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Purpose: Tracking the progression of low grade tumors (LGTs) is a challenging task, due to their slow
growth rate and associated complex internal tumor components, such as heterogeneous enhancement,
hemorrhage, and cysts. In this paper, the authors show a semiautomatic method to reliably track the
volume of LGTs and the evolution of their internal components in longitudinal MRI scans.
Methods: The authors’ method utilizes a spatiotemporal evolution modeling of the tumor and its
internal components. Tumor components gray level parameters are estimated from the follow-up scan
itself, obviating temporal normalization of gray levels. The tumor delineation procedure effectively
incorporates internal classification of the baseline scan in the time-series as prior data to segment and
classify a series of follow-up scans. The authors applied their method to 40 MRI scans of ten patients,
acquired at two different institutions. Two types of LGTs were included: Optic pathway gliomas
and thalamic astrocytomas. For each scan, a “gold standard” was obtained manually by experienced
radiologists. The method is evaluated versus the gold standard with three measures: gross total volume
error, total surface distance, and reliability of tracking tumor components evolution.
Results: Compared to the gold standard the authors’ method exhibits a mean Dice similarity volu-
metric measure of 86.58% and a mean surface distance error of 0.25 mm. In terms of its reliability
in tracking the evolution of the internal components, the method exhibits strong positive correlation
with the gold standard.
Conclusions: The authors’ method provides accurate and repeatable delineation of the tumor and its
internal components, which is essential for therapy assessment of LGTs. Reliable tracking of internal
tumor components over time is novel and potentially will be useful to streamline and improve follow-
up of brain tumors, with indolent growth and behavior. © 2014 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4871040]
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1. INTRODUCTION

Accurate quantification of gross tumor volume is an impor-
tant factor in the assessment of therapy response in patients
with brain tumors.1 For many types of brain tumors, such as
optic pathway gliomas (OPGs) and other forms of astrocy-
toma, it is also important to quantify the volume of the differ-
ent tumor components, e.g., cysts, enhancing patterns, edema,
and necrotic regions.2–4 Volumetric quantification over time
of gross total volume changes and internal tumor transforma-
tions serve as important measures for clinical decisions. The
need for an accurate and repeatable method for tumor volume

quantification is evident in low grade tumors (LGTs), where
the tumor growth rate is relatively slow5 and the follow-up
evaluation is based on small changes in the tumor and its in-
ternal components over time.

MRI is the method of choice for therapy assessment of
brain tumors. The most commonly used definitions of radi-
ological follow-up and response to treatment are based on
linear measurements defined by WHO, RECIST, MacDon-
ald, and RANO criteria.1, 6, 7 The main drawback of linear
measurements is that they do not reflect reliable volumetric
changes, when these occurred outside of the axes of the linear
measurements. In addition, they are highly user-dependent so
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(a) (b)

FIG. 1. Manual delineations of LGT internal components, performed by the
same observer, overlaid on a representative slice of T1c image from (a) a
baseline scan, and (b) a follow-up scan. Solid, enhancing and cyst compo-
nents are presented. Note that some of the LGT components boundaries were
delineated differently in each scan despite slight changes in the scans.

the comparison between two different imaging studies is dif-
ficult. Due to the variability among readers, the criteria spec-
ify large changes in linear measure that separate the differ-
ent categories of response assessment. Consequently, current
methods are less sensitive to detecting a response than a po-
tential quantitative method that can reliably detect a smaller
change. Finally, reliable tracking of the tumor’s internal com-
ponents’ evolution over time is almost impossible using these
criteria.

Manual quantification of brain tumor volume, although
considered the gold standard, is time consuming and
may suffer from inconsistencies of the delineated tumor
boundaries between and within observers over time.8 This
phenomenon, known as inter/intraobserver variability, may
mislead the evaluation of tumor progression and can re-
sult in improper treatment decisions. In addition, the in-
ter/intraobserver variability is likely to increase in cases
where tumor boundaries appear unclear due to the sur-
rounding tissues with overlapping signal intensity values,
the uneven tumor infiltration into nearby structures, and
the imaging partial volume effect. An example is shown in
Fig. 1.

A variety of automatic methods for the segmenta-
tion and classification of brain tumors have been recently
published.3, 9–12 The International Conference on Medical Im-
age Computing and Computer-Assisted Intervention (MIC-
CAI) hosts an annual Multimodal Brain Tumor Segmenta-
tion (BraTS) challenge,13, 14 in which different segmentation
strategies for brain tumors are evaluated. While effective,
most of these methods are evaluated for independent MR
scans and do not take into account prior information from pre-
vious scans of the same patient. Therefore, when applied on
two consecutive scans over time, they may not reproduce the
same tumor boundaries even when the scans are very similar
to each other and even when there is no actual change in the
tumor in those areas.

Quantification of longitudinal changes in brain MRI scans
has gained much attention in recent years.15–24 Some of these

methods register follow-up MR scans and analyze the changes
between the scans. Patriarche and Erickson22 present a gray-
level based change detection. Elliott et al.17 define a Bayesian
framework to overcome the registration artifact problem of
subtracting two consecutive scans. Angelini et al.15 address
the nonlinear contrast change between the two data sets
with normalization via midway histogram equalization. Chit-
phakdithai et al.16 simultaneously estimate the registration pa-
rameters and label the changes between two consecutive brain
scans to track metastatic brain tumors. Pohl et al.23 present a
pipeline method to segment a tumor in a set of longitudinal
scans based on user guided segmentation of the first scan.
Menze et al.10 and Konukoglu et al.25 present approaches
for modeling tumor growth in longitudinal images based on
a reaction-diffusion framework.26 Additional works of Das
et al.,27 Xu et al.,28 and Bernal-Rusiel et al.29 perform lon-
gitudinal analysis of volumetric changes of various structures
in the brain and the body.

An important issue in brain tumors analysis is the role of
various components of the within the tumor, e.g., necrotic,
enhancing, and cystic regions. While this issue is addressed
in BraTS (Refs. 13 and 14) and few other works,9, 30 track-
ing the tumor’s internal components over time has gained less
attention. Reliable follow-up of the evolution of the tumor’s
internal components (e.g., cyst, enhancing regions, edema)
serves as an important factor in the treatment efficacy eval-
uation. In many cases, the transformation of one component
into another indicates tumor progression or response to treat-
ment, even when the gross total volume of the tumor remains
the same.4

In this paper, we focus on the longitudinal assessment of
LGTs internal components. These tumors have a relatively
slow growth rate,31 and therefore require accurate and re-
peatable volumetric follow-up for therapy assessment. We
describe a new approach for the segmentation and internal
components classification of LGTs in longitudinal scans. The
basic premise of our method is that prior based knowledge of
baseline segmentation of the tumor components is essential
for the segmentation of the subsequent scan in the time series,
as it provides high-quality prior information for the following
scan.

Our previous publications32, 33 present a method for the
segmentation and internal components classification which
was restricted to OPG, based on its unique location in the
brain, in a single MR scan where no information is shared be-
tween time points. In this paper, we present a general method
for LGT internal components segmentation in longitudinal
studies that uses the segmentation of the previous time point
as a prior knowledge to track the evolution internal tumor
components reliably.

A brief description and preliminary results of the method
were published in a conference.34 In this paper, we extended
Sec. 2 to include detailed description of the theoretical models
and the estimation of their unknown parameters. In addition,
we expanded Sec. 3 to include new datasets with two types of
LGTs.

The main contributions of this paper are: (1) the use of
a baseline delineation of tumor components to increase the
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FIG. 2. A flow chart of the proposed method. A baseline scan, VB , its
corresponding tumor components delineation, CB, and a follow-up scan,
VF are fed into the system. Our four-step method’s output is CF, which
is segmentation of the tumor and its internal components in the follow-up
scan.

reproducibility of the resulting follow-up; (2) a spatiotempo-
ral model for tumor internal components transitions over time;
(3) segmentation and tracking of the internal components of
LGTs; and (4) the evaluation on two types of LGTs in follow-
up studies, resulting in a robust and consistent follow-up
tool.

This paper is organized as follows. Section 2 presents the
method for LGTs segmentation and internal tumor compo-
nents classification in follow-up scans. Section 3 describes the
experimental results. Section 4 discusses the method and its
results; Sec. 5 concludes by highlighting the key findings of
the research.

2. METHOD

The inputs to our method are two consecutive MRI scans
of the same patient: a baseline scan and a follow-up scan, de-
noted as VB and VF . Each scan consists of several MR im-
ages, e.g., T1-weighted (T1W), T2-weighted (T2W), among
others. The baseline scan includes a radiologist-approved de-
lineation of the tumor boundary and its components, denoted
as CB. The output is a multilabel classified set of voxels that
represents the tumor components in the follow-up scan, CF.

Our method relies on a reliable delineation of the tumor
in the baseline scan of the patient. While this paper does not
address the tumor segmentation in the baseline scan, this de-
lineation can be performed manually, semiautomatically, or

fully automatically for specific types of tumors. Semi- or fully
automatic methods for various brain tumors have been ad-
dressed by us32, 33 and others.3, 9–11, 13, 14, 18, 24, 35 This issue is
further discussed in Sec. 4.

Figure 2 shows a flow chart of our method. The method
consists of four steps. In step 1, the MR images of every
scan are coregistered to a representative image within that
scan, followed by coregistration of the follow-up scan to the
baseline scan. In step 2, the input tumor boundaries of the
baseline scan are overlaid on the follow-up scan to detect
boundary segments that have changed. In step 3, the in-
ternal classification of the overlaid tumor area is computed
from the follow-up scan data. In the fourth step, the detected
boundary segments from step 2 are updated using the re-
sult of step 3. Figure 3 shows a representative example of
the resulting follow-up classification of an OPG vs ground
truth.

2.A. Step 1: Coregistration of MRI sequences

Each MRI scan consists of several imaging contrasts. In
our experiments, each scan consisted of T2-weighted and
contrast-enhanced T1 imaging contrasts. The imaging con-
trasts comprising each scan were rigidly registered, to com-
pensate for patient movements during acquisition. Then, we
rigidly registered the follow-up scans to their correspond-
ing baseline scans.36 Thanks to the fact that LGTs are
slow growing and no major changes appear between time-
points, rigid registration was found to be adequate for this
purpose.

The result is registered baseline and follow-up scans. We
denote the baseline scan and registered follow-up scan as VB

and ṼF , respectively.

2.B. Step 2: Detection of changing tumor boundaries

In this step, we detect the tumor boundary segments that
have changed between the baseline and the follow-up scans.
We first classify the input tumor boundaries into sharp bound-
aries and fuzzy boundaries. To compensate for inaccuracies in
the manual input boundaries, we use a hybrid method to per-
form this classification.

For every slice in the baseline segmentation, the input tu-
mor boundary is divided into segments of K voxels each. The
value of K is determined by the nature of the tumor and the
spatial dimensions of the data. Then, for every boundary seg-
ment, the surrounding area with a fixed radius, rT, around the

(a) (b) (c) (d)

FIG. 3. (a) A representative slice of T1c image from a follow-up scan. (b) An enlarged view of the tumor area. (c) Algorithm results and (d) manually delineated
ground truth of OPG classified into solid, enhancing and cyst components.
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(a) (b) (c) (d)

FIG. 4. (a) and (b) Sharp and fuzzy boundary segments of the input baseline segmentation, overlaid on T1c image of baseline (a) and follow-up (b) scans. (c)
shows the fixed and changing boundary segments of the baseline input segmentation overlaid on the follow-up scan. (d) presents the boundary of the tumor in
the follow-up scan, after updating the boundary segments and delineating the voxels into solid enhancing and cyst tumor component.

center of the segment is partitioned into two clusters with the
k-means algorithm. Note that the k-means algorithm oper-
ates on a vector of images (e.g., T1W, T2W, FLAIR) for each
voxel.

A boundary segment is marked as sharp if the clusters sur-
rounding it satisfy the following two conditions:

1. The gray-levels based overlap between the clusters,
defined by the Davies-Bouldin index test for overlap,37

is below a predefined threshold, γ .
2. Every cluster lies on a different side of the bound-

ary segment. To compensate for inaccuracies in the
manual input boundaries, we relax this condition by
allowing a small ratio of the voxels in each clus-
ter to lie on the opposite side of the boundary.
This ratio is controlled by a predefined parameter,
0 < α ≤ 1.

When these two conditions are not satisfied, the boundary seg-
ment is marked as fuzzy. The values of the unknown parame-
ters in this step, K, rT, α, and γ are learned from a training set
as explained in Sec. 3. The input segmentation of the baseline
scan is then overlaid on the follow-up scan and the process
is repeated for the follow-up scan. Figures 4(a) and 4(b) il-
lustrate the sharp and fuzzy boundaries of the tumor in the
baseline and follow-up scans.

Only boundary segments that are detected as sharp in the
baseline scan and fuzzy in the follow-up scan are considered
as changing boundaries and will be updated in further steps.
We do not update sharp boundary segments in the follow-up
scan as we consider them to represent the real boundary of the
tumor. In addition, we do not update boundary segments that
are detected as fuzzy in both baseline and follow-up scans to
maintain the manual delineation in those regions and to avoid
inter/intra observer variability.

Figure 4(c) shows an example of the fixed and changing
boundary segments.

2.C. Step 3: Tumor internal classification

As previously noted, segmentation and follow-up of the in-
ternal tumor components is of major importance for tracking
the tumor evolution and grade. Therefore, this step focuses on
extracting the gray level distribution parameters of each tumor
component. These will allow modeling of the tumor appear-
ance in the follow-up scan which will be followed by updating
the tumor’s boundary segments in step 4.

2.C.1. Modeling tumor components gray
levels distribution

We describe a model for representing LGT gray-levels dis-
tribution in the follow-up scan. The number of possible tu-
mor components, NC, is determined in advance, depending
on the tumor type, from the clinical literature. For example,
three components were chosen for OPG according to its phe-
notype: enhancing, solid nonenhancing, and cyst components.
Note that the actual number of components at a given scan is
patient dependent and may be smaller than NC.

There are various ways to model tumor gray level intensi-
ties in MRI, such as Gamma11 or Gaussian38, 39 distributions.
Due to the unique pattern of LGTs that often involve several
tumor components, we model the LGT gray-levels distribu-
tion with Gaussian Mixture Model (GMM), where each Gaus-
sian represents a tumor component. The number of Gaussians,
Q, represents the actual number of components in the scan
and varies between 1 and NC. Let {aq, μq, Cq}Qq=1 denote the
GMM mixture proportion coefficients, mean vectors, and co-
variance matrices. The probability density function (pdf) of
the gray-levels of the tumor in the follow-up scan is therefore
formulated as GMM pdf

f (ṼF (i))

=
Q∑

q=1

aq · exp
{ − 1

2 (ṼF (i)−μq)T C−1
q (ṼF (i)−μq)

}
(2π )J/2|Cq |1/2

, (1)

where J is the number of images (T1c, T2w, etc.) in the
scan.

2.C.2. Modeling tumor components temporal
transitions

We develop a temporal tumor components transition model
that describes the tumor internal components transitions over
time. Note that the GMM parameters cannot be estimated di-
rectly from the baseline scan due to gray-level differences
between scans. In addition, gray-level normalization of the
follow-up images is undesirable, as it is ill-defined and thus
error prone. Instead, we derive a temporal model for tumor
components transitions over time. The purpose of this model
is twofold: (1) to estimate the GMM parameters from the
follow-up scan itself (and avoid temporal gray-scale normal-
ization which might be error prone) and (2) to derive an in-
ternal components classification map for the follow-up scan
which is consistent with the baseline segmentation.

Medical Physics, Vol. 41, No. 5, May 2014
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FIG. 5. A transition model for three tumor components in its graphical (left)
and matrix (right) forms. It describes the probability of a tumor component
to change its state between a baseline follow-up scans. The nodes represent
the tumor components and the edges are the transition probabilities.

Let pij denote the probability that a voxel belongs to an
internal tumor component i in the baseline scan, and j in the
follow-up scan. The components transition matrix

P = {pij }NC

i,j=1 (2)

describes the probability that a given component, i, will turn
into another component, j. The matrix P is defined for each
tumor type. Since the probability of transitioning from state
i to another state must be 1, P is a right stochastic matrix,
whose elements satisfy∑

j

pij = 1 ∀i 1 ≤ i ≤ NC. (3)

Figure 5 shows a graphical description of the model. We do
not include a “healthy” component due to the low prevalence
of such transitions in LGT.40 Instead, we assume that tumors
and healthy tissues have different gray levels, and as a result,
healthy voxels will be eliminated in the final step of the algo-
rithm (step 4). This issue is further discussed in Sec. 4.

Note that the tumor components transitions depend also
with other parameters, such as: the time between the baseline
and the follow-up scans, the undergoing treatment, the age of
the patient, etc. However, due to the lack of a sufficient num-
ber of patients to reliably estimate all the other disease factors,
we take into account only the influence of the dominant factor,
which is the tumor type.

An extension of this transition model to include an addi-
tional dependency with the time between scans is given in
the Appendix. The extension is applicable for cases where the
time gap between consecutive follow-up scans varies, and the
time independent model may not be suitable. The extended
model was used to obtain the experimental results presented
in this paper, due to uneven time gaps between follow-up
scans time points in our data.

2.C.3. Model parameters estimation

2.C.3.a. Transition matrix estimation. There are two
ways to define the elements of the matrix P. The first is based

on prior knowledge about the nature of the specific tumor
type. For example, in OPG, a solid component is much more
likely to turn into an enhancing component than into a cyst.
The second is estimating the elements of P using training data,
as follows.

We assume that we have manually annotated tumor com-
ponents classification maps of baseline-follow-up pairs. The
probability of transition from state i to state j is estimated as
the ratio of such transitions in the entire training set. We de-
note the total number of voxels used for training as Nv and
the baseline and follow-up voxels in the training segmenta-
tion maps as vB and vF , respectively. The elements of P are
then estimated by

p̂ij = 1

Nv

Nv∑
l=1

δ(vB(l), i)δ(vF (l), j ), (4)

where l is an index representing spatial location and δ( · ) is
the Kronecker delta function.

2.C.3.b. Gaussian distributions parameters estimation.
The unknown parameters of the GMM model are: the pro-
portion coefficients, aq, the mean vectors, μq, the covariance
matrices, Cq, the number of Gaussian, Q, and the assignments
of the tumor components to a Gaussian.

We estimate the unknown parameters of the Gaussian dis-
tributions for every 1 ≤ Q ≤ NC using expectation maxi-
mization (EM) with the data of the follow-up scan itself. A
detailed description of the implementation of EM for the esti-
mation of GMM parameters is thoroughly explained by Gupta
and Chen.41 In our implementation we used their method,
where we initialize the EM algorithm with the baseline seg-
mentation to obtain a solution which is consistent with the
baseline segmentation. The set of estimators is denoted by
{âq , μ̂q , Ĉq}Qq=1, where Q varies between 1 and NC. We then
assign a single Gaussian to each follow-up scan voxel in the
baseline tumor area, using the maximum a posteriori (MAP)
estimation method where we assume equal prior probability
on q. This results in clustering the follow-up scan voxels into
Q clusters. Since Q ranges between 1 and NC, the result is NC

clusters maps.
Note that at this stage we have not yet assigned a specific

tumor component to a Gaussian, as we avoid relying on gray-
level intensities for this purpose. Instead, we assign all the
available permutations of labels to the resulting clusters maps,
to obtain classification map candidates. Figure 6 shows an ex-
ample of the 15 classification map candidates for OPG with
a maximal number of components NC = 3. These maps are
denoted by {Cm}Mm=1, where M denotes the number of classi-
fication maps candidates.

When the tumor components characteristics are known a
priori, it may be possible to reduce the number of classifi-
cation map candidates. For example, in the case of OPG, cyst
areas appear dark in the FLAIR image and hyperintense in the
T2W image. However, we ignore this type of a priori knowl-
edge as we would like to develop a general method that is
also suitable for situations in which this a priori knowledge
is not available or unknown, and to handle cases in which
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One

component

(l = 1)

Two

components

(l = 2)

Three

components

(l = 3)

FIG. 6. Follow-up classification map candidates, Cm for NC = 3 compo-
nents, overlaid on T1c image of the follow-up scan.

different components have similar gray level values in the pro-
vided images.

Next, we rely on the assumption that classification map
pixels are independent and formulate the probability that Cm

represents the correct classification map for the follow-up
scan. This probability is defined as the product of all the tran-
sition values (taken from the tumor transition model, P) of
the classified voxels from CB (the baseline classification map)
to Cm

p(Cm|CB, P (·)) =
Nt∏

k=1

P (CB(k), Cm(k)), (5)

where k denotes a spatial index and Nt denotes the number
of voxels labeled as tumor in the baseline scan. All possible
combinations of the components were listed and one which
maximized Eq. (5) was selected as the classification map of
the follow-up scan.

The result is an internal classification map of the tumor in
the follow-up scan in the region of the baseline tumor area, de-
noted as C and coined hereinafter partial classification map.
This map yields the statistical distribution of each tumor com-

ponent in the follow-up scan. It is used to update the evolving
boundaries, as described in Sec. 2.D.

2.D. Step 4: Tumor boundaries update

In this step, the changing boundaries, found in step 2, are
updated using the information about each tumor component
which was extracted in step 3. For every component, we de-
fine the similarity map Dq that represents the similarity of
each voxel in the follow-up scan to component q, using the
previously computed statistical distribution parameters of this
component, as Mahalanobis distance

Dq(i) = (ṼF (i) − μ̂q)T Ĉ−1
q (ṼF (i) − μ̂q),

where q = 1. . . NC is the component index and i is a spatial
index. In other words, the smaller the value of Dq(i), the more
similar the voxel i to component q. The parameters μ̂q and
Ĉq are the sample mean and covariance of the follow-up scan
voxels labeled with the component q in the partial classifica-
tion map, C. In this manner, the estimated mean vector and
covariance matrix of the follow-up scan are computed from
the follow-up scan itself, obviating the need for gray-level
normalization for this purpose.

Next, we threshold the similarity map, Dq, with the aver-
age value of its voxels that are labeled as component q in the
partial classification map C. The result is NC binary maps, de-
noted as {Bq}NC

q=1. Then, for every changed boundary segment
(found in step 2), we select the binary map, Bq, that corre-
sponds to component adjacent to the changed boundary seg-
ment in the classified follow-up scan. We update the tumor
boundary by tracing the boundary of the binary map, from the
start of the changing boundary segment toward its end, where
unclassified voxels are classified to one of the tumor compo-
nents with MAP estimator based on the statistical parameters
which were computed in step 3. The result is an updated seg-
mentation of the tumor, and a delineation of the components,
CF, which is consistent with the baseline scan. Figure 7 shows
a flow chart describing the process of how the tumor boundary
is updated, together with an example of the final classification
map, CF.

2.E. Data acquisition

We conducted a retrospective evaluation experiments of
our method with clinical multisequence MR datasets. We
chose patients with different types of LGTs, OPG, and tha-
lamic astrocytomas, whose MR scans were acquired at sepa-
rate institutions, to emphasize the robustness of the method.
Table I shows the details of the patients and the scans. Each
scan consists of postcontrast T1-weighted (T1c) and T2-
weighted (T2W) images. Both sequences were acquired with
spin echo (SE) sequence, flip angle = 90◦, while TR/TE val-
ues varied between 340/6.9 and 540/15 ms for the T1c imag-
ing contrast, and between 3120/80 and 4700/142 ms for the
T2W imaging contrast.

Thalamic astrocytomas patients were scanned every three
months and OPG patients were scanned every five months to
generate five scans per patient (total of 50 scans). The first

Medical Physics, Vol. 41, No. 5, May 2014
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FIG. 7. A flow chart showing details of the tumor boundaries update process.
The classification map C in (a) is the result of the tumor growth modeling
process described in step 3; (b) we compute the similarity map, Dq for each
component, where the similarity map of the cyst components is shown in
(a); (c) we threshold Dq to obtain a binary map, Bq for each component;
(d) we use Bq in conjunction with the changing boundary map resulted from
step 2 to obtain the final classification result (e), after a boundary completion
process.

scan of each patient was used as the baseline scan and the
remaining scans were used to evaluation. As a result, 40 scans
were used to evaluate the method’s performance.

One radiologist from each institution manually produced
segmentations for the scans acquired at his/her institution us-
ing Analyze Direct 10 (Mayo Clinic, Rochester, MN). These

segmentations are considered as the gold standard. The tu-
mors consist of three different internal components: solid, en-
hancing, and cyst, therefore, NC = 3.

3. EXPERIMENTAL RESULTS

3.A. Data evaluation

Three means of evaluation were used to quantify the per-
formance of our method vs the gold standard. The first two
measures quantify the performance of the method in terms
of segmenting the gross total volume of the tumor. The third
measure quantifies the ability of the method to reliably track
the evolution of tumor components over time:

1. Gross total volume based measures: We measured the
volumetric similarity of the gross total volumes, also
known as the Dice similarity measure defined as

Dice =
(

2 × |S ⋂
R|

|S| + |R|
)

× 100,

where S and R refer to the method result and the
gold standard, respectively. In addition, we measured
the absolute volume difference (AVD) between the
method’s result and the gold standard, defined as

AVD = 100 ×
∣∣∣∣ S

R
− 1

∣∣∣∣ . (6)

2. Gross total volume surface based measures: We mea-
sured the distance between the surfaces of the tumor
volumes provided by our method and by the gold stan-
dard. For this purpose, we used the mean surface dis-
tance (MSD) and the Hausdorff distance.42, 43

3. Longitudinal correlation of tumors components: We
defined a component difference vector, which consists
of the differences in volume of a tumor component be-
tween every two consecutive time points. The differ-
ence vector represents the changes of tumor compo-
nent over the time, per patient. We then compute dif-
ference vectors for every tumor component over time,
for each patient. These vectors are computed twice:
once with the gold standard data and once with the
method’s results data. Then, the Pearson correlation
coefficients between the matching gold standard and
the method results’ difference vectors are computed.44

This measure quantifies the ability of the method to
reliably track longitudinal changes in the internal tu-
mor components of the tumor.

The training and evaluation of the method is carried out us-
ing the leave-one-out cross-validation method. For each group

TABLE I. Summary of experimental data.

Patients age Number of Number of Data dimensions Voxel size
Tumor type Institutiona (years) patients scans (voxels) (mm × mm × mm) MRI type

OPG TASMC 4–14 5 25 512 × 512 × 30 0.5 × 0.5 × 5.0 GE Signa 1.5T HDXT
Thalamic astrocytomas LPCH 4–11 5 25 408 × 512 × 24 0.45 × 0.45 × 6.25 GE Signa 3T HDXT

aTASMC = Tel Aviv Sourasky Medical Center, LPCH = Lucile Packard Children’s Hospital at Stanford.
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of patients with the same tumor type, the scans of four pa-
tients are used for training. The remaining patient’s scans are
used to validate the method and are tested with the param-
eters extracted in the training procedure. This process is re-
peated five times, each time a different patient is used for
validation experiment. Overall, the results are validated us-
ing a total number of ten patients, five from each group, in a
“patient-independent” mode.

First, we describe the training procedure to estimate the
components transition matrix P(t) and the four adjustable pa-
rameters of the algorithm, K, rT, γ , and α. Then, we describe
the evaluation results of the experiments.

3.B. Training procedure

In our experiments, we use the extended components tran-
sitions model appears in the Appendix. Therefore, the train-
ing procedure consists of the estimation of the components
transition matrix P(t) for each tumor type. In addition, four
parameters are estimated: the number of voxels per bound-
ary segment, K, the radius of the tumor boundary surround-
ing area, rT, the Davies Bouldin index threshold, γ , and the
proportion coefficient, α. These parameters are determined as
follows.

First, we register the follow-up scans of the patients used
for training to their baseline ones. Then, we estimate the com-
ponents transition matrix P(t) as described in the Appendix,
using the manual segmentation maps of the patients used for
training.

Then, we use the gradient descent algorithm45 to estimate
the value of the four adjustable parameters, as follows. We
use the baseline delineations of each patient used for train-
ing to segment his/her follow-up scans with the method de-
scribed in this paper, where each follow-up segmentation
serves as the prior segmentation to its consecutive scan. We
use a set of fixed parameters and P(t) as computed above.
We set the initial fixed parameters based on our datasets’ spa-
tial dimensions and the nature of LGTs to: K = 5, rT = 5,
γ = 0.13, and α = 0.6. We then compute the Dice similar-
ity measure for each segmentation result and use the average
Dice value over the segmentation as the cost function to op-
timize for the gradient descent algorithm, to update the set
of parameters. We repeat this process for all parameters until
convergence.

3.C. Validation results

We used the patients’ first scan and its delineation as the
baseline scan, and evaluated our method with the four follow-
up scans. In total, 40 scans (20 for each tumor type) were used
to evaluate the method.

3.C.1. Gross total volume results

A summary of the gross total volume results is presented
in Table II. Figure 8 shows the distribution of the results as
compared to the gold standard. Figure 9 shows an illustrative

TABLE II. Summary of gross total volume experimental results.

Dice AVD MSD Hausdorff
Tumor type measure (%) (%) (mm) distance (mm)

OPG 88.46 5.11 0.24 8.06
Thalamic astrocytomas 84.7 5.13 0.25 17.61
Average 86.58 5.12 0.25 12.84

example of the results vs the gold standard, where the internal
components of the tumor are also delineated.

3.C.2. Tumor components longitudinal
tracking results

Figures 10 and 11 show the longitudinal changes of OPG
and thalamic astrocytomas components’ volumes obtained us-
ing the proposed method as compared to the gold standard.
Note that the proposed method results and the gold stan-
dard show the same disease progression. For example, for
patient 1, both the method results and the gold standard ex-
hibit a steady tumor volume during the first 20 months, with
an increase of the cystic component after 23 months. Pa-
tient 7 is another example, where both the automatic results
and the gold standard show a gradual increase in the cyst
component and in the gross total volume between months 3
and 13.

We used the longitudinal correlation measure, described
above, to quantify the ability of our method to track the evo-
lution of tumor components over time. Note that since our
method is tested on four time points for each patient, we com-
pute a difference vector of length three, per component, per
patient. Table III shows the Pearson correlation coefficients
for each component over time, per patient.

The correlation results indicate the reliability of our
method in estimating the growth trend of each compo-
nent over time. Note that Table III includes some small or
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FIG. 8. Segmentation results for 40 cases. The central mark is the median,
the edges of the box are the 25th and 75th percentiles, the whiskers extend to
the extreme data points. Outliers are plotted individually as “+.”

Medical Physics, Vol. 41, No. 5, May 2014



052303-9 Weizman et al.: Segmentation and follow-up of low-grade tumors 052303-9

Manual

Automatic

Patient 1 Patient 3 Patient 4 Patient 7 Patient 8

FIG. 9. Segmentation and internal classification of LGT. Representative results for OPG (patients# 1, 3, 4) and thalamic astrocytomas (patients# 7, 8) overlaid
on T1c image: manual (top) vs automatic (bottom). Solid, enhancing and cystic areas are presented.

negative correlation coefficients values. A closer look at the
table and at Figs. 10 and 11 reveals that low correlation val-
ues are mostly found in cases where the temporal changes in
the tumor components volume are small. In such cases, minor
mismatches between the gold standard and the method’s re-
sults may result with low correlation values, although both of
them indicate a steady tumor component volume over time,
in clinical terms. For example, a negative correlation value is
obtained for the solid component of patient #2. A closer look
at the temporal change of this component in Fig. 10 reveals

that both our method and the gold standard indicate a steady
solid tumor volume over time, in clinical terms. However, the
minor opposite volume change trends over time caused a neg-
ative correlation value for these components.

Overall, the method exhibits slightly better results for OPG
than for thalamic astrocytomas. We believe that the tumor
type is the main cause for this phenomenon. OPGs are usu-
ally smaller and more stable over time than thalamic astro-
cytomas, making it easier for the automatic method to track
longitudinal changes.
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FIG. 10. OPG progression of patients 1–5. Gold standard and method results for each patient are presented. The baseline scan is not included.
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FIG. 11. Thalamic astrocytomas progression of patients 6–10. Gold standard and method results for each patient are presented. The baseline scan is not
included.

3.D. Parameter sensitivity analysis

The method includes four adjustable parameters: the num-
ber of voxels per boundary segment, K, the radius of the tu-
mor boundary surrounding area, rT, the Davies Bouldin index
threshold, γ , and the proportion coefficient, α. The value of
these parameters is determined in the training procedure de-
scribed above. We study the sensitivity of our method to those
parameters to understand its performance with suboptimal pa-
rameters selection. We computed the average values of the
Dice similarity measure and the average symmetric surface
distance based on various parameters values over 40 scans. In
our analysis, three parameters were fixed while the sensitivity
to the fourth was examined. For consistency, the fixed param-
eters values in this analysis are the ones that were used as the
initial values for the gradient descent algorithm in the training
phase.

TABLE III. Pearson correlation coefficients between method’s and gold stan-
dard’s difference vectors of components volumes over time. The high cor-
relation values (>0.5 in most cases) indicate high correlation between the
method’s results and the gold-standard, in terms of tumor components pro-
gression estimation.

OPG patients
Patient #

Component 1 2 3 4 5
Solid − 0.61 − 0.11 0.72 0.74 0.87
Enhancing 0.79 0.49 0.34 0.92 0.98
Cystic 0.85 0.93 0.93 0.99 0.78

Thalamic astrocytomas patients
Patient #

Component 6 7 8 9 10
Solid 0.98 0.95 0.21 0.74 0.93
Enhancing 0.06 0.99 0.33 0.95 0.38
Cystic 0.16 0.84 0.73 0.97 0.96

In our analysis, the Dice measure in all cases was above
80%. Figure 12 presents the parameter sensitivity analysis re-
sults for K and γ . Although the method’s performance varies
with respect to selection of its parameters, it exhibits reli-
able performance even in cases where the parameters were not
optimized.

4. DISCUSSION

4.A. Comparison with other tumor
segmentation methods

Most of the published literature on brain tumor segmenta-
tion deals with GBM. Therefore, it is difficult to provide an
accuracy value of reference of state-of-the-art LGT segmen-
tation methods. Note that state-of-the-art GBM segmentation
methods9, 11 reported a 30% volumetric overlap error, which
is equivalent to Dice similarity measure of 70%.

In this section, we compare the gross total volume results
of our method to those of our previously published method
for OPG segmentation33 on the OPG datasets presented in
this paper, and to a simple segmentation method that prop-
agates the baseline segmentation as is, over time. The mean
Dice similarity measure between the volumetric results of our
previously published method33 as compared to manual seg-
mentation by an expert radiologist is 70.44%, and the mean
surface distance is 0.6 mm. It can clearly be seen that our
current method outperforms our previous one, thanks to the
strong prior of the baseline segmentation and the spatiotem-
poral model.

To evaluate the role of a baseline segmentation as prior
knowledge, we applied a simple method that directly prop-
agates the baseline segmentation, with no boundary update.
This method was tested on both the OPG and the thala-
mic astrocytomas datasets presented in this paper. The mean
Dice similarity measure between the volumetric results of this
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FIG. 12. Parameter sensitivity analysis results of K and γ . In each analy-
sis, three parameters remained fixed while the fourth varied. The fixed val-
ues were: number of voxels per boundary segment, K = 5; radius of the tu-
mor boundary surrounding area, rT = 5; Davies Bouldin index threshold,
γ = 0.13; and proportion coefficient, α = 0.6.

experiment as compared to manual segmentation by an ex-
pert radiologist is 76.24%, and the mean surface distance is
0.6 mm. This comparison shows that a baseline segmentation
as a prior knowledge for the segmentation of the follow-up
scan improves the results by approximately 7%, if we com-
pare it to our previously published method. The additional
improvement of 9% presented in this paper, yielding a Dice
similarity measure of 86.58%, is due to the spatiotemporal
model and the boundary update process.

4.B. Comparison with general segmentation
algorithms

Based on our experience with all-purpose clinical segmen-
tation softwares (e.g., Analyze), our method is much more
efficient, in terms of segmentation time. General purpose seg-
mentation algorithms do not take into account prior knowl-
edge about the patient and the tumor involved, and therefore
they are somewhat “blind” to the tumor’s specific character-
istics. They require manual parameters selection on a case by
case basis. The fact that our method uses the baseline scan
and requires the baseline scan segmentation for the follow-up

scan segmentation, allows it to be much more tailored toward
the follow-up scan at hand.

One of the major advantages of the method is the time it re-
quires for segmentation. While general purpose segmentation
methods require user interactive segmentation process which
may last up to 30 min, our method provides the segmenta-
tion result in about 5 min of computation time with no user
interaction.

4.C. Relation to prior research

Our method consists of four steps, some of which incorpo-
rate and extend previously published methods. Incorporating
information from multiple scans of the same patient to seg-
menting a MR scan was previously proposed.10, 24, 27–29 We
extend the idea of incorporating information from other scans
to include: (1) the internal classification of the tumor over
time, and (2) the development of a semiautomatic and repeat-
able method for tumor follow-up.

Modeling tumor intensity values with a Gaussian mixture
model is a common approach.9, 11 Markov models are also
widely used in MR image analysis.46–48 However, to the best
of our knowledge, modeling of changes in tumor components
over time as a spatiotemporal model is novel for LGT.

4.D. Baseline segmentation

Our method requires an initial segmentation of the
baseline scan. Baseline segmentation has been previously
addressed.3, 9–11, 13, 14, 18, 24, 35, 49 This segmentation can be ob-
tained manually, semiautomatically, or automatically in spe-
cific cases.9, 33

The initial segmentation serves as strong prior information
for the tumor components boundaries. It increases the replica-
bility of the method and, with the statistical model developed
in the paper, obviates the need for the gray-level normaliza-
tion since the components gray-level range is estimated from
the follow-up scan itself. Therefore, we believe that the initial
segmentation of the baseline scan is worth the effort, espe-
cially in cases where state-of-the-art automatic or semiauto-
matic brain tumor segmentation methods can be used to re-
duce the manual segmentation time.

An additional issue related to the baseline segmentation
is the sensitivity of the method to the baseline segmentation.
Since the follow-up segmentation relies on the baseline seg-
mentation, the method is actually “biased” toward the expert
that segmented the baseline scan. Based on our experience
with the method, this phenomenon also occurs in cases where
the baseline scan was automatically segmented. However, this
bias is mostly relevant in fuzzy boundaries of the tumor, as
sharp boundaries are usually agreed upon. Additionally, since
in most cases only the change in the tumor volume over time
is the important factor for treatment decision, this bias is bal-
anced out when we examine the tumor growth trend over time.

4.E. Error propagation

The propagation of information from the baseline to sub-
sequent time points may cause a build-up of errors for the
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later time points. To better understand this phenomenon, we
analyzed the Dice similarity measure for all patients over
time. We obtained that mean Dice similarity varies between
89.57% for the first time point and 85.65% for the fourth time
point. This error build-up trend, however, could be meaning-
ful where more time points per patient are involved.

A possible solution would be to provide an additional man-
ual annotation to one of the later time points as well, and to
use a forward-backward mechanism to propagate the informa-
tion between time points. While out of the scope of this paper,
we refer the reader to methods for forward-backward segmen-
tation mechanism in MR images.21, 50 Examples for similar
methods in brain MRI longitudinal analysis can be found in
the works of Reuter et al.29, 51

4.F. Tumor regression

Healthy areas and tumor components mostly have different
gray-levels in the MR scan. Therefore, healthy areas are ex-
pected to have high values in the tumor component similarity
maps, Dq, defined in step 4. As a result, healthy voxels will
not be included in the binary maps, Bq, and will not be part
of the tumor delineation. When a significant tumor regression
is expected, it is possible to explicitly add a healthy or nontu-
mor component to the transition model and then estimate the
transition probabilities from the tumor components and the
healthy component.

5. CONCLUSIONS

We have presented a new method for the segmentation
and classification of LGT brain tumors from MRI follow-up
scans. Our experimental results indicate that our method ac-
curately segments and classifies OPG and thalamic astrocy-
tomas in the follow-up scheme. The main contributions of this
paper are:

5.A. Follow-up of tumor components

Currently, manual delineation is used as the gold standard
for volumetric quantification of brain tumors and their com-
ponents. Due to inter/intraobserver variability, this delineation
has intrinsic uncertainty and possible bias. Since therapeutic
decision making relies heavily on tumor volume and internal
changes over time, repeatable delineation of the tumor plays
an important role in the decision process.

A novel aspect of this method is its ability to track the evo-
lution of internal tumor internal components and not just the
gross total volume of the tumor. The accurate evaluation of
the changes in tumor components over time sheds light on the
response to various therapies and the natural history of the
tumors. To the best of our knowledge, no other method for
the segmentation of internal components of brain tumor was
validated longitudinally.

5.B. No need for gray-level normalization

In many image processing tasks, previously learned gray-
level intensity models are used to segment or classify various

patterns. Gray-level intensity normalization is mostly neces-
sary in those cases. This normalization procedure might be
error prone and does not always overcome the inherent gray-
level variability. Our method bypasses the issue by deriving
the statistical gray-level model from the input follow-up scan
itself. As a result, a gary-level intensities model for the tumor
components is uniquely developed for each follow-up scan,
which makes our method potentially robust for multicenter
studies, where multiple scanners are used.

5.C. Clinical significance

The potential clinical significance of LGT segmentations
is to save time and effort to the radiologist and to provide
an automatic tool to reliably determine the tumor boundary
and to delineate the tumor components. The method was de-
veloped and tested to match the common scheme for tumor
treatment evaluation, which is based on study of longitudinal
tumor growth.

Reliable tracking tumor’s internal tumor components evo-
lution is essential for treatment evaluation. The repeatable de-
lineation of the tumor boundaries and the tracking of tumor
components evolution over time is expected to increase the
confidence level of the clinical staff in the volumetric mea-
surements and to help with identifying early response to treat-
ment.

Future work will include expanding the experimental re-
sults of this work to segment and classify other types of brain
tumors, including low and intermediate grade tumors.
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APPENDIX: EXTENSION OF THE TRANSITION
MODEL TO SUPPORT DEPENDENCY ON TIME
BETWEEN SCANS

In this appendix, we extend the tumor components tran-
sition model, presented in Sec. 2.C. In many cases, such as
the cases presented in our experiments, longitudinal scans
are performed with uneven time gaps between time points.
This fact necessitates the extension of the simplified transi-
tion model to support dependency on time between scans, as
follows.
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If we assume that the transition model depends in the time
between the baseline and the follow-up scans, the transition
probability matrix is defined as P (t) = {pij (t)}NC

i,j=1. To es-
timate its elements from a set of patients used for training
each with several scans acquired over time, we assume that
we have the manually delineated tumor components classifi-
cation maps for each scan. These classification maps are used
to estimate the elements of P(t) as follows.

Let NE denote the number of patients used for train-
ing. Let NSk denote the number of scans of the kth pa-
tient used for training (NSk > 1), acquired at time points:
Tk = t0k, t1k, . . . , tNSk

, and Ck = C0k, Ct1k, . . . , CNSk
denote

its corresponding manually delineated tumor components
classification maps. Based on two maps from two different
time points, tnk and tmk (n > m) we estimate p̂k

ij (tmn), which is
the estimation of pij(tmn) for time point tmn = tnk − tmk, based
on the kth patient solely. This value is estimated as the pro-
portion of the transitions from component i to component j
between the classification maps of these time points. The for-
mula is

p̂k
ij (tmn) = 1

Nv

Nv∑
l=1

δ(Cnk(l), j )δ(Cmk(l), i), (A1)

where δ( · ) is the Kronecker delta function

δ(x − a) =
{

1 if x = a

0 if otherwise
. (A2)

The parameter Nv is the number of voxels segmented as
tumor in Cmk, and l is an index representing spatial location in
Cmk and Cnk.

Repeating this procedure for every pair of time points from
Tk results in an estimation of the transition matrix based on
the kth patient, for discrete time points, which is then interpo-
lated to match a required time scale. To obtain an estimation
from all the patients, this process is repeated for every patient,
resulting in: {p̂k

ij (t)}NE

k=1. Under the assumption that patient’s
classification maps are independent, we average the results
over all the patients used for training to obtain the final esti-
mation of the transition matrix

p̂ij (t) = 1

NE

NE∑
k=1

p̂k
ij (t). (A3)
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