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SUMMARY

Dyx1c1 has been associated with dyslexia and neuronal migration in the developing neocortex.

Unexpectedly, we found that deletion of Dyx1c1 exons 2–4 in mice caused a phenotype

resembling primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder characterized

by chronic airway disease, laterality defects, and male infertility. This phenotype was confirmed

independently in mice with a Dyx1c1c.T2A start codon mutation recovered from an ENU

mutagenesis screen. Morpholinos targeting dyx1c1 in zebrafish also created laterality and ciliary

motility defects. In humans, recessive loss-of-function DYX1C1 mutations were identified in

twelve PCD individuals. Ultrastructural and immunofluorescence analyses of DYX1C1-mutant

motile cilia in mice and humans revealed disruptions of outer and inner dynein arms (ODA/IDA).

DYX1C1 localizes to the cytoplasm of respiratory epithelial cells, its interactome is enriched for

molecular chaperones, and it interacts with the cytoplasmic ODA/IDA assembly factor DNAAF2/

KTU. Thus, we propose that DYX1C1 is a newly identified dynein axonemal assembly factor

(DNAAF4).

Cilia, hair-like organelles projecting from the surface of nearly all polarized cell types, serve

essential roles in cellular signalling and motility1. The basic structure of motile cilia, and the

related organelle flagellum is remarkably conserved throughout evolution. In most motile

cilia, a ring of nine peripheral microtubule doublets surrounds a central pair apparatus of

single microtubules that connect to the nine peripheral doublets by radial spokes (9+2

structure). Motile monocilia present at the mouse node during early embryogenesis are an

exception, lacking the central pair apparatus (9+0 structure). Distinct multi-protein dynein

complexes attached at regular intervals to the peripheral microtubule doublets contain

molecular motors that drive and regulate ciliary motility. Specifically, outer dynein arms

(ODA) are responsible for beat generation, while both the inner dynein arms (IDA) and the

nexin link-dynein regulatory complexes (N-DRCs) regulate ciliary and flagellar beating

pattern and frequency. Identifying the proteins responsible for correct assembly of this

molecular machinery is critical to understanding the causes of motile cilia-related diseases.
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Primary ciliary dyskinesia (PCD) (MIM 242650), a rare genetic disorder affecting

approximately 1 in 20,000 individuals, is caused by immotile or dyskinetic cilia. Loss of

ciliary function in upper and lower airways causes defective mucociliary airway clearance

and subsequently, chronic inflammation that regularly progresses to destructive airway

disease (bronchiectasis). Organ laterality defects are also observed with approximately half

of PCD patients exhibiting situs inversus, and more rarely situs ambiguus, which can

associate with complex congenital heart disease2. Dysfunctional sperm tails (flagella)

frequently cause male infertility in PCD individuals, warranting assisted reproductive

technologies. Another consequence of ciliary dysfunction, particularly evident in mouse

models, is hydrocephalus caused by disrupted flow of cerebrospinal fluid through the

cerebral aqueduct connecting the third and fourth brain ventricles3. Although ciliary

dysmotility is not sufficient for hydrocephalus formation in humans due to morphological

differences between the mouse and human brain, the incidence of hydrocephalus, secondary

to aqueduct closure, is increased in PCD individuals3.

Genetic analyses of PCD patients have now revealed several autosomal recessive mutations

in genes encoding axonemal subunits of the ODA complexes and related components4–12. In

addition, recessive mutations in CCDC39 (MIM 613798) and CCDC40 (MIM 613799) have

been linked to PCD with severe tubular disorganisation and defective nexin links13,14.

Mutations in the radial spoke head genes RSPH4A and RSPH9 as well as in HYDIN can

cause intermittent or complete loss of the central apparatus microtubules15–17. Two X-linked

PCD variants associated with syndromic cognitive dysfunction and retinal degeneration are

caused by mutations in OFD1 (MIM 311200) and RPGR (MIM 312610), respectively18, 19.

Another functional class of proteins emerging from identification of PCD causing mutations

are proteins involved in cytoplasmic pre-assembly of both ODA and IDA: DNAAF2 (KTU,

MIM 612517)20, DNAAF1 (LRRC50, MIM 613190)21, 22, DNAAF3 (C19orf51, MIM

614566)23 and the recently identified LRRC6 (MIM 614930)24.

DYX1C1 (MIM 608706), dyslexia susceptibility 1 candidate 1 gene, was initially identified

as a candidate dyslexia gene due to both a single balanced translocation t(2;15)(q11;q21)

coincidentally segregating with dyslexia in a family25, and subsequent single nucleotide

polymorphism (SNP) association studies. Follow-up gene association studies have provided

both positive26–28 and negative29–31 support for association with dyslexia. Molecular and

cellular analyses of DYX1C1 have indicated potential functional roles with

chaperonins32,33, estrogen receptor trafficking34, and neuronal migration35,36, while recent

proteomic and gene expression studies have suggested a possible role in cilia37,38.

Results

Generation of Dyx1c1 mutant mice

In order to reveal the required biological functions of Dyx1c1, we performed a forward

genetic experiment by producing an allele of Dyx1c1 in mice in which exons 2–4 were

deleted (Fig. 1a). Homozygous mutant mice (Dyx1c1Δ/Δ) expressed no detectable Dyx1c1

protein by western blot analysis of all tissues tested, including brain and lung (Fig. 1b). Mice

heterozygous for the deleted allele were viable, fertile, and not noticeably different from

wild-type littermates. Homozygous mutant mice were recovered after birth from
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heterozygous breeding pairs at rate deviating from the expected Mendelian ratio

(295:570:87, (Dyx1c+/+:Dyx1c1Δ/+:Dyx1c1Δ/Δ), Chi=128.017, p<0.0001) but were recovered

at early embryonic times (gestational days E6.5–E12) at the expected Mendelian ratio

(22:43:20; Chi=0.105, p=0.85) suggesting embryonic lethality of approximately 2/3 of

homozygous mutants. Homozygous mutants that survived after birth developed severe

hydrocephalus by postnatal (P) day 16 (Fig. 1c), and died by P21, similar to what has been

described for other mouse mutants with defective motile cilia3,39.

In addition to hydrocephaly, postnatal homozygous mutant mice displayed laterality defects

with 59% of mutants (51/87) showing situs inversus totalis, a complete inversion of left

right asymmetry (Fig. 1d), 17% (15/87) displaying situs ambiguous with inverted heart and

lung position relative to stomach and spleen, or inverted position of stomach and spleen

relative to heart and lung position, and 24% (21/87) displaying situs solitus, normal left-right

asymmetry. Mutations that cause disruptions in left-right asymmetry in mice40 are known to

result from defective function of motile nodal monocilia, and more specifically, the loss of

cilia-generated leftward flow across the node in early embryogenesis40. The typical

phenotype for laterality mutants is a 1:1 ratio for situs inversus totalis and situs solitus

indicating a randomization of L-R patterning, although the inv mutant mouse shows a 100%

rate of defects in L-R patterning. Even if the ratio of situs inversus to situs solitus seen in

surviving Dyx1c1 mutant mice deviates significantly from what would be expected for a 1:1

ratio of situs inversus to situs solitus (51:21, Chi: 12.5, p=0.0004), this ratio was already

observed in other L-R patterning mutants like the Dnahc5 mutant mouse41. Consistent with

a role for Dyx1c1 function in the embryonic node where L-R patterning is established in the

mouse, we found by whole mount in situ hybridization that Dyx1c1 expression in the early

embryo (E7.5) is restricted to pit cells of the embryonic node (Fig. 1e).

In an independent mouse ENU mutagenesis screen for congenital heart defects (CHD) of the

NHLBI Bench to Bassinet Program, a mutant named Sharpei was recovered with a Dyx1c1

missense mutation (c.T2A) that resulted in an altered AUG start codon, and expression of an

aberrant N-terminal truncated Dyx1c1 protein product of approximately 31 kDa

(Supplementary Figure 1a). This mutant was recovered based on the finding of complex

congenital heart and therefore carefully histologically phenotyped. Some mutants with

apparent situs inversus comprising dextrocardia with inverted lung lobation and right sided

stomach also had subtle visceral organ situs defects, such as discordant left sided pancreas

and spleen despite right sided stomach positioning (Supplementary Figure 1b). Sharpei

mutants with complex CHD died prenatally or at birth with a spectrum of complex CHD,

such as transposition of the great arteries with ventricular septal defect and coronary fistula

(Supplementary Fig. 1b and Supplementary Video 1) or double outlet right ventricle with

right atrial isomerism, muscular VSD, and atrioventricular septal defects (Supplementary
Fig. 1b and Supplementary Videos 2 and 3). All these findings resemble congenital heart

defects observed in other mouse models for PCD such as Dnahc5 mutant mice41.

Knockdown of dyx1c1 in Zebrafish

Recently, Chandrasekar et al. showed by knockdown of dyx1c1 results in phenotypes

characteristically associated with cilia defects such as body curvature, hydrocephalus, cystic

Tarkar et al. Page 4

Nat Genet. Author manuscript; available in PMC 2014 April 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



kidneys and situs inversus42. To test whether Dyx1c1 has an evolutionarily conserved role in

establishing left-right asymmetry in vertebrates, we also performed morpholino-mediated

knockdown experiments in zebrafish embryos. Zebrafish dyx1c1 is expressed in embryonic

tissues that contain motile cilia42, including Kupffer's vesicle, which is known to play an

important role in establishing the left-right axis. Morpholino knockdown of zebrafish dyx1c1

resulted in hydrocephalus, kidney cysts and body axis curvature; phenotypes consistent with

ciliary dysfunction in zebrafish. Morpholino knockdown of dyx1c1 also produced laterality

defects (Fig. 2a,b) as assessed by the position of the heart (cmlc2), liver (fkd2) and pancreas

(ins) in dyx1c1 morphant embryos at 48 hours post-fertilization (hpf). In a wild-type

zebrafish embryo, the ventricle of the heart loops towards the right and the atrium loops

towards the left and the liver is positioned to the left of the midline, and the pancreas lies to

the right of the midline (Fig. 2a). This wild-type pattern was observed in 36.5% of the

morphants, whereas 37.9% of the morphants showed a complete reversal of the placement of

the organs (Fig. 2b). A heterotaxic phenotype was seen in 25.6% of the embryos (Fig. 2b).

To investigate when dyx1c1 affects early left-right patterning, the expression of the

zebrafish nodal gene southpaw (spaw) was studied in a timecourse of morpholino injected

embryos. The expression of zebrafish spaw is restricted to the left LPM during

somitogenesis prior to asymmetric organ positioning at 48 hpf43. At the 12- to 14-somite

stage, 82.8% of the control embryos had left LPM expression of spaw whereas all of the

morphant embryos lacked any expression of spaw, indicating that spaw initiation is delayed

in the absence of dyx1c1 (Fig. 2b). The delay in spaw expression upon loss of ciliary

motility in KV has not been reported previously but has been observed in other ciliary

motility mutants that do not affect KV structure (R.D.B. unpublished). At the 16- to 18-

somite and 20- to 22-somite stage, most of the control embryos (97.7% and 98.8%

respectively) had spaw expression in the left LPM; but the morphants displayed a

randomized pattern; bilateral (30% and 30.6% resp.), left-sided (20% and 29.4% resp.),

right-sided (26.3% and 30.6% resp.) or absent (23.8% and 9.8% resp.) (Fig. 2b). Thus, in the

zebrafish embryo, dyx1c1 is necessary for left-sided expression of spaw in the left LPM

which is a crucial step for normal left-right axis development. Overall our results confirm

the findings from Chandrasekar et al42. Furthermore, we demonstrate that knockdown of

dyx1c1 affects the left-sided expression of spaw consistent with an important role in the left-

right axis development.

Analysis of ependymal cilia

Hydrocephalus and organ laterality defects are hallmarks of mutations that cause defects in

ciliary motility in mice and zebrafish1,3. We therefore used light and electron microscopy as

well as videomicroscopy to determine whether Dyx1c1 deficiency caused loss of motile cilia

formation or a loss of cilia. Cilia extending from mouse ependymal cells of the cerebral

ventricles, visualized by light microscopy, appeared similar in length and distribution in

Dyx1c1Δ/Δ and wild-type littermates (Fig. 3a). Although cilia were abundant on respiratory

epithelial cells in mutants and wild-type, cilia in mutants lacked immunofluorescence signal

for both the outer dynein arm heavy chain Mdnah5, and the inner dynein arm light chain,

Dnali1 (Fig. 3b,c). Loss of these dyneins from motile cilia would predict a loss of motility.

We used live-cell imaging to directly assess cilia-mediated fluid flow and ciliary motility on

the ependymal surface in Dyx1c1Δ/Δ mice. Explants or slices of the lateral ventricular
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surfaces were prepared from Dyx1c1Δ/Δ and wild-type mice at P6. Ependymal cilia in wild-

type mice continued to beat vigorously in these preparations, and created a directional fluid

flow across the surface that could be visualized by the displacement of a small volume of

India ink pressure injected onto the ependymal surface. This flow was present in all tested

wild-type mice tested (n=6; Fig. 3d and Supplementary Video 4) but was completely

missing in tissue obtained from all Dyx1c1Δ/Δ mice tested (n=4; Fig. 3d and
Supplementary Video 5). We next examined the motility of ependymal cilia in coronal

brain slices of wild-type and Dyx1c1Δ/Δ mice by infrared-DIC videomicroscopy. Cilia at the

ependymal surface in wild-type and heterozygous mice were found to beat at a frequency of

approximately 9 beats/sec (n=8; 34°C; Supplementary Video 6), while cilia on ependymal

cells from all Dyx1c1Δ/Δ examined (n=4) lacked ciliary beating (Supplementary Video 7).

Videomicroscopy of tissue slice from the third brain ventricle in newborn homozygous

Sharpei mutants also showed completely immotile cilia (n=7, Supplementary Video 8).

Beads added to the solution above the brain slice exhibited only random motion, while in

wild-type littermate controls, the beads showed ependymal cilia generated flow

(Supplementary Video 8). Similarly, videomicroscopy of the tracheal airway epithelia in

newborn homozygous Sharpei mutants showed completely immotile cilia, consistent with

PCD, while littermate controls showed normal rapid synchronous ciliary beat

(Supplementary Video 9). We also assessed the motility of cilia in Kupffer's vesicle in

dyx1c1 morphant zebrafish with videomicroscopy. Dyx1c1 morphants had cilia in Kupffer’s

vesicles that lacked motility compared to uninjected embryos (Supplementary Video 10
and 11).

Analysis of Dyx1c1 mutant respiratory cilia

To assess the ultrastructure of respiratory cilia in mutants we obtained transmission electron

micrographs of tracheal cilia. As on the ependymal surface, tracheal cilia were abundant in

both wild-type and Dyx1c1Δ/Δ cells (Fig. 3e), but unlike tracheal cilia in wild-type mice,

cilia in Dyx1c1Δ/Δ trachea were surrounded by cellular debris and mucus (Fig. 3e). We

further examined the ultrastructure of tracheal cilia in cross sections by TEM. As shown in

Fig. 3f, tracheal cilia in wild-type and mutant mice had typical 9+2 microtubular structure

with intact radial spokes. In contrast, and consistent with the absence of heavy and light

chain dynein subunits (Fig. 3b), cilia in Dyx1c1Δ/Δ mice lacked both ODA and IDA

structures in respiratory cilia (Fig. 3f). Thus, the phenotype of Dyx1c1 loss of function is a

severe ciliary motility defect associated with absent axonemal ODA and IDA structures.

Mutation analysis of DYX1C1 in PCD patients with ODA/IDA defects

The apparent conservation of function of mouse and zebrafish Dyx1c1/dyx1c1 encouraged

us to search for mutations in DYX1C1 in patients with PCD, the human disorder connected

to defective ciliary motility. Because of the observed ultrastructural phenotype and severe

ciliary beating defect in Dyx1c1Δ/Δ mice, we considered DYX1C1 an excellent candidate

gene for PCD with abnormal axonemal ODA and IDA assembly. DYX1C1, located on

chromosome 15q21.3, comprises 10 exons (translation starts in exon 2) and encompasses

77.93 kb of genomic DNA. In one highly inbred Irish family (UCL-200), a CNV analysis of

whole exome sequence data (using ExomeDepth)44 identified a homozygous DYX1C1
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deletion in two affected siblings (UCL-200 II:1 and II:2; Supplementary Figure 2a,b). This

finding was confirmed by Sanger sequencing of the deletion breakpoints and was present in

heterozygous state in their carrier mother (Supplementary Figure 2c). The 3.5 kb deletion

leads to the loss of exon 7 of DYX1C1 (Fig. 4a). Interestingly, the same 3.5 kb deletion was

also identified in individuals with PCD in five American/Australian families. Five of these

individuals were heterozygous for the deletion along with a mutation in the splice donor site

of exon 6, stop mutations and a frame shift mutation in the other allele (UNC-158,

UNC-159, UNC-1669, UNC-1839, UNC-1171, Fig. 4a and Supplementary Fig. 3e–h) and

one individual was homozygous for the deletion (UNC-663, Supplementary Figure 3i). In
addition we screened all DYX1C1 exons and adjacent intronic sequences by PCR

amplification and subsequent Sanger DNA sequencing in 105 PCD individuals with

combined ODA and IDA defects. Mutations were identified in ten affected individuals from

nine unrelated families that predicted premature termination of translation (Fig. 4a,b and
Table 1). In all analysed families, the mutations segregated with the disease status consistent

with an autosomal recessive inheritance pattern (Supplementary Fig. 2 and 3). In three

families, recessively inherited homozygous mutations were confirmed by sequencing of

other family members (F648 II1, OP-359 II1, OP-556 II1). In another family, the PCD-

affected individual, OP-86 II2, was compound heterozygous for two different mutations,

with each mutation tracking uniquely to one of the parents (Supplementary Fig. 3a). A

total of 9 human DYX1C1 mutations were therefore defined (Supplementary Table 1). Apart

from the 3.5 kb deletion and a splice site mutation, the other seven detected mutations

predicted premature protein termination and clustered towards the middle of the 420 amino

acid sequence between amino acids 128 and 195 (Fig. 4b). Thus, remarkably, seven of the

nine identified mutations predict a truncated DYX1C1 protein that would lack more than

half of the protein, including the carboxyl-terminal tetratricopeptide repeat domains (TPR).

The TPR domains in DYX1C1 have been shown previously to be functionally important

domains required for DYX1C1 in neuronal motility, cellular localization, and interaction

with molecular chaperones33,35.

Clinical phenotype of PCD patients carrying DYX1C1 mutations

All twelve PCD patients with recessive DYX1C1 mutations suffer from classical symptoms

of PCD, including recurrent upper and lower airway disease and bronchiectasis. Seven

patients had neonatal respiratory distress syndrome. Four patients exhibited reduced fertility

(Supplementary Table 1) and one male patient was treated for infertility, having three

children by assisted reproduction, suggesting a probable DYX1C1 function also in sperm

tails. Five of the twelve affected individuals display situs inversus totalis (42%), two have

situs ambiguous (16%), one with dextrocardia and polysplenia and one with left atrial

isomerism and polysplenia, and five have situs solitus (42%). Thus, DYX1C1 deficiency in

PCD patients causes disruption of left-right body asymmetry, similar to findings observed in

mouse and zebrafish. Interestingly, no patient was diagnosed with dyslexia or with

hydrocephaly. Hydrocephalus is a common phenotype in mouse mutants with immotile cilia

but rare in human patients3,39. Two patients had a learning disability, but these can likely be

attributed to other causes including microcephaly (OP-86 II2, UCL-200 II:1).
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Characterization of dynein arm defects in DYX1C1 deficient respiratory cilia

Respiratory cilia isolated from patients with biallelic DYX1C1 mutations displayed severe

ultrastructural defects (Fig. 4c–f) resembling those defects observed in mouse Dyx1c1

mutants (Fig. 3b,c and e). Specifically, both ODA and IDA defects were present in TEM

analyses in all ten assessed probands (OP-86 II2, OP-556 II1, UNC1669, UNC1839,

UNC1171, UNC158, UNC159, UNC663, UCL-200 II:1 and II:2) (Fig. 4c and

Supplementary Table 1). To further understand the defect on the molecular level, we

performed immunofluorescence microscopy of cilia using antibodies targeting components

of the axonemal ODAs, IDAs and N-DRC. Immunofluorescence analysis revealed an

absence or marked reductions of proteins normally present in type-1 and type-2 ODA

complexes (DNAH5, DNAH9, and DNAI2; Fig. 4d,e and Supplementary Fig. 4–6) as well

as IDA subtype complexes (DNALI1; Fig. 4f and Supplementary Fig. 7). These findings

are similar to cytoplasmic pre-assembly (DNAAF) defects reported in DNAAF2 (KTU)20,

DNAAF1 (LRRC50)21,22, and DNAAF3 (C19orf51)23 mutant ciliary axonemes.

Interestingly, we found that the extent of axonemal ODA defects varied among the

respiratory cells tested, and in some cases the ODA proteins DNAH5 and DNAI2 could be

detected in the axonemes (Supplementary Fig. 4 and 6). Assembly of proximal type-1

ODA complexes (DNAH9 negative and DNAH5 positive) appeared to be better preserved

than distally localized type-2 ODA complexes (DNAH5 and DNAH9 positive;

Supplementary Fig. 4–6). To further understand the functional consequences of our

observations, we performed nasal brush biopsy in patients (F-648 II1, OP-86 II2, UNC1669,

UNC1839, UNC1171, UNC663, UCL-200 II:1 and II:2) and analysed respiratory cilia

beating by high-speed videomicroscopy. Videomicroscopy revealed that most respiratory

cells had immotile cilia (Supplementary Video 12 and 13); however, cilia were found to

beat in some respiratory cells, albeit with reduced frequency (Supplementary Video 14 and
15) when compared to control cilia (Supplementary Video 16). These variable motility

defects in DYX1C1 mutant cells are consistent with our previous observations of variable

degrees of axonemal ODA defects. Interestingly, only mutations in DNAAF2 (KTU) in

human patients have revealed respiratory cells with similarly variable ODA defects and

associated IDA abnormalities20.

Cellular sublocalization and interaction partners of DYX1C1

The phenotypes described above and previously reported interactions between exogenously

expressed DYX1C1 protein and molecular chaperones suggested to us that DYX1C1 may

function as a newly identified cytoplasmic axonemal dynein assembly factor. Consistent

with this possibility, we found by immunofluorescence that Dyx1c1 protein is located in the

cytoplasm of respiratory epithelia (Fig. 5a). We confirmed this finding by immunoblot by

showing that similar to DNAAF2, DYX1C1 is also present in the cytoplasmic protein

fraction and almost undetectable in the axonemal protein fraction of human respiratory cells.

(Fig. 5b). Considering the similarities in phenotype caused by DYX1C1 and DNAAF2

mutations with regard to variable ODA defects, we tested for possible interactions between

these proteins. Using myc- and FLAG-tagged proteins that were coexpressed in HEK293

cells, we found by co-immunoprecipitation that DYX1C1 interacted with DNAAF2/KTU

(Fig. 5c), but not the cytoplasmic pre-assembly factors DNAAF1 and DNAAF3 or the PCD-
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associated protein CCDC103 that localizes in both the cytoplasm and axoneme and plays a

role in dynein arm attachment (Supplementary Fig. 8), as well as the newly identified

dynein arm assembly protein LRRC6 (data not shown). Furthermore, we demonstrate that

DYX1C1 and DNAAF2 interact directly by yeast two-hybrid assay (Fig. 5d). Based on these

findings, we hypothesize that DYX1C1 represents a novel cytoplasmic axonemal dynein

assembly factor possibly acting together with DNAAF2/KTU at an early step of cytoplasmic

ODA and IDA assembly.

To categorize the molecular function of Dyx1c1 more completely in respiratory tissue we

defined the protein interactome of Dyx1c1 in mouse trachea by co-immunoprecipitation and

tandem mass spectroscopy (MS/MS). Input extracts for co-immunoprecipitation were

prepared from trachea tissue of either wild-type or mutant mice and these appeared similar

in protein composition as evaluated by coomassie staining after SDS-PAGE

(Supplementary Fig. 8a). Following co-immunoprecipitation with anti-Dyx1c1 antibodies

coomassie stained protein bands were apparent in preparations from wild-type extracts but

not in mutant extracts (Supplementary Fig. 8a). Fourteen matched pairs of gel pieces

covering the range of approximately 20 to 200 kDa, with many pieces containing mutiple

bands, were cut from wild-type and mutant co-immunoprecipitations and subjected to tryptic

digest and tandem mass spectrometry analysis for protein identification. In all, 702 proteins

were positively identified in immunoprecipitates from wild-type trachea, while a total of 29

proteins were identified in gel slices from the mutant immunoprecipitates (Supplementary

Table 2). To determine whether the identified Dyx1c1 protein interactome was enriched for

particular molecular or biological functions we used DAVID to determine the presence of

enriched Panther Gene Ontology terms in the Dyx1c1 interactome and proteins identified in

the knockout control. Using a mouse lung proteome as a background we found several

molecular functional categories enriched in the Dyx1c1 interactome and several of these

were in the categories containing molecular chaperones (MF00077: Chaperone, p<0.001,

BP00062:Protein folding, p<0.01, BP00072:Protein complex assembly, p<0.05, and

MF00078:Chaperonin, p=0.05, Supplementary Table 3). All four of these chaperone

containing categories were not significantly enriched in the protein set identified in the

mutant immunoprecipitates (Supplementary Table 3). The Dyx1c1 interactome contains a

total of 28 proteins in the chaperone or chaperonin category including 6 of 8 subunits in the

T-compex chaperonin complex, and multiple heat shock proteins. We confirmed by co-

immunoprecipitation and western blot analysis six chaperones interacting with Dyx1c1

including Cct3, Cct4, Cct5, Cct8, Hsp70 and Hsp90 (Supplementary Fig. 8b).

Discussion

The protein interactions we found in tracheal tissue with endogenous Dyx1c1 are in

agreement with results from a recent study using neuroblastoma cell lines and exogenously

expressed Dyx1c145. Our results provide the first evidence that may link the T-complex of

chaperones, known primarily for their role in cytoskeletal protein assembly, to the folding

and assembly of axonemal dynein complexes. Interestingly, evidence for a role of Ccts in

cytoplasmic assembly of protein complexes required for motile cilia has been reported for

Tetrahymena46. Although the Dyx1c1 interactome defined with tandem mass spectrometry

did not include any of the known DNAAF proteins absence in an MS-MS screen does not
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necessarily mean absence of potential interaction and highlights to screen for potential

interactors by several means.

This study is the first to show the effects of DYX1C1/Dyx1c1/dyx1c1 deficiency in human,

mouse and zebrafish. The phenotypes in all species are consistent in showing a selective

defect in motile cilia reflecting deficient dynein arm transport or assembly. Furthermore,

since the human patients carrying mutations in DYX1C1 showed no evidence of dyslexia, we

propose that the loss-of-function of DYX1C1 may not be a highly penetrant cause of

dyslexia. In conclusion, based on the pattern of cilia defects, its cellular localization, a

protein interactome enriched for chaperones, and genetic-physical interaction with

DNAAF2, we propose that DYX1C1 represents a novel axonemal dynein assembly factor

(DNAAF4).

Online Material and Methods

Whole mount in situ hybridization of Dyx1c1 mouse embryos

Sense and antisense probes for Dyx1c1 were made from a 554 bp pCRII-TOPO construct (nt

1098 – 1651; RefSeq NM_026314.3, Mus musculus Dyx1c1 transcript variant 1) made by

TOPO TA cloning (Invitrogen) after amplification from complementary DNA. Primers used

for amplification were 5´-aaacctacacaaggccatcg-3´ (Dyx1c1-F) and 5´-

atcctggcaatttcaacagc-3´(Dyx1c1-R). Probes were synthesized with digoxigenin NTPs

(Roche) after template linearization with Hind III (antisense) or Not I (sense) before RNA

synthesis with T7 or SP6 RNA polymerases, respectively. For whole mount in situ

hybridization (WISH) staged embryos were fixed overnight at 4°C in 4% paraformaldehyde

in 1× PBS. WISH was then performed according to standard procedures with minor

modifications47. Stained samples were transferred into 80% glycerol, and images were

captured using a Scion CFW-1310C color digital camera mounted on an Axioskop2 plus

microscope (Zeiss) and Image-Pro Express.

Immunohistochemistry of mouse tissue

Mice were perfused transcardially with 0.9% saline followed by 4% paraformaldehyde

(Electron Microscopy Science, Hatfield, PA) in 1× PBS. Brains were removed, fixed

overnight in the same fixative at 4°C, and washed in 1× PBS three times for 40 min the next

day before cutting into 50 µm sections with a vibratome (VT-1000S; Leica, Wetzlar,

Germany). Nuclei were counterstained with Hoechst33342 (2µg/ml PBS, Sigma). Stained

sections were washed for 10 min in PBS, coverslipped using prolong gold anti-fade

(Invitrogen), and imaged on a Carl Zeiss Axiovert 200M Inverted microscope with an

ApoTome attachment and Axiovision 4.6 software (Carl Zeiss). Whole mounts of the entire

lateral wall of the lateral ventricles were prepared as described previously48 and fixed

overnight in 4% paraformaldehyde in PBS at 4°C, and washed in 1× PBS three times for 40

min the next day. They were then permeabilized with 0.1% Triton X-100 (Sigma, St. Louis,

MO) in PBS for 10 min, blocked in 10% goat serum (Invitrogen, Carlsbad, CA) in PBS/

0.1% Triton X-100 for 1 h, and incubated with the following primary antibodies: mouse

anti-acetylated tubulin (1:500; Sigma, T6793); rabbit anti-β- catenin (1:100; 9562, Cell

Signaling Technology, Beverly, MA) and mouse anti-γ-tubulin (1:500; T6557, Sigma).
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After washing three times in PBS, tissues were incubated with appropriate Alexa Fluor dye-

conjugated secondary antibodies (Goat anti-rabbit 488 [A11008], Goat anti-mouse 488

[A11001], Goat anti-rabbit 568 [A11011], Goat anti-mouse 568 [A11031] Invitrogen) at a

dilution of 1:400 for 1 h. Tissues were washed in PBS and incubated for 5 min in 2 µg/ml

Hoechst33342 (Sigma) for counterstaining of nuclei. Secondary antibodies alone were used

as a control. Whole mounts were placed onto depressed glass slides and coverslipped with

CoverWell imaging chambers (Grace Bio-Labs, Bend, OR). Samples were imaged either on

a Carl Zeiss Axiovert 200M Inverted microscope with an ApoTome attachment and

Axiovision 4.6 software (Carl Zeiss) or on a Leica TCS SP2 confocal laser-scan microscope.

Immunofluorescence of dissociated mouse nasal epithelial cells

Nasal epithelial cells were harvested from mouse septa by acute dissociation on a 4-well

slide in 1:1 PBS/HBSS. The slides were dried to let the cells stick to the wells and then

immediately fixed with 4% PFA for 2 min at RT. The cells were then washed with 1× PBS

for 2 min each twice. Blocking buffer (10% Goat serum, 0.1% Triton in 1X PBS) was added

for 15 mins at RT. The slides were incubate with rabbit polyclonal anti-DYX1C1 antibody

(Sigma SAB4200128) at a dilution of 1:500 and mouse monoclonal anti-acetylated tubulin

(Sigma, T7451) at 1:1000 in the same blocking buffer for 30 mins at RT. After 3 washes

with 1X PBS for 5 min each, the slides were incubated with goat anti-rabbit 488 (Invitrogen,

A11034 dilution 1:5000) and goat anti-mouse 568 (invitrogen, A11031 dilution 1: 1000) for

20 min at RT. The slides were washed 2 times with 1X PBS for 5 min each and nuclear stain

Hoechst33342 (Invitrogen, H3570) at 1:2500 was added for 15 min at RT. Slides were dried

and coverslipped with Prolong Gold antifade (Invitrogen, P36930). The cells were imaged

on Leica TCS Sp2 laser scan microscope.

Transmission electron microscopy

For harvesting the brains, mice (12 days old) were perfused transcardially with 0.9% saline

followed by 2% paraformaldehyde/2.5% glutaraldehyde in 0.1 mM phosphate buffer (PB).

Brain samples were further fixed by immersion overnight in 2% paraformaldehyde/2.5%

glutaraldehyde in 0.1 mM PB; and washed in PB three times for 40 min. Sections were

postfixed with 2% OsO4 in 0.1 mM PB for 1.5 h and dehydrated through a graded ethanol

(EtOH) series. Following dehydration, tissues were twice washed in acetone and embedded

in epoxy resin in capped inverted Beem capsules. Thin sections were cut with a diamond

knife, placed onto Formvar-coated slot grids, and heavy metal stained with uranyl acetate

and lead citrate. Trachea tissues were directly dissected without perfusion and fixed by

immersion overnight in 2.5% glutaraldehyde/2% paraformaldehde in 0.12 mM PB. They

were washed in PB three times (60 min in total), postfixed in 1% OsO4 and 0.8% potassium

ferricyanide in 0.12M PB for 1 hour, dehydrated through graded EtOH series, rinsed twice

in acetone and embedded in epoxy resin. Thin sections were cut with diamond knife, placed

on copper grids, and heavy metal stained with ethanolic uranyl acetate and Sato's lead

citrate. Electron micrographs were captured using an FEI Tecnai 12 Biotwin TEM equipped

with a side mounted AMT XR-40 CCD Camera and Epson Expression 1680 flatbed

scanners.
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Scanning electron microscopy

Wildtype and mutant mice embryos (E7.5 days) were harvested and fixed in 1.5%

paraformaldehyde/1.5% glutaraldehyde (Electron Microscopy Science) in 0.10 M sodium

cacodylate containing 0.05 M NaCl overnight at 4°C. Samples were postfixed with 2%

OsO4 in the same buffer overnight followed by graded ethanol dehydration. Specimens were

dried in a Polaron (Hertfordshire, UK) E3000 Critical Point Dryer and mounted onto

aluminum specimen mounts (Ted Pella) using carbon tape and silver paint (Ernest F.

Fullam, Clifton Park, NY). Each mount was sputter coated with gold palladium (60% gold,

40% palladium) using a Polaron E5100 Sputter Coater. Samples were examined and

photographed using a LEO DSM982 field emission SEM.

Western blots of brain, lung and trachea lysates

Wild-type and mutant animal brains and lungs were harvested and lysed in RIPA Buffer

(Sigma) supplemented with 1× Protease Inhibitor Cocktail (Sigma). For tracheal and lung

preparation, tissues were dissected and carefully separated from the surrounding tissues. The

samples were homogenized using a tissue homogenizer and cleared by centrifugation at

10,000×g for 10 min. Proteins were separated on 10% SDS-PAGE minigels and then

transferred to Immobilon (Millipore Inc., Billerica, MA, USA) membrane for Western

blotting. For detecting Dyx1c1 protein, the N-terminal DYX1C1 (Sigma, SAB4200128)

antibody was used at a dilution of 1:200, anti-Gapdh antibody (Sigma, G8795) was used at

1:1500 as a loading control. Licor Odyssey infrared secondary antibodies were used at a

dilution of 1:10,000 (goat anti-mouse 680 [926–32220]; goat anti-mouse 800 [926–32210];

goat anti-mouse 680 [926–32221]; goat anti-mouse 800 [926–32211]) were used at dilution

of 1:10,000. All blots were imaged and analysed by Licor Odyssey Scanner and Software.

Immunoprecipitation

Immunoprecipitation assay was performed using Dynabeads Protein G Immunoprecipitation

Kit (Invitrogen). Briefly, Dynabeads were resuspended in the vial and separated on a magnet

from the solution. N-terminal Dyx1c1 antibody (5µg) was diluted in 200 µL of Washing and

Binding Solution and incubated with rotation for 60 min at room temperature. The beads-

antibody complexes (beads-Ab) were separated on the magnet, washed by gentle pipetting

and separated. Protein lysates as described earlier from the wildtype and mutant mice brains

were incubated with the beads-Ab overnight at 4C. The beads-Ab-antigen complex was then

washed using the washing solution 3 times. The complex was then incubated with elution

buffer for 10–15 mins to dissociate the complex. The beads were separated on a magnet and

the supernatant containing the proteins was separated by SDS–PAGE and analysed by

western blotting using anti-DNAI2 monoclonal antibody (M01, clone 1C8, Abnova, 1:500),

anti-Hsp70 (BD Biosciences, 610607, 1:1000) antibody, anti-Hsp90 (BD Biosciences,

610418, 1:1000) antibody, anti-CCT4 (Aviva Systems Biology, ARP34271_P050, 1:500),

anti-CCT3 antibody (Proteintech, 10571-1-AP, 1:500), anti-CCT5 antibody (Proteintech,

11603-1-AP, 1:500), anti-CCT8 antibody (Proteintech, 12263-1-AP, 1:500) and anti-IC74

monoclonal antibody (gift from Dr. Stephen King, 1:750). Rabbit IgG was used as a control.
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Videomicroscopy of of ependymal flow and cilia in mice

P6–P10 wildtype and mutant mice were deeply anesthetized with isoflurane and then

decapitated. Brains were rapidly removed and immersed in ice-cold oxygenated (95% O2

and 5% CO2) dissection buffer containing (in mM): 83 NaCl, 2.5 KCl, 1 NaH2PO4, 26.2

NaHCO3, 22 glucose, 72 sucrose, 0.5 CaCl2, and 3.3 MgCl2. The lateral wall of the lateral

ventricle was dissected using a fine scalpel and forceps and immediately observed in a

chamber containing 37°C buffer. For visualization of flow, a small amount of Indian ink was

placed on the surface of the lateral wall of the dissected ventricle. Movements of Indian ink

were observed and recorded with an IR differential interference microscopy (DIC)

(E600FN, Nikon) and a CCD camera (QICAM, QImaging, 120fps). For direct observation

of cilia movement, mice brains were harvested as above and coronal slices (400 µm) were

cut using a vibratome (VT1200S, Leica). Slices from the third ventricle through the fourth

ventricle were visualized using IR differential interference microscopy (DIC) (E600FN,

Nikon) and a CCD camera (QICAM, QImaging, 120fps). The images were analysed with

ImageJ software (NIH).

RNA probes and whole-mount in situ hybridization of zebrafish embryos

DIG-labelled RNA probes were transcribed from linearized DNA templates and used in

RNA in situ hybridization by standard methods. Antisense probes included cardiac myosin

light chain (cmlc2; myl7 – ZFIN)49, forkhead 2 (fkd2; foxa3 – ZFIN)50, preproinsulin (ins)51

and southpaw (spaw)43.

Microscopy of zebrafish embryos

Images of live zebrafish embryos were taken using the ProgressC14 digital camera

(Jenoptik) mounted on a Leica MZFL III microscope. Embryos processed for in situ

hybridization analysis were mounted in modified GMM52 [100 ml Canada Balsam (C-1795,

Sigma), 10 ml methylsalicylate (M0387-100G, Sigma)], visualized using a Leica DMRA

microscope at 10× magnification, and photographed with the ProgressC14 digital camera.

Mutational analysis of PCD patients

Signed and informed consent was obtained from patients fulfilling diagnostic criteria of

PCD53 and family members using protocols approved by the Institutional Ethics Review

Board at the University of Muenster and University College London Hospital NHS Trust.

Genomic DNA was isolated by standard methods directly from blood samples or from

lymphocyte cultures after Epstein-Barr virus transformation. Exome analysis of family

UCL200 was performed as part of the UK10K Project, as previously described15.

Amplification of 10 genomic fragments comprising all 10 exons of DYX1C1 was performed

for each exon and patient in a volume of 50 µl containing 30 ng DNA, 50 pmol of each

primer, 2 mM dNTPs, and 1.0 U GoTaq DNA polymerase (Promega Corporation,

Wisconsin, USA). PCR amplifications were carried out by means of an initial denaturation

step at 94°C for 3 min, and 33 cycles as follows: 94°C for 30 sec, 58–60°C for 30 sec, and

72°C for 70 sec., with a final extension at 72°C for 10 min. PCR-products were verified by

agarose gel electrophoresis, purified by PCR product pre-sequencing kit (USB, Ohio, USA)

and sequenced bi-directionally using BigDye Terminator v3.1 Cycle Sequencing Kit
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(Applied Biosystems, California, USA). Samples were separated and analysed on an

Applied Biosystems 3730×l DNA Analyzer. Sequence data were evaluated using the

Codoncode software (CodonCode Corporation, Dedham, USA).

Transmission Electron Microscopy of human respiratory cilia

Transmission electron microscopy of human respiratory cilia was performed as previously

described17.

High-Speed Video Microscopy Analysis for Ciliary Beat Assessment in human cilia

Ciliary beat was assessed with the SAVA system54. Respiratory epithelial cells were viewed

with an Olympus IMT-2 microscope (40 phase contrast objective) equipped with a Redlake

ES-310Turbo monochrome high-speed video camera (Redlake, San Diego, CA) set at 125

frames. The ciliary beating pattern was evaluated on slow-motion playbacks.

Immunofluorescence of human respiratory epithelium

Respiratory epithelial cells were obtained by nasal brush biopsy (Engelbrecht Medicine and

Laboratory Technology) and suspended in cell culture medium. Samples were spread onto

glass slides, air dried and stored at −80 °C until use. Cells were treated with 4%

paraformaldehyde, 0.2% Triton-X 100 and 1% skim milk (all percentages are v/v) before

incubation with primary (2–3h at room temperature or overnight at 4 °C) and secondary (25

min at room temperature) antibodies. Appropriate controls were performed omitting the

primary antibodies. Mouse monoclonal anti-DNAI2 (1:200; H00064446-M01 (clone1C8))

was obtained from Abnova. Mouse monoclonal anti-acetylated tubulin (1:10000;

T7451-200UL) and rabbit polyclonal anti-CCDC39 (1:300; HPA035364) were obtained

from Sigma. Rabbit polyclonal anti-DNAH5 and anti-DNALI1 antibodies were generated as

reported55,56. Highly cross-adsorbed secondary antibodies goat anti-mouse Alexa Fluor 488

(1:1000; A11029) goat anti-rabbit Alexa Fluor 546 (1:1000; A11035) were from Molecular

Probes (Invitrogen). DNA was stained with Hoechst33342 (1:1000; 14533-100MG, Sigma)

or DAPI (1:1000; 32670-25MG-F, Sigma). Immunofluorescence images were taken with a

Zeiss Apotome Axiovert 200 and processed with AxioVision 4.8 and Adobe Creative Suite

4.

cDNA Cloning

The following clones were purchased from Origene (Rockville, USA): DYX1C1 (cat no.

SC313387), DNAAF3/C19orf51 (cat no. SC126165), and CCDC103 (cat no. RC208345).

cDNA clones for DNAAF2/KTU and DNAAF1/LRRC50 were amplified in a two-step

(nested) PCR reaction from human bronchial epithelial cell cDNA (ScienCell, cat no. 3214)

for Gateway cloning. All PCR products were amplified using KOD polymerase according to

manufacturer´s directions, recombined with the pDONR201 Gateway vector via BP Clonase

II reaction, and subcloned into Gateway entry vectors for myc and 3×FLAG via LR Clonase

reaction.
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Preparation of human respiratory cell lysates

Human respiratory cells were obtained either by brushing or cell culture (spheroids)57. Cells

were incubated in 800–1000 µl NP40 or RIPA lysis buffer containing protease inhibitor

cocktail (P8340, Sigma-Aldrich) on ice for 30 min and occasionally vortexed. Lysates were

spun at 14,000 rpm at 4°C for 10 min. Supernatants were removed into a new tube

(cytoplasmic fraction). Pellets were resuspended and incubated in 100–150 µl modified

Reeds High salt extraction buffer58 (30 mM HEPES pH 7.4, 5 mM MgSO4, 0.1 mM EDTA,

625 mM NaCl, 2 mM DTT, 70 mM β-Mercaptoethanol, 0.1% Triton-X 100) lysis buffer

containing protease inhibitor cocktail (P8340, Sigma-Aldrich) on ice for 30–60 min and

frequently vortexed. Lysates were spun down at 14,000 rpm at 4°C for 10 min. Supernatants

were removed into a new tube (axonemal fraction). Lysates were controlled by silver

staining using the ProteoSilver silver staining kit (PROTSIL1-1KT, Sigma-Aldrich) and

stored at −20°C or −80°C until use. Using this method we obtained two protein fractions, the

first enriched for cytoplasmic proteins (cytoplasmic fraction) and the second enriched for

axonemal proteins (axonemal fraction). We confirmed enrichment of cytoplasmic proteins

with anti-DNAAF2 antibodies (Fig. 5b) and axonemal proteins with anti-LRRC48

antibodies (Fig. 5b).

Co-immunoprecipititation assays of epitope tagged constructs and Western Blotting

HEK293 cells were transfected with plasmids encoding myc- and FLAG-tagged cDNA

constructs using Gene Juice (Novagen) at approximately 0.1 µg DNA per ml of media.

Within 24 hrs, cells were collected in 1× PBS and lysed in 1 ml of the following buffer: 50

mM Tris-Cl, pH 8.0, 150 mM NaCl, 1% IGEPAL, 0.5 mM EDTA, and 10% glycerol

supplemented with protease (Roche Complete) and phosphatase inhibitors (Cocktails 2 and

3, Sigma Aldrich). Lysates were centrifuged at 16,000 × g for 30 min. at 4°C.

Approximately 2 mg of each lysate was precleared with 4 µg of rabbit control IgG antibody

for 2 hrs. at 4°C, and then incubated with MagSi/protein A beads (MagnaMedics, Germany)

for 1 hr. Lysates were then incubated with 4 µg of rabbit anti-FLAG or anti-myc antibody

overnight at 4°C, and then incubated with MagSi/protein A beads for 1 hr. to capture

immunoprecipitates. Bead complexes were washed four times in lysis buffer and then

resuspended in 1× LDS buffer supplemented with DTT (1/8 lysis volume) and heated for 10

min. at 90°C. Lysates were electrophoresed in NuPAGE 4–12% Bis-Tris gels, transferred to

PVDF filters, and subsequently immunoblotted with either anti-myc (A7) or anti-FLAG

(M2) mouse monoclonal antibodies. PVDF filters were washed three times in TBS-T (10

minutes each) before blocking in 5% BSA for 2 hours at room temperature. Filters were then

washed three times (10 minutes each) before incubation with primary antibody (diluted in

TBS-T) overnight at 4°C. Filters were washed three times (10 minutes each) and then

incubated with secondary antibody for 1 hour at room temperature. Filters were then washed

four times and developed by ECL using Prime Western Blotting Detection Reagent

(Amersham). Images were digitally acquired using a FUSION-SL Advance Imager

(PeqLab) and modified for contrast using Adobe Photoshop v. CS4. All wash and incubation

steps were performed with gentle shaking. The following antibodies were used: Rabbit

polyclonal anti-DNAAF2 (1:1000; Atlas Antibodies; HPA004113), rabbit polyclonal anti-

LRRC48 (1:500; Atlas Antibodies; HPA036040), rabbit polyclonal anti-DYX1C1 (1:1000;

ProteinTech; 14522-1-AP); Rabbit polyclonal anti-myc (1:25; clone A-14, Santa Cruz),
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mouse monoclonal anti-myc (1:2000; clone A.7, Abcam), rabbit polyclonal control IgG

(1:25; sc-2027, Santa Cruz), rabbit polyclonal anti-FLAG (1:250; clone F7425, Sigma

Aldrich), mouse monoclonal anti-FLAG (1:2000; clone M2, Sigma Aldrich), goat anti-

mouse HRP antibody (1:5000; NA931V, GE Healthcare) and goat anti-rabbit HRP antibody

(1:3000; NA934, GE Healthcare).

Yeast-2-hybrid assay

To analyze the binding capacity between DYX1C1 and DNAAF2, plasmids expressing full-

length DYX1C1 fused to a DNA-binding domain (GAL4-BD) and full-length DNAAF2

fused to an activation domain (GAL4-AD) were transformed in yeast strains PJ69-4A and

PJ69-4α respectively, and subsequently combined by yeast mating and diploids containing

both plasmids were selected on media lacking leucine and tryptophane. Interactions were

analyzed by assessment of reporter gene activation via growth on media additionally lacking

histidine and adenine to detect HIS3 and ADE2 reporter gene activation, α-galactosidase

colorimetric plate assays (MEL1 reporter gene, not shown), and β-galactosidase colorimetric

filter lift assays (LacZ reporter gene). As a positive control, the binding capacity of the

known interactors BD-USH2A_icd and AD-NINL_isoB was assessed, and as a negative

control the inability of BD-USH2A_icd to bind to only the GAL4 domain (AD-GAL4).

Detailed protocols for evaluation protein-protein interactions are available from the authors

upon request.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Deficiency of Dyx1c1 in mouse causes phenotypes consistent with motile cilia defects
(a) Schematic of the strategy for producing the Dyx1c1 exon 2–4 deleted allele. A conditional knockout allele was inserted by

homologous recombination and then exons 2–4 were deleted from the germline by breeding mice to an Hprt-Cre line of mice.

(b) Left panel, PCR indicating the genotyping results from the wild-type (F1/R1, 437bp) and deleted alleles (F1/R2, 356bp).

Right panels, Western blots show the presence of Dyx1c1 protein detected in brain and lung of wild-type (Dyx1c1+/+), and

heterozygous animals (Dyx1c1Δ/+), but missing from homozygous mutants (Dyx1c1Δ/Δ). (c) Evidence of hydrocephalus in

Dyx1c1Δ/Δ mice. Characteristic domed crown in Dyx1c1Δ/Δ mice develops by P16 with the ventricles seen in coronal sections

are greatly expanded in Dyx1c1Δ/Δ relative to Dyx1c1+/+ mice. Scale bar, 250mm (d) Situs inversus in Dyx1c1Δ/Δ mice as seen

in both the reversal of the milk filled stomach in neonates to the right side, and exposed viscera showing reversal of multiple

organs including heart (He), stomach (St), and spleen (Sp). (e) Whole mount in situ hybridization analysis of Dyx1c1 in mouse

embryos at E7.5. Dyx1c1 expression is restricted to the pit cells of the ventral node (upper panels: Dyx1c1 antisense probe,

asterisk marks location of node; lower panels: Dyx1c1 sense control probe; upper and lower left panel: lateral view from the left;

upper and lower right panels: frontal view). A, anterior; L, left; P, posterior; R, right; Scale bar, 500µm
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Figure 2. Knock down of dyx1c1 in D. rerio
(a) Phenotypes of 48 hpf zebrafish embryos, with AUG-morpholinos (MO) injected between the one- and four-cell stage. Top,

lateral images of wild-type and dyx1c1 morphant zebrafish embryos at 48 hpf. The morphants have a curly tail down phenotype

and exhibit hydrocephalus (asterisk in enlarged image) as well as pronephric cysts (arrow in enlarged image). Middle, ventral

views of the heart and bottom, dorsal views of the liver and pancreas in dyx1c1 morphant embryos at 48 hpf. The heart, liver and

pancreas were visualized by in situ hybridizations for cmlc2, fkd2 and ins respectively. L, left; R, right; V, ventricle; Atr, atrium;

Li, liver; P, pancreas. Scale bars, 500µm (b) Top, graph shows the defects in visceral asymmetry in 48 hpf dyx1c1 morphant

embryos compared to uninjected controls. The laterality defects are associated with 2 ng of dyx1c1 AUG-MO. Bottom, graph
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showing alterations in the asymmetric gene expression of southpaw in the LPM of dyx1c1 morpholino injected embryos

compared to uninjected controls at three developmental stages during 15–20 hpf.
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Figure 3. Motile cilia are dysfunctional in Dyx1c1 mutant mice
(a) H&E stained sections of the cerebral ventricles show the presence of cilia on the surface of the ependymal cells in both

Dyx1c1+/+ and Dyx1c1Δ/Δ mice. (b,c) Immunofluorescence analyses of lung sections stained for acetylated tubulin (green), and

the outer dynein arm heavy chain Mdnah5 (b, red) and inner dynein arm light chain Dnali1 (c, red). Nuclei were stained with

DAPI. In contrast to Dyx1c1+/+ mice where Mdnah5 and Dnali1 co-localized with acetylated tubulin (yellow, upper panels in b
and c), in Dyx1c1Δ/Δ Mdnah5 and Dnali1 (lower panels in b and c) were completely absent from ciliary axonemes. (d) Flow of

fluid (Indian ink) across the ependymal surface in brain ventricle cup preparations from a Dyx1c1+/+ and Dyx1c1Δ/Δ at mice P6.

Directional flow was rapid across the surface of Dyx1c1+/+ ependymal epithelia, while only non-directional passive diffusion

was observed on ependymal surfaces in Dyx1c1Δ/Δ. The starting point for the fluid is at the end of the pipette tip, seen bottom

right. (e) TEM images of cross-sections through the trachea of wild-type and Dyx1c1Δ/Δ. Abundant cilia were present in each,

but cilia structures (red arrows) in the Dyx1c1Δ/Δ trachea are surrounded by cellular debris and mucus. (f) TEM cross section
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images of ependymal and tracheal cilia in Dyx1c1+/+ and Dyx1c1Δ/Δ mice. The 9+2 microtubular structure was well preserved

in Dyx1c1Δ/Δ, except that the outer and inner dynein arms were lacking in tracheal cilia. The scale bars represent in (a,b,c,d)

10µm, in (e) 1µm (left panel) and 2µm (right panel) and in (f) 0.1 µm.

Tarkar et al. Page 24

Nat Genet. Author manuscript; available in PMC 2014 April 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. DYXC1 mutations in human PCD patients cause defective ODA and IDA assembly
(a) Schematic presentation of chromosome 15 and the genomic structure of DYX1C1. The positions of 8 of the identified

mutations are indicated by black arrows, the position of the 3.5kb deletion is indicated by a rectangle. (b) Schematic showing

the relative positions of seven DYX1C1 nonsense mutations identified in PCD patients and families in the DYX1C1 coding

sequence. All mutations are clustered in the middle of DYX1C1 coding sequence and each mutation predicts to cause a

premature stop prior to the tetricopeptide repeat domains (TPR) at the C-terminus of DYX1C1 (CS: p23-like C-terminal

CHORD-SGT1 domain). (c) Transmission electron micrographs showing defects of outer and inner dynein arms in four PCD

individuals with DYX1C1 mutations compared to a control without PCD. Rarely, outer dynein arms can be seen in cilia of the

affected patient (OP-86 II2, red arrow). Scale bar, 0.2µm. (d) Respiratory epithelial cells from control and PCD patient OP-556

II2 were double-labeled with antibodies directed against acetylated tubulin (green) and DNAH5 (red). Both proteins colocalize

(yellow) along the cilia in cells from the unaffected controls. In contrast, in patient cells, DNAH5 was absent from or severely

reduced in ciliary axonemes (Supplementary Fig. 4). (e) Aberrant sublocalization pattern of the outer dynein arm heavy chain

DNAH9 in cilia of respiratory epithelial cells from control and PCD patient F648 II1. Cells were double-labeled with antibodies

directed against acetylated tubulin (green) and DNAH9 (red). Acetylated tubulin localizes to the entire length of the cilia,

whereas DNAH9 localization is restricted to the distal part of the cilia. In contrast, in DYX1C1 mutant cells DNAH9 was
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completely absent from ciliary axonemes. (f) Respiratory epithelial cells from control and PCD patient OP-86 II2 and OP-359

II1 were double-labeled with antibodies directed against acetylated tubulin (green) and DNALI1 (red). Both proteins colocalize

(yellow) to the ciliary axonemes in cells from an unaffected control, while DNALI1 was absent from the ciliary axonemes in

DYX1C1 mutant cells. In d, e, and f nuclei are stained with Hoechst33342 (blue). Scale bar, 10µm.
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Figure 5. DYX1C1 is localized in the cytoplasm of respiratory epithelial cells and interacts with DNAAF2/KTU
(a) Immunofluorescence analyses of mouse nasal epithelial cells stained for acetylated tubulin (green) and Dyx1c1 (red)m. In

Dyx1c1+/+ mice, Dyx1c1 localizes to the cytoplasm of the epithelial cells and partly to the basal bodies but is absent in the cilia.

In the mutant, Dyx1c1 is absent from the cytoplasma. Nuclei were stained with Hoechst 33342 (blue). (b) Immunoblots

performed with different lysate fractions (a, cytoplasmic and axonemal) demonstrate that DYX1C1 (right panels), as well as

DNAAF2 (middle right panels), shows a strong signal in the cytoplasmic fraction but is almost absent in the axonemal fraction.

LRRC48/DRC3 (middle left panels) was used as an axonemal control. Silver staining of the loaded lysates is shown on the left

panels. (c) HEK293 lysates coexpressing myc-DYX1C1 and FLAG-DNAAF2 were immunoprecipitated with either rabbit
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control IgG or rabbit anti-DNAAF2 antibody. Western blotting with mouse anti-myc demonstrates that myc-DYX1C1 is

efficiently immunoprecipitated by DNAAF2 (top panel), and Western blotting with mouse anti-FLAG confirms that FLAG-

DNAAF2 is recovered in the immunoprecipitate (bottom panel) as compared to the control immunoprecipitation. Equal volumes

(12 µl) of lysate and immunoprecipitate fractions were loaded on the same gel; lysate fractions represent 0.7 % of total lysate (1

ml volume) and immunoprecipitate fractions represent 1/15 lysis volume (33 µl resuspension). Magic Mark protein ladder (M)

was used to estimate molecular weight of myc-DYX1C1 and FLAG-DNAAF2. The observed molecular weights of myc-

DYX1C1 and FLAG-DNAAF2 are higher than the expected molecular weights of 48.5 and 91 kDa due to additional sequence

from myc and FLAG epitope tags, respectively. (d) Yeast two-hybrid assay using BD-tagged DYX1C1 and AD-tagged

DNAAF2 demonstrates a binary interaction between DYX1C1 and DNAAF2. Binary interactions were identified by yeast

growth on media lacking adenine and histidine to select for HIS3 and ADE2 reporter gene activation (left panel). Interactions

were additionally validated by evaluation of LacZ reporter gene activation (β-galactosidase colorimetric filter lift assay, right

panel). Binding of BD-DYX1C1 and AD-DNAAF2 was validated by using the known interactors BD-USH2A_icd and AD-

NINL_isoB as a positive control, and BD-USH2A_icd and AD-GAL4 as a negative control.
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