics of the heart, such as short-
ening, stretching, and twisting in a dynamic approach.3, 4 It
can be used to quantitatively evaluate stress-strain variation in
the myocardium.5–7 Abnormality in cardiac motion can help
doctors diagnose heart diseases such as myocardial infarction
and/or ischemia.8 It also helps physicians and surgeons val-

idate the effectiveness of cardiac surgery or other treatments
such as cardiac resynchronization therapy.9

Cardiac imaging provides a noninvasive, three-
dimensional, and dynamic way to study heart motion.
Various image modalities can be used to acquire 3D dynamic
images (3D+t) of the heart, which include MRI,10 cardiac
CT,11 echocardiography,12, 13 and ultrasound tissue Doppler
imaging.14 Among these modalities, 3D echocardiography
has the advantages of convenience, cost efficiency, real-time
operation, and absence of radiation. However, motion esti-
mation from 3D echocardiographic images is challenging
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because of the low image quality and low spatiotemporal
resolution.

Motion estimation algorithms for cardiac imaging gener-
ally fall into two categories: model-based and intensity-based.
In model-based methods, models of the heart geometry and/or
its deformation are used to constrain the estimation problem.
The advantage of these methods is that these models lead
to compact data representations. Various geometrical mod-
els have been proposed, such as surface models15 and volume
models.16, 17 A detailed survey is given in Ref. 18. However,
model-based methods usually require the extraction of fea-
tures such as boundary points or contours as a prerequisite,
which is challenging in itself. Intensity-based methods esti-
mate motion directly from voxel intensities, without any as-
sumption about geometric shape or deformation.7 They have
the advantage that the motion estimation is not limited to a
specific model. However, they tend to be more computation-
ally intensive. Intensity-based registration methods such as
the 3D B-spline based method,19 Demon’s method,20, 21 op-
tical flow methods,22 variational methods,23, 24 and speckle
tracking12 have been used to estimate cardiac motion from
image sequences.6, 25–31

Temporal smoothness is an important issue to consider
for cardiac motion analysis because motion of heart wall is
a smooth process. Introduction of temporal information can
help to improve the motion estimation performance. Various
temporal constraints have been integrated with the deformable
models to regularize the estimated motion. Huang et al.32 used
a spatiotemporal (4D) freeform deformation (FFD) model to
fit the corresponding points extracted from tagged MRI se-
quences. Lagrangian Dynamic motion equations have been
used to govern deformation of surface models33 such as
superquadrics34 and simplex surfaces.35 Volumetric models
such as finite elements (FE) with dynamic motion equations
were also used in Refs. 17 and 36. Gerard et al.37 used a statis-
tical motion model learned from the tagged MRI to extend the
3D simplex surface model for motion tracking of echocardio-
graphic sequences. Metz et al.38 used a 4D statistical model
estimated by principal component analysis to predict patient-
specific cardiac motion. Wang et al.39 tracked myocardial sur-
face by maximizing the likelihood of a combined intensity
model and a two-step motion prediction model, which was
learned in advance. Comaniciu et al.40 proposed a Kalman
filter-based information fusion framework for shape tracking
with a probabilistic subspace model constraint. McEachen
et al.41 used an adaptive filter to estimate the parameters of
a harmonic series based temporal model by minimizing the
error between the correspondence on image contours.

In intensity-based motion estimation methods, the trans-
formation is usually represented by a continuous function.
The temporal smoothness of the cardiac motion is usually
taken into account in three ways. First, spatiotemporally
smooth transformations38, 42–46 are used to represent the de-
formation functions. Second, the spatial transformations at
different time points are regularized by constraints such as tra-
jectory smoothness, inverse consistency, and transitivity.47–51

Third, diffeomorphisms are used since they are intrinsically
temporally smooth and topology preserving.52–55 For the last

approach, the velocity field is estimated instead of the dis-
placement field.56–58 The transformation is temporally smooth
and one-to-one if the velocity field is smooth.59

For both model-based and intensity-based methods, mo-
tion tracking is formulated as a registration problem in which
an energy function consisting of a similarity term and a reg-
ularization term is optimized. The similarity measurement
of the image sequences is usually adopted in two strategies
according to how the reference frame is chosen. The first
strategy considers the similarity between a fixed reference
frame and all subsequent frames unwarped to it,42, 44, 47, 49–51, 60

which we call the reference-to-following approach. The re-
sult is usually biased toward the reference frame, and is
error-prone due to the decorrelation and dissimilarity be-
tween distant frames such as end-diastole (ED) and end-
systole (ES) frames.61 The second strategy evaluates the sim-
ilarity between consecutive frames,6, 25, 27, 28, 62 which we call
the frame-to-frame approach. It has the advantage that con-
secutive frames have high correlation. Some modified meth-
ods based on these two strategies have also been proposed. In
Metz et al.,38 a global reference-to-following similarity mea-
surement was used to adaptively update the reference image
as the average of all unwarped subsequent frames. In Yig-
itsoy et al.,43 a groupwise similarity measurement was used
to minimize the summed SSDs between any two frames un-
warped into the reference coordinate. In De Craene et al.,58 a
weighted sum of frame-to-frame and reference-to-following
similarity measurements was used to take advantages of both
methods. However, decorrelation between distant frames still
exists in these improved measurements.

In our work, we proposed a temporally consistent diffeo-
morphic motion estimation method with similarity measure-
ment evaluated at multiple consecutive frames. The transfor-
mation is spatiotemporally smooth because it is defined as
the integral of a series of spatiotemporally smooth velocity
fields. We used a compromise strategy between the reference-
to-following and frame-to-frame methods for similarity mea-
surement by using multiple (not just two) consecutive frames.
As a result, there is less bias toward a fixed reference frame,
and less decorrelation between distant frames. The use of
multiple consecutive frames to estimate the velocity field also
leads to improved temporal smoothness compared with the
frame-to-frame method. In our experiments, we chose four
consecutive frames for a balance of good temporal consis-
tency, reduction of bias, and computation efficiency. Com-
pared to the reference-to-following methods, our estimated
transformation has higher fidelity with respect to the local
image frames because it minimizes the local intensity consis-
tency error (ICE), defined in Sec. 2.B, of several consecutive
frames. Compared to the frame-to-frame method, our method
has higher temporal consistency because it uses more consec-
utive frames. Experiments with simulated and real datasets
showed improved performance.

Preliminary results of the method were presented in a con-
ference paper.63 In this paper, we extended our early work ex-
tensively by validating the proposed method thoroughly with
simulated, ex vivo, in vivo, and human 3D image sequences.
The paper is organized as follows. Section 2 describes our
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method. In Sec. 3, the datasets and experiments are described
in detail and in Sec. 4 the results are presented. Our discussion
and conclusion are presented in Sec. 5.

2. METHODS

We first introduce the framework for diffeomorphic regis-
tration of two frames. Then we extend it to motion estimation
of image sequences using our proposed intensity consistency
error similarity measurement that involves multiple consecu-
tive frames.

2.A. Parameterized diffeomorphic registration

We define a transformation φ(x, t), t ∈ [0, 1], x∈�⊂
Rd (d =2, 3) with smooth velocity field v(x, t) using the dif-
ferential equation dφ

dt
= v(φ(x), t),φ(x, 0) = x. It has been

proven that if v(x, t) is smooth with a differential operator L in
a Sobolev space V , the transformation φ(x, t) defines a group
of diffeomorphisms with t varying from 0 to 1.59 The diffeo-
morphic image registration is stated as a variational problem,
that given two images I0 and I1, to find an optimal velocity
field v̂ which minimizes an energy functional consisting of a
time integral of summed square difference (SSD) functions
between the unwarped images of I0(φt,0(x)) and I1(φt,1(x)) at
each time point t and a distance metric between transforma-
tions φt,0(x) and φt,1(x),64

v̂ = arg inf
v∈V

λ

∫ 1

0
||v(x, t)||2V dt

+
∫ 1

0

∫
�

(I0(φt,0(x)) − I1(φt,1(x)))2dxdt, (1)

with λ being the weight to balance these two energies, φt,0(x)
and φt,1(x) being the transformations from time t to 0 and
from t to 1. The optimal velocity field satisfies the Euler-
Lagrange equation of the variational functional in Eq. (1). A
direct solution for the partial differential equation (PDE) (the
Euler-Lagrange equation) is computationally expensive.52 Al-
ternatively, a parameterized representation of the velocity
field can be adopted,58, 65 where the velocity fields are rep-
resented with a series of 3D or a 4D B-spline function. The
transformation is the integral of the velocity field and can be

approximated at discretized time points by using Euler for-
ward integral with assumption that the velocity is piecewise
constant within each time step.

In our work, we use a series of B-spline functions to pa-
rameterize the velocity field and the B-spline function at time
point tk, defined as v(x, tk) = ∑

i ci;kβ(x − xi), with ci;k be-
ing the B-spline control vectors on a uniform grid of xi at tk
and β(x − xi) being the 3D cubic B-spline kernel function,
which is the tensor product of the 1D B-spline functions. De-
note φk = φ(x, tk) as the transformation from t0 to tk, because
the velocity is piecewise constant within each time step, we
have

φk =φk−1 + v(φk−1, tk−1)�t

= (I d +vk−1�t)◦φk−1, (k=1, 2, . . . , Ns,�t=1/Ns),

(2)

with φ0(x) = x, Ns, and �t being the total number of
time steps of the discretized velocity field and the length
of each time step, respectively, and ◦ being the composi-
tion operator. The second term in Eq. (1) is discretized as∑Ns

k=0

∫
(I0(φk,0) − I1(φk,Ns

))2dx, which is a sum of SSD
functions of the unwarped images I0(φk,0) and I1(φk,Ns

) at
all time points tk(k = 0, 1,. . . , Ns). The forward transfor-
mation φk,Ns

from tk to tNs
can be represented as φk,Ns

= (I d + vNs−1�t) ◦ . . . ◦ (I d + vk�t). By considering the
reverse motion whose velocity is −v(x, t) at each time, the
backward transformation from time tk to t0 can be represented
as φk,0 = (I d − v1�t) ◦ . . . ◦ (I d − vk−1�t). The registra-
tion energy functional Eq. (1) is then parameterized as a func-
tion of a group of parameters {ci;k}(k ∈ [0, Ns]) which can be
optimized with the gradient descent method.65

2.B. Diffeomorphic motion estimation
with ICE for image sequences

Assume that we have an image sequence In(n = 0, 1, 2, . . . ,
Nf). We define a flow of diffeomorphisms φ(x, t), t ∈
[0, Nf ], x∈�⊂Rd (d = 2, 3) with smooth velocity field
v(x, t) using the differential equation dφ

dt
= v(φ(x, t), t),

φ(x, 0) = x. We use Ns time steps for the velocity field
between each two consecutive frames. Figure 1 shows the
principle of intensity consistency along the point trajectories

FIG. 1. The intensity of a point along the trajectory should be preserved. The optimal velocity field should minimize the difference of evolving image Ik(φt,tNs k
),

Ik+1(φt,tNs (k+1) ), Ik−1(φt,tNs (k−1) ), Ik+2(φt,tNs (k+2) ) at time point t (t ∈ [k, k + 1]). We use two time steps (Ns = 2) between each consecutive frames for
illustration.
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at a random time point (For convenience of illustration, we
explain our method by using Ns = 2 for an example, but
the idea behind it is the same when other integers are used).
Assume that in the image sequence a point x in a virtual plane
Iv at t moves through four consecutive frames Ik−1, Ik, Ik+1,
Ik+2(t ⊂ [k, k + 1]). We use the notation φt,tNs k

to indicate the
transformation which maps x from t to tNsk . Then the trajec-
tories of point x in the four consecutive frames are φt,tNsk

(x),
φt,tNs(k+1) (x), φt,tNs(k−1) (x),φt,tNs(k+2) (x). Their intensity values
Ik(φt,tNsk

), Ik+1(φt,tNs(k+1) ), Ik−1(φt,tNs(k−1) ), Ik+2(φt,tNs(k+2) ) in
the four frames should be preserved since they are from the
same physical point. Theoretically, the point x at t can be
replaced by any time point along the trajectory and the four
frames can be extended to all image frames in the sequences.

In our implementation, we consider up to four frames
as a compromise of rich intensity consistency context and
computational efficiency (at the beginning and end of the
sequence, three images are considered). On the one hand,
considering consistency between two frames before and after
a time point gives us reasonable temporal constraints on the
point trajectories. On the other hand, consideration of more
frames produces correspondence ambiguity due to speckle
decorrelation. We define an energy term to measure the ICE as

EICE(t) =
∫

�

((Ik(φt,tNs k
) − Ik+1(φt,tNs (k+1) ))

2

+ (Ik−1(φt,tNs (k−1) ) − Ik+1(φt,tNs (k+1) ))
2

+ (Ik(φt,tNs k
) − Ik+2(φt,tNs (k+2) ))

2)dx,

× (t ∈ [k, k + 1)). (3)

The ICE function at time point t measures consistency of
the intensity values of local frames under a velocity field.
The optimal velocity field is estimated by minimizing a
variational energy

v̂ = arg inf
v∈V

λ

Nt∑
k=0

||v(x, tk)||2V +
Nt∑

k=0

EICE(tk), (4)

with Nt = Ns∗Nf being the total number of time points used
in the velocity field. The first term regularizes the velocity
field to make it spatiotemporally smooth, and the second
term assures that the optimal velocity field minimizes the
sum of the local intensity consistency error at all time points
tk(k = 0, 1, 2, . . . , Nt).

We use an adaptive scheme to choose the value of Ns. It is
initialized as 2. The B-spline parameters are checked at each
iteration to make sure that the transformation between each
two time points, i.e., I d + vk�t , is diffeomorphic.66 If the

condition is broken due to large deformation between two
frames, the number of Ns will be doubled to tolerate larger
deformation, while the transformation between time points is
diffeomorphic.

2.C. Spatiotemporal velocity field regularization

In order to assure that φ(x, t) is diffeomorphic, we need
to define v(x, t) to be spatiotemporally smooth under a
differential operator L. The linear operator we choose is:
L = ∇2(·) + wt

d
dt

, with ∇2( · ) being a Laplacian operator, d
dt

being the time derivative, and wt being a constant weight.
In the discrete time form of velocity field, the first term of
Eq. (4) is approximated by

Ereg =
Nt∑

k=0

∑
x∈�

|∇2vk|2

+wt

Nt∑
k=1

∑
x∈�

|vk(x + vk−1�t) − vk−1|2, (5)

with vk = v(x, tk). The first term makes the velocity field spa-
tially smooth, which is denoted as Esr. The second term keeps
the particle velocity smooth and it is indicated by Etr. The
overall effect is to make the velocity field spatiotemporally
smooth.

2.D. Optimization

We use a steepest descent method to optimize the parame-
terized function. The derivative of the total registration energy
with respect to the transformation parameters are calculated
analytically.

Due to the fact that the ICE at each time point tk is made
up of SSD functions of the three closest pairs of frames across
it, the derivative of the ICE energy term in Eq. (4) with re-
spect to the B-spline parameters is equalized to the sum of the
derivative of the three SSD functions. Suppose we have two
images I0 and I1, we want to estimate the derivative of SSD
energy term E0,1(tj ) = ∫

�
(I0(φj,0(x)) − I1(φj,Ns

(x)))2dx at
each tj with respect to a series of discrete velocity field B-
spline parameters vk(0 ≤ k ≤ N1), with Ns the total number
of time steps. We know from Sec. 2.A that φj,Ns

is only af-
fected by the velocity field vk with j ≤ k ≤ Ns − 1, and
φj,0 is only related to −vk with 0 ≤ k ≤ j − 1. If we de-
note ci,m;k as the m component (m ∈ {x, y, z}) of the ith B-
spline parameter of vk , the derivative of E0,1(tj) with respect to
ci,m;k is

∂E0,1(tj )

∂ci,m;k
=

⎧⎪⎨
⎪⎩

∑
�′(I1(φj,Ns

) − I0(φj,0))∇mI1(φj,Ns
) ∂φj,Ns

∂ci,m;k
if (j ≤ k ≤ Ns − 1),

∑
�′(I0(φj,0) − I1(φj,Ns

))∇mI0(φj,0) ∂φj,0

∂ci,m;k
if (0 ≤ k ≤ j − 1)

(6)
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with �′ being the local support of the B-spline kernel func-
tion, ∇m( · ) being the mth component of the image gradi-
ent, and ∂φj,Ns

∂ci,m;k
and ∂φj,0

∂ci,m;k
being the derivative of the concate-

nated B-spline function with respect to the B-spline parame-
ters which are calculated using chain rule.57, 65 By replacing
image pair of I0 and I1 with the three pairs of images used
in intensity consistency error at each tk, we get the derivative
of the total similarity metric with respect to the velocity field
parameters.

For the derivative of the spatial and temporal regularization
energies with respect to ci,m;k, we have

∂Esr

∂ci,m;k
=

Nt∑
k=0

∑
x∈�′

(∇2vk)β ′′
m(x − xi), (7)

with β ′′
m(·) being the second derivative of the B-spline func-

tion with respect to m component. Considering that the dis-
placement between two time steps is small, we have

∂Etr

∂ci,m;k
= wt

Nt∑
k=0

∑
x∈�′

(2 ∗ vi,m;k − vi,m;k−1 − vi,m;k+1)

×β(x − xi). (8)

The registration energy can be optimized by starting from
initial position and descending along the negative gradi-
ent direction at each iteration until there is no significant
decrease.

2.E. Implementation

In our experiments, we used a series of B-spline transfor-
mations with grid spacing of 10 voxels in each dimension to
represent the velocity field. The values of λ and wt were cho-
sen to be 0.1 and 0.001 to allow the range of the ICE function
and the regularization term to be comparable. The algorithm
was implemented with Matlab67 under a Windows XP 64-bit
system on an eight-core 2.13 GHz Xeon CPU machine with
30 GB RAM. For 2D image sequence of 11 frames with a size
of 274 × 192, it took about 10 min to estimate the motion
with single core computing. For 3D sequences, the most fre-
quently called functions such as the 3D B-spline interpolation
of the displacement field and the trilinear interpolation of the
image have been implemented by using OpenMP (Ref. 68) to
effectively support the multicore processors. The typical exe-
cution time for a 3D sequence of 15 frames with frame size of
137 × 96 × 124 was about 2 h.

3. EXPERIMENTS AND DATASETS

We use simulated datasets and images of an ex vivo rab-
bit heart phantom, in vivo open-chest pig heart datasets,
and human echocardiographic sequences to validate our
method.

3.A. Simulated datasets

Both 2D and 3D sequences were generated in the simu-
lated data experiments. In 2D test sequences, a long axis left

ventricle (LV) ED frame with a size of 274 × 192 pixels was
used as a reference frame. This frame was then deformed with
a series of known continuous displacement field functions.
The deformation was symmetric along the LV long axis to
simulate the myocardial contraction along the radial and lon-
gitudinal directions. The displacement functions in x and y
directions are defined as

fx(i)=axsin
π (x − xc)

2rd

sin

(
iπ

Nf

)
, (9)

fy(i)= aysin
π (y − yapex)

2(ybase − yapex)

×
(

sin

(
iπ

Nf

+ π

16

)
− sin

π

16

)
, (10)

with xc, rd being the short axis center coordinate and
the average LV short axis radius, yapex and ybase being
the height of base and apex, Nf and i being the num-
ber of frames and the frame index, and ax, ay being the
magnitudes of displacement field which are the largest shift
in axial and longitudinal directions. An image sequence with
Nf + 1 frames (including the reference frame) was generated
with i varying from 0 to Nf to simulate the motion in one car-
diac cycle from ED to ES and then back to ED, where i =
0 corresponds to the reference frame itself. Three sequences
each with 11 frames were simulated with multiplicative noise
added to each frames. The noise was sampled from a uni-
form distribution with zero mean and variances 0.06, 0.08,
and 0.10, respectively, for each image sequence. The gray
level of the original reference frame was within [0,1] and that
of each simulated frame was rescaled to [0,1] after adding
noise. The magnitude parameters ax and ay were set to be 5
and 15, respectively. The reference frame with geometrical
parameters for simulation and the 6th simulated frame with
noise variance 0.10 are shown together with the ground truth
displacement field in Fig. 2.

In 3D test sequences, an ED volume frame was used as
a reference. It was deformed with a spatiotemporal deforma-
tion, and a series of frames were generated. We assume that
the LV short axis planes are parallel to xy coordinate plane
and the long axis is along z direction. The displacement field
functions fx, y in xy plane and fz in z direction are defined as

fx,y(i) = axysin
π |xp − xc|

2rd

sin

(
iπ

Nf

)
· −→

n , (11)

fz(i)= azsin
π (z − zapex)

2(zbase − zapex)

×
(

sin

(
iπ

Nf

+ π

16

)
− sin

π

16

)
, (12)

with (x, y, z) being the coordinate of each point, xp being
the coordinate projected into xy plane, xc being the long axis
projected in the xy plane, rd being the average radius of the
LV short axis plane, −→

n being the unit vector from the short
axis plane center pointing to xp, zapex, and zbase being the
height of base and apex plane, Nf and i being the number of
simulated frames and the frame index, and ax, ay being the
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FIG. 2. The reference frame and the 6th frame in the variance 0.1 sequence and the ground truth displacement field.

magnitudes of displacement fields which are the largest defor-
mation in radial and longitudinal directions. Three sequences
with noise variances of 0.06, 0.08, 0.10 were simulated us-
ing the same noise model as in 2D experiments. The refer-
ence volume size is 137 × 96 × 124 voxels and number of
frames is 11. The magnitude parameters axy and az are set
to 5 and 6, respectively. Figure 3 shows the reference frame,
6th simulated frame, and the corresponding displacement

fields in orthogonal slices of the sequence with noise variance
of 0.1.

3.B. Ex vivo rabbit heart phantom datasets

We validated our method with real datasets from rabbit
heart phantom with sonomicrometers69 attached to the my-
ocardial wall. Sonomicrometry, used as ground truth, is a
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FIG. 3. From the top to bottom, the first row shows the three orthogonal view of the reference frame (ED). The second row shows those of the 6th frame (ES).
The third row shows the displacement fields in the orthogonal planes between these two frames.
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FIG. 4. The three center orthogonal views of the ED frame of the rabbit model. The two points in the long axis view shows the location of the two sonomi-
crometers on the phantom myocardium.

method to measure the distance between the sono (piezoelec-
tric) crystals based on the speed of acoustic signals through
the medium they are embedded in. In this test, two sono
crystals were implanted on the apical and mid myocardium
of the phantom (Fig. 4). Freshly harvested rabbit hearts were
used. A balloon was inserted into the phantom and connected
to a pump which produced systole and diastole phases peri-
odically. The stroke volume can be varied to control the de-
formation of the myocardium. It varied uniformly from 1ml to
5ml with 1 ml increment. The image sequences were acquired
using Philips IU22 system with an X6-1 transducer. Each se-
quence had ten frames with frame size 109 × 129 × 129 and
voxel size 0.57 mm3. The position of the crystals in the ED
frame was manually located by a radiologist. Five sequences
with varying stroke volume were acquired and the peak strain
of the two crystals, which was defined as the largest relative
displacement change to their initial distance within one heart
cycle, were recorded with each sequence. We evaluated the
two points peak strain by using our method and compared the
estimated results with the sonomicrometry records.

3.C. In vivo open-chest pig heart datasets

We validated our method with image sequences of two
open-chest adult pigs with sonomicrometry. The image se-
quences were acquired using a Philips IE33 system with an
X7 cardiac probe placed directly on the cardiac apex, sepa-
rated by a small piece of fresh liver as standoff (2–4 cm). Sec-
tor width and depth were adjusted to allow inclusion of LV
walls within the image region. For each pig, three sequences
were acquired to study the LV motion under different steady
states. The first sequence was the baseline under normal con-
ditions. The second sequence was acquired, while the inferior
vena cava (IVC) was occluded by a pneumatic occluder until
the preload was dropped to the ED pressure level. The third
sequence was a myocardial ischemia case which was cap-
tured after the left anterior descending (LAD) coronary artery
was ligated for 5–7 min. The number of frames for each se-
quence varied from 13 to 21 and the typical frame size was
171 × 155 × 120 with voxel size of 0.836 mm3. The ED and
ES frames of a baseline sequence are shown in Fig. 5 as an

FIG. 5. The real pig baseline dataset. The top row shows the orthogonal views of the end-diastole frame. The bottom row shows those of the end-systole frame.
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FIG. 6. The locations of six crystals on the myocardium.

example. For the first pig, we implanted six sonomicrometers
in the epicardium for validation of the tracking accuracy.
Atraumatic surgical and fine suturing techniques were used
to fix the crystals in the epicardium with minimal damage.
All the experiments were approved by the OHSU Institu-
tional Animal Care and Use Committee. Three crystals (S1–
S3) were implanted on the myocardium in the short axis plane
with 20% long axis height from the base, and the other three
crystals (S4–S6) were implanted in the short axis plane which
was in 80% long axis height (Fig. 6). The crystal positions in
the ED frames were manually located by a radiologist and
their positions in other frames were propagated by the es-
timated transformation. The relative coordinates of the six
crystals with one as the reference varied with time, and were
recorded by sonomicrometry. The distance between crystals
measured in the sonomicrometry was used as ground truth to
compare with that estimated from the echocardiography.

3.D. Human datasets

We used the image sequences from an open access
database for motion tracking.70 The 3D echocardiography se-
quences of 15 healthy subjects were acquired by using an
IE33 system with an X3-1 transducer. The typical frame size
was 208 × 224 × 208 with voxel size 0.82 × 0.82 × 0.72 mm
and the number of frames varied from 11 to 24. For each sub-
ject, a 3D tagged MRI sequence was also acquired by using
a 3T Philips Achieva system. Twelve landmarks were tracked
in the tagged MRI sequences by two expert observers. The
landmarks in the tagged MRI were then transformed into the
3D echocardiography coordinate by using point based regis-
tration (Fig. 7). The transformed tagged MRI landmarks were

then used as ground truth to validate the estimated motion
from echocardiography. Fifteen subjects were used for our
validation (V1–V16, V3 was not included).

4. RESULTS

We compared our method with two recently developed dif-
feomorphic motion estimation methods. The first one is a dif-
feomorphic B-spline method with transformation transitivity
as a temporal constraint. The constraint ensures that in each
three consecutive frames, the composition of the transforma-
tions obtained from each two consecutive frame registrations
is equal to the transformation from the first frame to the third
one.51 We refer to it as the transformation transitivity con-
straint (TTC) method. The second one is the temporal dif-
feomorphic free form deformation (TDFFD) method, which
optimizes a spatiotemporal B-spline velocity field function
by minimizing the SSD between the reference to each of the
unwarped subsequent frames.58 The same regularization pa-
rameters were used for our method and the TTC method.
For the TDFFD method, identical spatial spacing of B-spline
was used in the 4D velocity field, and the temporal spacing
was equal to the time step between two consecutive frames.
All three methods were compared in the simulated datasets.
In the rabbit heart dataset, we compared all the three meth-
ods with sonomicrometry. In the open-chest pig and hu-
man volunteer experiments, we compared our method with
the TDFFD method since they were found to have closer
performance.

4.A. Simulated datasets

We compared our method with TTC and TDFFD methods
by tracking the trajectories of the points on the myocardium
during the motion process. For 2D sequences, we used a re-
gion of interest in the myocardium as an example to show the
tracking results. The region of interest is displayed as a green
rectangle in the left figure of Fig. 2. Figure 8 shows the 11-
frame trajectories of nine tracked points in this region for the
sequence with noise variance of 0.06. The ground truth tra-
jectories are overlaid for comparison. We can see, generally,
that coordinates of the points in each time step in our method
are closer to the ground truth. Larger errors can be seen in the
right part of the trajectories in the TTC method. In the TDFFD

FIG. 7. The three orthogonal view of ED frame of one subject and the 12 landmark positions from one expert observer.
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FIG. 8. Trajectories of nine points in 11 frames in TTC method (left), TDFFD method (middle), and our method (right) (A rectangle shows the bounding box
of these nine points in Fig. 2.) The ground truth trajectories are overlaid with the estimated curves for comparison. The arrow shows the velocity at each time
step.
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FIG. 9. The motion estimation errors (mean and std unit in pixel) in x (left) and y (right) coordinates in the TTC method (dashed line), TDFFD method (dash-dot
line), and our method (solid line).
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FIG. 10. The transformation estimation errors (mean and std unit in voxel) of x (left), y(middle), and z (right) coordinates in the TTC method (dashed line),
TDFFD method (dash-dot line), and our method (solid line) in each frame.

Medical Physics, Vol. 41, No. 5, May 2014



052902-10 Zhang et al.: Temporally diffeomorphic cardiac motion estimation by ICE minimization 052902-10

FIG. 11. Two point strain varying with time under different stroke volume from sonomicrometry (top left), TTC method (top right), TDFFD method (bottom
left), and our method (bottom right).

method, larger errors appear in time steps near the end of the
trajectories. We use the SSD between the estimated displace-
ment fields and the ground truth in each frame to evaluate
the transformation estimation errors. We show an example in
Fig. 9 of the errors in both x and y coordinates in the sequence
with noise variance of 0.08. We can see both the mean and

FIG. 12. The two point peak strains under different stroke volume estimated
from sonomicrometry, TTC method, TDFFD method, and our method.

variance in x and y directions in our method are smaller than
the other two methods.

We calculated the mean magnitude of transformation er-
rors in the sequences of three noise variance using the three
methods. In our method, the errors were 0.225, 0.267, and
0.312, while in the TTC method and the TDFFD method

FIG. 13. An illustration of the 16 AHA segments.
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FIG. 14. The radial, circumferential, and longitudinal strains of the 16 AHA segments in the TDFFD method (first and third rows) and our method (second and
fourth rows) estimated from two baseline sequences. The horizontal axis is the normalized cardiac time, the vertical axis is the strain. The markers used for the
16 AHA segments are shown in the bottom of the figure.
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TABLE I. The correlations between the estimated pairwise distances and those from the sonomicrometry, with TDFFD method (numbers to the left), and our
method (numbers to the right) in the baseline sequence. Numbers S1–S6 index the six sonomicrometry markers.

S1 S2 S3 S4 S5 S6

S1 1.0/1.0 0.807/0.707 0.710/0.968 0.834/0.970 0.802/0.881 0.950/0.967
S2 0.807/0.707 1.0/1.0 0.780/0.726 0.946/0.979 0.823/0.929 0.907/0.828
S3 0.710/0.968 0.780/0.726 1.0/1.0 0.928/0.988 0.852/0.928 0.960/0.978
S4 0.834/0.970 0.946/0.979 0.928/0.988 1.0/1.0 0.989/0.981 0.855/0.945
S5 0.802/0.881 0.823/0.929 0.852/0.928 0.989/0.981 1.0/1.0 0.625/0.727
S6 0.950/0.967 0.907/0.828 0.960/0.978 0.855/0.945 0.625/0.727 1.0/1.0

they were 0.329, 0.365, 0.403, and 0.314, 0.347, 0.392,
respectively.

For 3D datasets, we show in Fig. 10 the errors in x, y, and
z coordinates, for the sequence of noise variance 0.06. We
can see that the variance of the error becomes larger toward
the end of the sequence in the TTC method. In the TDFFD
method, the means of the transformation estimation errors in
three coordinates increase, which means the results were bi-
ased toward the reference frame. In our method, the mean
and variance of the transformation estimation error change
smoothly with the frame number. The average transforma-
tion estimation errors at three noise levels were 0.255, 0.274,
0.293 in our method and 0.322, 0.354, 0.391 in the TTC
method and 0.279, 0.301, 0.325 in the TDFFD method.

4.B. Ex vivo rabbit phantom datasets

In the rabbit phantom test, the two point strain of the crys-
tals in five echocardiography sequences with stroke volume
uniformly varying from 1 ml to 5 ml were estimated and
compared with those of the sonomicrometry. Figure 11 shows
the two point strains varying in a cardiac cycle under differ-
ent stroke volumes by sonomicrometry, TTC, TDFFD, and
our method. We can see that two point strains curve from
our method were closer to the ground truth of sonomicrom-
etry than were those from the TTC and TDFFD methods.
Figure 12 shows the estimated two point peak strains vary-
ing with the stroke volume in sonomicrometry, TTC, TDFFD,
and our method. We can also see that our method has closer
two point peak strains with sonomicrometry, especially in the
sequence with stroke volume 5 ml.

4.C. In vivo open-chest pig heart datasets

For the in vivo open-chest pig heart datasets, we compared
strain derived from our method with that from the TDFFD

method. We use the Green-Lagrangian strain71 which mea-
sures how much the displacement function varies locally in a
given direction. The myocardium strains were evaluated along
the radial, circumferential, and longitudinal directions by us-
ing the transformation obtained.6 We developed a program
which can semiautomatically label the endocardium and epi-
cardium contours in the short axis image planes between the
mitral valve and the apex. For each contour, a closed curve
parameterized by cubic B-spline was fitted to the manually
picked boundary points around the myocardium. The con-
tours were then resampled uniformly by a constant number of
points along them. The endocardium and the epicardium sur-
faces were generated by connecting all their contours using
triangles. Each vertex in both endocardium and epicardium
was then assigned a segment attribute. We used the AHA my-
ocardium segments convention72 and the strains of 16 my-
ocardium segments were evaluated as the average strain in
each segment. The 17th (apex) segment was excluded be-
cause the directions were usually unstable. An example for
the 16 AHA segments is shown in Fig. 13. The radial, cir-
cumferential, and longitudinal strains of the two baseline se-
quences are shown in Fig. 14. From the strain plots, we can
see the motion consistency between segments is improved in
our method. In the TDFFD method, the estimated strains after
ES are more divergent. This is due to the larger intensity vari-
ations between the reference image with distant frames. As a
result, the displacement fields obtained have larger estimation
errors.

We compared the performance of the two algorithms
by computing the correlations between the time varying
functions of estimated pairwise distances from echo and
those from sonomicrometry. The results for the baseline,
IVC occlusion, and LAD ligation sequences are shown in
Tables I, II, and III respectively. Numbers S1–S6 are the
indices of the sono crystals. Each table entry shows the

TABLE II. The correlations between the estimated pairwise distances and those from the sonomicrometry, with TDFFD method (numbers to the left) and our
method (numbers to the right) in the IVC occlusion sequence. Numbers S1–S6 index the six sonomicrometry markers.

S1 S2 S3 S4 S5 S6

S1 1.0/1.0 0.857/0.955 0.874/0.841 0.853/0.928 0.759/0.891 0.906/0.880
S2 0.857/0.955 1.0/1.0 0.727/0.810 0.946/0.976 0.913/0.927 0.817/0.876
S3 0.874/0.841 0.727/0.810 1.0/1.0 0.932/0.933 0.856/0.889 0.890/0.893
S4 0.853/0.928 0.946/0.976 0.932/0.933 1.0/1.0 0.917/0.898 0.921/0.981
S5 0.759/0.891 0.913/0.927 0.856/0.889 0.917/0.898 1.0/1.0 0.760/0.732
S6 0.906/0.880 0.817/0.876 0.890/0.893 0.921/0.981 0.760/0.732 1.0/1.0
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TABLE III. The correlations between the estimated pairwise distances and those from the sonomicrometry, with TDFFD method (numbers to the left), and our
method (numbers to the right) in the LAD ligation sequence. Numbers S1–S6 index the six sonomicrometry markers.

S1 S2 S3 S4 S5 S6

S1 1.0/1.0 0.972/0.975 0.967/0.977 0.731/0.870 0.987/0.986 0.979/0.960
S2 0.972/0.975 1.0/1.0 0.826/0.882 0.957/0.976 0.640/0.824 0.571/0.696
S3 0.967/0.977 0.826/0.882 1.0/1.0 0.963/0.981 0.829/0.935 0.630/0.901
S4 0.731/0.870 0.957/0.976 0.963/0.981 1.0/1.0 0.976/0.981 0.979/0.986
S5 0.987/0.986 0.640/0.824 0.829/0.935 0.976/0.981 1.0/1.0 0.926/0.919
S6 0.979/0.960 0.571/0.696 0.630/0.901 0.979/0.986 0.926/0.919 1.0/1.0
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FIG. 15. The box plots of the correlation values in our method and the
TDFFD method for the baseline, IVC occlusion, and LAD ligating cases.
The bottom and top box boundary and the center line show the first quan-
tile, third quantile, and median, respectively. The ends of the whiskers show
the minimum and maximum of each case. For each dataset in each method
30 correlation values are averaged, except the six diagonal correlation value
which is one.

correlation of the time function of pairwise crystal distance
from sonomicrometry with that estimated from echo in the
TDFFD (left side) and our method (right side). We can see
that most of the correlation values are improved in our method
in all three steady states. The box plots of the correlation val-
ues in the proposed and TDFFD methods for the three steady
states are shown in Fig. 15. The increase of the average cor-
relations in our method than TDFFD method is more than 5%
for our datasets.

4.D. Human datasets

We used the landmarks labeled by one observer as ground
truth and the target registration error73 was used for the vali-
dation of tracking errors. The target registration error of the 12
landmarks in the ES and the last frames were evaluated in our
experiments.74, 75 We compared our method with the modified
TDFFD method which used the weighted first-to-following
and frame-to-frame similarity measurements. We also evalu-
ated the results from a frame-to-frame method for compari-
son. The tracking errors in the three methods are shown in
Fig. 16. Our method generally has smaller average tracking
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FIG. 16. The tracking error (mean and std) of the seven subjects in the TDFFD method, our method, and the frame-to-frame method.
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error and variance than the TDFFD method and the frame-to-
frame method.

5. DISCUSSION AND CONCLUSION

We proposed a diffeomorphic motion estimation method
with temporal smoothness by constraining the velocity field
to have maximum local intensity consistency within mul-
tiple image frames. Simulated and real cardiac sequences
tests showed that results using our method are more accurate
than other competing temporal diffeomorphic methods. Tests
with sonomicrometry showed that the tracked crystal posi-
tions have good consistency with the ground truth and our
method has higher accuracy than the TDFFD method. Val-
idation with an open access human cardiac dataset showed
that our method has smaller feature tracking errors than both
TDFFD and frame-to-frame methods. From the human car-
diac dataset test, we see that even when a weighted frame-to-
frame and first-to-following similarity measurement is used,
the dissimilarity between distant frames may cause larger fea-
ture tracking errors.

Our method extends the frame-to-frame motion estima-
tion method to multiple frames. With more frames included
into the similarity measurement, the similarity is more ro-
bust against noise than the frame-to-frame method. Further-
more, the ICE similarity measurement is defined on multiple
time points between four consecutive frames, to allow the four
frames unwarped to this time point to be as similar as possible.
At each time point, the estimated spatiotemporal transforma-
tion maximizes the similarity of the four consecutive frames
around it. The transformation is consistent with two frames
before and after it while preserving good temporal smooth-
ness. This introduces more intensity consistency for the spa-
tiotemporal transformation than the frame-to-frame method
and the TDFFD method.

One factor to consider is the number of consecutive frames
to include in ICE. This will vary for different types of data,
and will depend on several factors, such as the level of decor-
relation from frame to frame and computation load. Inclu-
sion of distant frames introduces uncorrelated intensity into
similarity measurements. If only two frames are considered
(the frame-to-frame case), the transformation errors tend to
accumulate faster because the transformation parameters are
only estimated by optimizing the similarity of two consecu-
tive frames, instead of optimizing a groupwise similarity mea-
surement. In this sense, more frames will be beneficial. In ad-
dition, more frames will lead to better temporal consistency.
However, inclusion of more frames will increases the compu-
tation time. In our test, we use four frames as a compromise
of these factors.

Our future research topics include the study of region-
based intensity consistency between consecutive frames, and
the design of improved groupwise similarity measurement.
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