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Abstract

In this paper, we present a novel technique, based on compressive sensing principles, for

reconstruction and enhancement of multi-dimensional image data. Our method is a major

improvement and generalization of the multi-scale sparsity based tomographic denoising

(MSBTD) algorithm we recently introduced for reducing speckle noise. Our new technique

exhibits several advantages over MSBTD, including its capability to simultaneously reduce noise

© 2013 IEEE

Correspondence to: Leyuan Fang, fangleyuan@gmail.com.

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

NIH Public Access
Author Manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 April 26.

Published in final edited form as:
IEEE Trans Med Imaging. 2013 November ; 32(11): 2034–2049. doi:10.1109/TMI.2013.2271904.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://ieeexplore.ieee.org


and interpolate missing data. Unlike MSBTD, our new method does not require an a priori high-

quality image from the target imaging subject and thus offers the potential to shorten clinical

imaging sessions. This novel image restoration method, which we termed sparsity based

simultaneous denoising and interpolation (SBSDI), utilizes sparse representation dictionaries

constructed from previously collected datasets. We tested the SBSDI algorithm on retinal spectral

domain optical coherence tomography images captured in the clinic. Experiments showed that the

SBSDI algorithm qualitatively and quantitatively outperforms other state-of-the-art methods.

Index Terms

Fast retina scanning; image enhancement; optical coherence tomography; simultaneous denoising
and interpolation; sparse representation

I. Introduction

We introduce a simultaneous image denoising and interpolation method that recovers

information that was corrupted due to acquisition limitations of clinical tomographic

imaging systems. In particular, we focus on spectral domain optical coherence tomography

(SDOCT). SDOCT is a noninvasive, cross-sectional imaging modality that has been widely

used for diagnostic medicine, especially in ophthalmology [1], [2]. For clinical analysis,

ophthalmologists require high resolution and high signal-to-noise ratio (SNR) SDOCT

images. SDOCT acquires a depth profile at a single point of a target, and through a flying-

spot scanning technique, laterally samples the target to generate a three dimensional

tomographic image of the target. Higher resolution images require more samples of the

target, while higher contrast images require a longer dwell time at each lateral spot. Both

increase total image acquisition time. A trade-off for an increase in acquisition time is an

increase in motion artifacts due to involuntary patient motion [3], [4]. Utilizing a lower

spatial sampling rate will reduce total image acquisition time but may result in a sub-

Nyquist spatial sampling. In addition, regardless of sampling rate, noise will be inevitably

created in the SDOCT image acquisition process [5]–[8]. To accurately reconstruct a high

resolution, high SNR image from an original subsampled image requires utilization of

efficient interpolation and denoising techniques.

Interpolation and denoising are two of the most widely addressed problems in the field of

image processing [9]. The classic techniques are applicable to a variety of images from

different sources [10]–[12], and in many cases, providing a specific data model can improve

results [13]. One may perform image interpolation and denoising simultaneously [14]–[17].

An alternative computationally efficient yet generally suboptimal approach is to separate the

denoising and interpolation processes. This can be achieved by first interpolating, which

may be accompanied by deblurring and registration, and then denoising one [18] or multiple

frames [19]. An alternative approach reverses the order by denoising the data first followed

by interpolation [20]. Many of these algorithms have been previously implemented for

SDOCT denoising applications [5]–[8].

To improve denoising and interpolation performance for SDOCT imaging, utilization of

modern sparse representation and the closely related compressive sensing techniques have
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been addressed to some extent in the literature. We divide these techniques into two

categories: those algorithms that directly modify the unprocessed, interferometric Fourier

domain SDOCT data and those algorithms that utilize processed spatial domain SDOCT

data. The methods in the former group [21]–[23], while very promising, cannot currently be

adapted by end-users for improving the quality of images from existing commercial clinical

systems.

In this paper, we address sparse representation algorithms for spatial domain SDOCT data,

as they may be easily adapted by current users of commercial SDOCT imaging systems.

Several papers in this category have utilized sparse representation techniques by random

sampling of processed SDOCT data [24]–[27]. This is a promising approach for recovery of

globally repeated or slow-changing features, such as retinal nerve fiber layer thickness, even

if spatially sampled at a rate below the Nyquist limit [28]. We note that unlike random-

projection [29] based compressive sensing algorithms [30], random point-wise

(nonprojective) sampling in the image space does not provide any additional information

about the signal in a global sense. That is, while projective data is guaranteed to have at least

a signature of the signal of interest, point-wise sampling data may completely miss a sparse

event in the imaging space. As an example, if an SDOCT system implementing random

point-wise sampling did not acquire any A-scans at the location of a small retinal drusen

[31], it would be impossible to recover any information about that drusen, regardless of the

postprocessing approach used. Assuming a random sampling pattern, there is no

fundamental lower limit on the size of “nonrepeating” detectable signals to be recovered by

these techniques. Thus in some cases, pure random sampling may miss objects larger than

the Nyquist limit of a regular pattern scan utilizing an equal number of samples. To reduce

this effect, it is suggested to enforce limited maximum spacing between acquired samples

[26].

In contrast to the above techniques, we employ sparse representation as a special case of

statistical learning methods [32]–[36] and utilize a conventional method of sampling the

image space in a regularly spaced pattern. In brief, this method first develops a reference

dictionary consisting of the inferred relationships between a set of reference image pairs.

Each image pair is comprised of one high-quality and one low-quality image from the same

scene. Next, our method utilizes these inferred relationships to predict the missing

information within newly acquired low-quality images. Utilizing this idea, we can

simultaneously denoise and interpolate one or a set of low-SNR-low-resolution (LL) images

(e.g., sparsely sampled SDOCT data) to create one or a set of high-SNR-high-resolution

(HH) images (e.g., densely sampled and averaged SDOCT data), if their underlying

relationship is obtained from the reference set of image pairs.

To attain an HH image in the reference (learning) dataset, we employed a customized

scanning pattern in which a sequence of densely sampled, repeated low-SNR-high-

resolution (LH) B-scans from spatially very close positions are captured, registered, and

averaged to create an HH image [37], [38]. Accordingly, we subsampled an individual LH

B-scan from the above process to construct one LL reference image. Since the noise in these

frames can be approximated as random and uncorrelated, we can average these frames to

reduce the noise according to basic denoising principle. This is similar to the approach

Fang et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 April 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



chosen by the clinical practitioners of OCT [39] and is also used in most commercial

SDOCT imaging systems, such as Spectralis (Heidelberg Engineering, Heidelberg,

Germany) and Bioptigen SDOCT system (Bioptigen Inc., Research Triangle Park, NC,

USA).

We utilize the sparse representation principle [32], [33], [38], [40]–[43] to establish the

mathematical relationship between the above constructed reference pairs. To achieve this,

we propose the sparsity based simultaneous denoising and interpolation (SBSDI)

framework. In this framework, we first train a synchronized mathematical basis for a known

LL image and a corresponding unknown HH image. We then introduce a computationally

efficient mapping scheme to infer the HH image based on the sparse representation of the

LL image. Furthermore, to enhance the robustness of the SBSDI framework, we propose a

joint 3-D operation to exploit the high correlation and complementary information among

the nearby slices of a 3-D SDOCT volume.

The rest of the paper is organized as follows. In Section II, we briefly review the sparse

representation model and how to apply it to interpolation. Section III introduces the

proposed SBSDI framework for simultaneous denoising and interpolation of SDOCT image.

The experimental results for both simulated and real clinical data are presented in Section

IV. Section V concludes this paper and suggests future works.

II. Background: Sparse Representation Based Image Interpolation

A. Sparse Representation

The objective of the sparse representation is to approximate an image as a weighted linear

combination of a limited number of basic elements called atoms, often chosen from a large

dictionary of basis functions [44]. We represent a small rectangular patch of this image as X
∈ ℝn×m and its vector form as X ∈ ℝq×1; q = n×m, which is attained by lexicographic

ordering [45]. We utilize dictionary D ∈ ℝq×k that consists of k atoms (columns)  to

represent the patch as x ≈ Dα, satisfying ||x − Dα||2 ≤ ε, where ε is the error tolerance and ||

·||p stands for the p-norm. If D is a suitable dictionary for compressive representation of this

patch, then the coefficient vector α ∈ ℝk is sparse:||α||0 ≪ q, which means only a few scalar

coefficients in vector α are nonzero. To attain dictionary D for representing the input patch,

popular learning approaches suggest inferring the dictionary from a set of example reference

patches  [46], [47], where Z is the number of patches. Concretely, the objective

function of learning a dictionary can be stated as the following minimization problem:

(1)

where T is the sparsity level representing the maximum number of nonzero coefficients in

αi. A practical optimization strategy is to split the aforementioned problem into sparse

coding and dictionary updating parts, which are solved within an iterative loop [46], [47].

The sparse coding first keeps the D fixed and pursues the sparse coefficients  while
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the dictionary updating finds the new D with the current updated coefficients . As

described in [46], we update each dictionary atom by utilizing some selected training

patches and the positions of the nonzero coefficients in  correspond to indices of

these selected training patches. One popular sparse coding algorithm is the orthogonal

matching pursuit (OMP) [48], which pursues the sparse coefficient αi of one patch xi at a

time. At each iteration, the OMP algorithm selects the best atom dg, that exhibits the highest

correlation with the residual vector , by searching over the whole dictionary

(2)

where 〈 ·, · 〉 denotes the inner product. Then, a sub-dictionary DG is constructed by stacking

the selected atoms as columns, thus allowing the sparse coefficient αi to be iteratively

updated by projecting the patch xi on DG

(3)

Once the sparse coefficients  are obtained, we can update the dictionary atoms by the

singular value decomposition (SVD) [46] or quadratically constrained quadratic program

(QCQP) [49], [50].

B. Sparse Representation Based Image Interpolation

The image interpolation problem can be formulated as follows: denote the original noiseless

high resolution (HH) image as YH ∈ ℝN×M, the decimation operator as S, and the sub-

sampled low resolution version of the original image as YL = SYH ∈ ℝ(N/s)×(M/s). Given an

observation image YL, the problem is to find ŶH such that ŶH ≈ YH. In [32], Yang et al.

extended the above sparse model to image interpolation by jointly learning two dictionaries

DL and DH and for the low resolution feature space χL and high resolution feature space χH,

respectively. This technique assumes that the sparse coefficient of the low resolution image

patch xL ∈ χL in terms of DL should be the same as that of the high resolution image patch

xH ∈ χH with respect to DH. Accordingly, if xL is observed, the image reconstruction phase

can seek its sparse coefficient and recover the latent image patch xH as well as the

corresponding high resolution image ŶH utilizing DH. To enforce the similarity between the

sparse coefficients of these two feature spaces, the Yang et al. dictionary learning stage

concatenates the example image patches of the two spaces [32] x̄ = [xL/xH] for training the

joint dictionary D̄ = [DL/DH]. However, such a joint learning scheme can only be allowed to

be optimal in the concatenated feature space, instead of each feature space individually.

Therefore, as described in detail in [50], the dictionaries DL and DH trained in such a joint

scheme may not optimally represent xL and xH, respectively. In addition, the reconstruction

phase places little weight on enforcing the equivalent constraint on the sparse coefficients of

xL and xH, as had been done in the dictionary training stage [50]. In the very recent work of

Yang et al. [50], they introduce a bilevel coupled dictionary learning scheme to ensure that
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the sparse coefficients of xL and xH in terms of the trained coupled dictionaries are closer in

both training and reconstruction phase.

III. Proposed Sparsity Based Simultaneous Denoising and Interpolation

Framework for Ocular SDOCT Images

In real SDOCT applications, the low resolution unaveraged image is contaminated with

significantly high levels of noise as compared to the mentioned methods in the previous

section. In this section, we introduce the SBSDI framework, which utilizes the sparse model

to simultaneously denoise and interpolate LL SDOCT images.

A. Relating the Captured LL Image to Desired HH Image

Motivated by several previous learning based methods [32]–[36], the objective of the SBSDI

framework is to infer the relationship between two feature spaces: LL space χL,L and ideal

HH space χH,H from a large number of reference datasets. Once the relationship is found,

we can directly reconstruct the ideal HH image YH,H ∈ χH,H from the observed LL image

YL,L ∈ χL,L.

1) Dictionary and Mapping Learning (Training) Phase—To attain ideal HH images

required to construct example datasets of χH,H space, we employ a customized scanning

pattern in which a number of repeated densely sampled B-scans are captured from spatially

very close positions. In a postimage capturing step, we register and average all these images,

creating an ideal HH image [37], [38]. We consider a single frame from this sequence as the

noisy yet equally high-resolution version of the averaged image. We downsample this noisy

image to generate the corresponding LL image. The process for creating the HH example

image and its LL counterpart is shown in Fig. 1.

We relate these two feature spaces by establishing a relationship between their

corresponding dictionary atoms and sparse coefficients. Rather than enforcing the equality

condition on the sparse coefficients [32], [50], we require that the dictionaries (denoted as

DL,L and DH,H) for the two feature spaces be strictly matched. That is, we only require that

the selected dictionary atoms representing the observed LL image correspond to the

counterpart atoms for recovering the HH image. To meet this requirement, one simple way

is to directly extract a large number of spatially matched LL and HH patches from reference

image pairs (Fig. 2). Since the sparse representation is more efficient to process the patch in

the vector format [46], we perform lexicographic ordering on both LL and HH patches to

transform them as columns for dictionary atoms. However, sparse coding over a large

sampled patch database will result in expensive computation. To achieve a more compact

representation, we can learn the dictionary pair on a large number of extracted patches [46],

[50]. Next, we make the learned dictionary pair matched. As mentioned in the above section,

the positions of the nonzero sparse coefficients determine the selected training patches to

update the atom [46]. Therefore, if the positions of nonzero coefficients in  are the

same as that in , the dictionary atoms in DL,L and DH,H will be updated with the

spatially matched patch pairs and thus DL,L will still match with DH,H in the learning
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process. Based on this idea, we modify the original OMP algorithm [48], and propose the

coupled OMP (COMP) algorithm to seek the position matched coefficients  and

. Since DH,H is unknown in the image reconstruction phase, during the atom

selection process, we require that positions of the selected atoms in DH,H follow that of the

chosen atoms in DL,L. To achieve this, we first use the original OMP algorithm to pursue the

sparse coefficient  of  and preserve the index set of the selected atoms G. Then, we

compute  with the atoms set

(4)

Once  and  are obtained, we update the dictionary pair DL,L and DH,H

utilizing the QCQP [50] algorithm, due to its efficiency. Note that we initialize dictionaries

DL,L and DH,H from spatially matched training patches.

After the above dictionary training step, the positions of the nonzero coefficients in both

 and the latent  are identical. However, the nonzero values in  and  might

be different, as illustrated in Fig. 3. Therefore, we find a mapping function (M) which

relates sparse coefficients in the LL space to the sparse coefficients in the HH space

(5)

Following [52] and [53], we learn this mapping matrix by using the sparse coefficients

 and  created in the dictionary learning stage

(6)

where β is a regularization parameter to balance the terms in the objective. As (6) is a ridge

regression problem [54], it can be derived as

(7)

where I is an identity matrix. The dictionary and mapping learning algorithm is summarized

in Fig. 4.

For the specific case of retinal SDOCT images, we advocate giving priority to images

captured from the fovea to train the dictionary and mapping function. Compared to the

periphery area, the foveal region contains more complex and diverse structures (as shown in

Fig. 5). Such diversity in the structure of the foveal image results in a more generalizable
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dictionary and mapping. However, if computation time is not of concern, images obtained

from all macular regions should be included in the learning stage.

2) Image Reconstruction Phase—For image reconstruction, we use the learned

dictionary DL,L to seek the sparse coefficients αL,L of the observed LL patches (xL,L) from

(8)

Then, we reconstruct the latent HH patch as DH,HMα̂L,L.

B. Structural Clustering

The conventional approach for effective representation of complex structures within the

input image involves constructing one comprehensive dictionary with a large number of

atoms during the learning phase. However, utilizing a large dictionary comes with a high

computation cost during image reconstruction, as sparse solution algorithms (e.g., OMP and

the proposed COMP) require to search all dictionary atoms every iteration. In addition, the

mapping created by (7) is a linear function, and a single mapping is often not enough to

cover variations among different structures within the SDOCT image. Therefore, following

the work in [55], we adapt the structural clustering strategy which divides the training

patches  and  into many structural clusters and learns one compact

dictionary and mapping function for each cluster. To cluster the patch , we utilize its

high-frequency component (denoted as ) as the representative feature. The high-

frequency patch  is extracted from the high-pass filtered image  created by

, where  is the low-pass Gaussian filtered image. By using the

standard deviation for the high frequency patch  [56], we first cluster the extracted

patches  into the smooth group Gs and the detailed group Gd via

(9)

where σ is the standard deviation of the noise in the LL image, b is a constant, and std(●)

represents the standard deviation. Then, we use the k-means approach to divide the detailed

patch group into f structural clusters and the smooth patch group into v structural clusters.

We should note that since the dataset created by drawing patches from multiple images is

very large, the first step of partitioning the patches into smooth and detailed groups increases

the accuracy of the following k-means clustering step while reducing the computational cost

and memory requirement. Indeed, the k-means approach is very simple and might fall into

local minimum. Some other more powerful clustering approaches (such as spectral

clustering [57]) might further enhance our performance, but we adopt the k-means approach

because it is computationally very efficient and can be applied to large scale datasets utilized
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in our application. For each cluster, we find the indices of the clustered LL high-frequency

patches and use their corresponding LL patches to learn the structural LL sub-dictionary

, s = 1, …, (f + v). Meanwhile, one centroid atom, cs, will be obtained to represent this

cluster. Accordingly, to match LL and HH dictionaries, the structural HH dictionary , s

= 1, …, (f + v) is trained from HH patches by selecting appropriate indices in the LL space.

Finally, we train one mapping function (Ms) for each cluster using (7). Fig. 6 shows a

schematic representation of the construction processes for structural dictionaries and

mapping functions. Note that in each structural cluster, the mapping Ms corresponds the

related LL and HH dictionaries , and .

In the image reconstruction stage, for each test LL patch  we find the best sub-

dictionaries (  and ) and mapping transform (MA) based on the Euclidian distance

between  and cs

(10)

After the best sub-dictionary is found, the sparse solution algorithm only needs to search

through atoms in the selected sub-dictionary instead of the complete dictionary, accelerating

the sparse solution process [55]. Then, following (8), we can estimate its sparse coefficient

. The corresponding HH patch is then directly estimated as .

C. Exploiting the Information in 3-D SDOCT Volume for Image Reconstruction

The methodology explained above can be directly used for reconstructing single 2-D

images. In the case of 3-D image data, information from nearby slices may be used to

enhance the performance of image denoising [55], [58], [59]. This is particularly important

for ophthalmic SDOCT data for which common clinical imaging protocols result in high

degrees of correlation among neighboring B-scans. Thus, for the case of tomographic data,

we propose to utilize the information of nearby slices in the reconstruction process with a

joint operation. To assure a high-level of similarity between neighboring SDOCT slices, we

register all B-scans to correct for possible eye motion. Next, we estimate the mean square

difference between neighboring patches and remove those patches which do not show high

level of correlation.

The cardinal assumption of our joint operation is that similar patches from nearby slices can

be efficiently represented by the same atoms of the selected dictionary, but with different

coefficient values. We name the current processed patch  and the patches from its

nearby slices . Simultaneous decomposition of these patches with the above

assumption amounts to the problem
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(11)

where T is the maximum number of nonzero coefficients in , and the position of the

nonzero coefficients in  remain the same while coefficient values are varied. A

variant of the OMP algorithm called the simultaneous orthogonal matching pursuit (SOMP)

[60], [61] can be used to efficiently obtain an approximate solution. Then, the joint operation

can predict the current processed HH patch as: , where

 is the estimated patch and  is the weight [17] which is computed by

(12)

In (12), h is a predetermined scalar and Norm is a normalization factor.

Finally, we reformat the estimated patches to their original rectangular shape and return

them to their original geometric position. Since these patches are highly overlapped, we

average their overlapping sections to reconstruct the HH image. The outline of the SBSDI

framework is illustrated in Fig. 7. Note that, dictionary construction and map learning are

offline (one-time calibration) processes without adding to the computation time of the image

reconstruction.

IV. Experimental Methods and Results

We evaluated the proposed SBSDI method on two types of retinal SDOCT images: 1)

synthetic images generated from high resolution images that were then subsampled and 2)

real experimental images consisting of images acquired at a natively low sample rate. For

synthetic datasets we utilized previously acquired high-resolution images, and subsampled

them in both random and regular patterns, thus reducing the total number of A-scans in each

B-scan. For real experimental datasets we directly acquired low-resolution images using a

regularly sampled pattern.

For the synthetic study, we used the dataset from the Age-Related Eye Disease Study 2

(AREDS2) Ancillary SDOCT (A2A SDOCT), which was registered at ClinicalTrials.gov

(Identifier: NCT00734487) and approved by the institutional review boards (IRBs) of the

four A2A SDOCT clinics (the Devers Eye Institute, Duke Eye Center, Emory Eye Center,

and National Eye Institute). We acquired part of the real experimental datasets from

volunteers at the Duke Eye Center (Durham, NC, USA). All human subject research was

approved by the Duke University Medical Center Institutional Review Board. Prior to

imaging, informed consent was received for all subjects after explanation of the possible

consequences and nature of the study. All portions of this research followed the tenants of
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the Declaration of Helsinki. In addition, we captured a dataset in laboratory from a mouse

retina.

We first implemented a compressive sampling method [62] utilizing both randomly and

regularly subsampled synthetic datasets to examine the random sampling scheme advocated

by others [24]–[27]. While a valid approach in general, we found that random sampling had

insignificant benefits over a more conventional sampling scheme for our specific

application.

Next, using both the regularly sampled synthetic and real experimental datasets, we

compared our proposed SBSDI method with several competing approaches: Tikhonov [63],

Bicubic, BM3D [64]+Bicubic, and ScSR [32]. The BM3D+Bicubic method is a combination

of the state-of-the-art denoising algorithm BM3D with interpolation utilizing a bicubic

approach. The ScSR method utilizes the joint dictionary learning operation to train the LL

and HH dictionaries from the related LL and HH training patches, but does not consider the

3-D information from nearby slices.

A. Algorithm Parameters

For the specific case of reconstructing retinal SDOCT images, we empirically selected

algorithmic parameters which were kept unchanged for all images in both synthetic and real

experimental datasets. Since most of the similar structures within SDOCT images lay along

the horizontal direction, we chose the patch size to be 4 × 8 and 4 × 16 pixel wide rectangles

for 50% and 75% data missing, respectively. As the patch size increases, our algorithm is

expected to suppress noise more efficiently but may result in more aggressive smoothing

and the loss of image detail. The number of nearby slices for the joint operation was set to 4

(two slices above and two slices below the current processed image, respectively). We did

not include slices that are far distant from the target B-scan being processed because often

they have different image content. Thus, utilizing them not only might create unexpected

artifacts but also will increase the computational cost of the COMP algorithm. In the

clustering stage, we chose the cluster number f in the detailed group and v in the smooth

group to 70 and 20, respectively. Since the detailed group contains more types of detailed

structures than the smooth group, the f number of the detailed group is larger than that of the

smooth group. From each cluster, we randomly selected 500 vectors to construct the initial

structural sub-dictionary. Utilizing a larger cluster number and a larger sub-dictionary with

more vectors might slightly improve performance, but would also increase computational

cost. The stopping conditions for both COMP and SOMP algorithms were chosen based on

the sparsity level, which was set to T = 3. Increasing the sparsity level for the COMP and

SOMP algorithm might preserve more details but would also increase noise in the final

image. The iteration number J of the dictionary learning process is set to 10, which almost

reaches convergence in our learning problem. That is, further increasing the iteration

number hardly provides better results, while still creating additional computational burden.

The parameters β in (7), b in (9), and h in (12) were set to 0.001, 12, and 80, respectively.

Utilizing a larger h will deliver a smoother appearance, whereas a smaller value of h will

create more noise and artifacts. In addition, we found that the performance of our algorithm
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shows negligible change for nonzero β values ranging from 0.001 to 0.000001 and b values

between 12 and 50.

B. Data Sets

For the synthetic datasets, we used low-SNR-high-resolution datasets previously utilized for

our work involving sparsity based denoising of SDOCT images [38]. These datasets were

acquired from 28 eyes of 28 subjects with and without nonneovascular age-related macular

degeneration (AMD) by 840-nm wavelength SDOCT imaging systems from Bioptigen, Inc.

(Durham, NC, USA) with an axial resolution of ~ μm per pixel in tissue. For each patient,

we acquired two sets of SDOCT scans. The first scan was a square (~ 6.6 × 6.6mm) volume

containing the retinal fovea with 1000 A-scans per B-scan and 100 B-scans per volume. The

second scan was centered at the fovea with 1000 A-scans per B-scan and 40 azimuthally

repeated B-Scans. We selected the central foveal B-scan within the first volume and further

subsampled this scan with both random and regular patterns, to create simulated LL test

images [e.g., Fig. 8(a) and (c)]. We registered the set of azimuthally repeated B-scans using

the StackReg image registration plug-in [65] for ImageJ (software; National Institutes of

Health, Bethesda, MD, USA) to construct the HH averaged image [e.g., Fig. 8(l)]. From the

28 datasets, we randomly selected 18 LL and HH pairs from 18 different datasets to test the

performance of the proposed method; 10 LL and HH pairs from the remaining datasets were

used to train the dictionaries and the mapping functions. From our experiments, we found

that further increasing the number of training datasets only slightly enhances the

performance of SBSDI, while increasing computation cost in the dictionary and mapping

learning stage. The subjects and corresponding dataset pairs used for creation of the

dictionaries and mapping functions in the training phase were strictly separate from subjects

used in the testing phase and for the comparison of reconstruction techniques. We used the

same constructed dictionaries and mapping functions for the real experimental datasets

described in the following.

For the real experimental datasets, we utilized one of the Bioptigen SDOCT imagers used in

the synthetic experiment with ~ 4.5μm axial resolution in tissue and directly acquired full

and subsampled volumes from 13 human subjects with a regularly sampled pattern in clinic.

That is, for each subject we scanned a square (~ 6.6 × 6.6mm) volume centered at the retinal

fovea with 500 A-scans per B-scan and 100 B-scans per volume.

We also performed a mouse imaging experiment in laboratory, utilizing a different ultra

high-resolution SDOCT system, (Bioptigen Envisu R2200), which was equipped with a 180

nm Superlum Broadlighter source providing ~2 μm axial resolution in tissue. On the same

animal, we covered a square (~ 1.0 × 1.0 mm) volume centered at the optic nerve with 100

B-scans per volume and 1000, 500, and 250 A-scans per B-scan, respectively.

To provide quantitative and qualitative comparisons, for each human and animal subject

within the experimental dataset population, we acquired azimuthally repeated B-scans (1000

A-scans/B-scan as described above) from selected positions to create corresponding

averaged images [e.g., Fig. 10(h)]. For each human and mouse subject, at regularly spaced

positions we captured, registered, and averaged 40 and 16 azimuthally repeated B-scans

from spatially very close positions, respectively. We used these averaged images only for

Fang et al. Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 April 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



validation of the various reconstruction techniques and they were not used in the creation of

the SBSDI dictionaries or for the mapping function training.

C. Quantitative Metrics

We adapted the mean-to-standard-deviation ratio (MSR) [66], contrast-to-noise ratio (CNR)

[67], and peak signal-to-noise-ratio (PSNR) as the objective metrics to evaluate the quality

of reconstructed results. The MSR and CNR are defined as follows:

(13)

(14)

where μb and σb are the mean and the standard deviation of the background region (e.g., red

box #1 in Fig. 8), while μf and σf are the mean and the standard deviation of the foreground

regions (e.g., red box #2–6 in Fig. 8).

The PSNR is a global quality criteria, which is computed as

(15)

where Rh is the intensity of the hth pixel in the reference HH image R, R̂h represents the

same hth pixel of the recovered image R̂, H is the total number of pixels, and MaxR is the

maximum intensity value of R. For the experimental datasets, we used the registered and

averaged images generated from the azimuthally repeated scans as HH approximations to

the corresponding B-scans from the LL volumetric scan. We identi-fied the LL B-scan

corresponding to an averaged scan by visual comparison. For optimal comparisons, the

averaged and reconstructed images were registered to one another using the StackReg plug-

in for ImageJ [65]. This registration step is necessary for reducing the motion between the

reconstructed and average images since the LL test image and LH images (used to create the

HH averaged image) are acquired at different points in time.

We applied the Wilcoxon signed-rank test between our SBSDI method’s CNR, MSR, and

PSNR distribution and all other compared methods [68]. Methods for which the difference

was statistically significant (p < 0.05) are marked with an * in each table.

D. Synthetic Experiments on Human Retinal SDOCT Images

Fig. 8(a)–(d) and Fig. 9(a)–(d) show qualitative comparisons of regularly and randomly

sampled foveal images (with 50% and 75% of the original data discarded) and their
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reconstructed versions obtained from the CS-recovery method [62] utilizing the shift

invariant wavelets [69]1 (a refined variation of this technique was later used in [24]). We

observe that the CS-recovery results from the random sampling scheme [Fig. 8(b) and Fig.

9(b)] have more areas exhibiting striped blurring (e.g., blue ellipse areas) than their regularly

sampled counterparts [Fig. 8(d) and Fig. 9(d)]. Considering this, we tested the Tikhonov

[63], Bicubic, BM3D [64]+Bicubic and the proposed SBSDI method on regularly sampled

images [Fig. 8(c)]. In addition, we incorporated two simplified versions of our method

(called 2-D-SBSDI-nomap and 2-D-SBSDI) that do not exploit the information of

neighboring frames. The 2-D-SBSDI uses the mapping function for the reconstruction

whereas the mapping function is not employed in the 2-D-SBSDI-nomap. 2-D-SBSDI-

nomap keeps the sparse coefficients of the LL space the same as the coefficients of the HH

space. For better visual comparison, three boundary areas (boxes #2, 3, 4) in these images

were marked with red rectangles and magnified. Results from the Tikhonov, Bicubic, ScSR,

and 2-D-SBSDI-nomap methods appeared noisy with indistinct boundaries for many

meaningful anatomical structures. Although the BM3D [64]+Bicubic technique provides

improved noise suppression, it introduces splotchy/blocky (cartoonish) artifacts, which

obscure some important structural details. The 2-D-SBSDI provides comparatively better

structural details but does not efficiently remove noise. In contrast, application of our SBSDI

method that considers the 3-D information resulted in noticeably improved noise

suppression while preserving details in comparison to other methods. Especially in the

regions marked by red boxes #3, 4, the SBSDI result even shows clearer layers compared

with the densely sampled averaged image [Fig. 8(l) and Fig. 9(l)].

To quantitatively compare reconstruction methods, we measured six regions of interest

(similar to the red boxes #1–6 in Figs. 8 and 9) from 18 test images of different subjects. For

each image, we averaged the MSR and CNR values for five foreground regions (e.g., #2–6

in Figs. 8 and 9). Note that, for the boxes #2–4, we selected the boundary areas, since

boundaries between retinal layers contain meaningful anatomic and pathologic information

[70]. Regions #5–6 are selected to evaluate denoising capabilities of these algorithms in

homogeneous areas. The mean and standard deviation of these averaged MSR and CNR

results across all the test images are tabulated in Tables I and III (corresponding to the

conditions when 50% and 75% data are missing, respectively). In addition, we compared the

PSNR of these methods for the whole image. We report the mean and standard deviation of

the PSNR results in Tables II and IV (corresponding to the conditions when 50% and 75%

data are missing, respectively).

Also, we report the average running time of the proposed SBSDI algorithm and the

compared approaches to reconstruct one image with 50% and 75% data missing on Tables V

and VI. All the programs are executed on a laptop computer with an Intel Core i7-3720 CPU

2.60 GHz and 8 GB of RAM. Note that our SBSDI algorithm is coded in MATLAB (except

OMP and SOMP codes2), which is not optimized for speed.

1The wavelet transform code in our implementation was downloaded from: http://www.eee.hku.hk/~wsha/Freecode/freecode.htm.
2Downloaded from: http://spams-devel.gforge.inria.fr/.
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E. Real Experiments on Human Retinal SDOCT Images

For reconstruction comparisons involving real experimental datasets of human subjects,

from each dataset we used the central foveal B-scan as well as two additional B-scans

located approximately 1.5 mm above and below the fovea. Therefore, we used 3 × 13 = 39

images for this experiment. We included this additional comparison to test the robustness of

SBSDI in nonfoveal retinal regions, given dictionaries and mapping function training based

on foveal images of the 10 subjects in the training set. We report the quantitative results

(MSR, CNR, and PSNR) for the Tikhonov [63], Bicubic, BM3D [64]+Bicubic, 2-D-SBSDI-

nomap, 2-D-SBSDI, and SBSDI methods in Tables VII and VIII. We selected six regions

within each image (similar to red boxes #1–6 in Fig. 10) to compute the MSR and CNR. Fig.

10 provides a qualitative comparison of the proposed SBSDI method with Tikhonov [63],

Bicubic, BM3D [64]+Bicubic, 2-D-SBSDI-nomap, and 2-D-SBSDI approaches on these

real experimental datasets. Subjectively, the visual quality of the SBSDI method appeared

superiorly to reconstructions from the Tikhonov [63], Bicubic, BM3D [64]+Bicubic, 2-D-

SBSDI-nomap, and 2-D-SBSDI approaches. Note that some meaningful information (e.g.,

low contrast layers highlighted in regions 2, 3, and 4) are distorted or missing in the

Tikhonov [63], Bicubic, BM3D [64]+Bicubic, 2-D-SBSDI-nomap, and 2-D-SBSDI results

while appearing well preserved in reconstructions utilizing the SBSDI method. In a 3-D

volume, the proposed SBSDI method exploits information from nearby slices to reconstruct

a target image slice. This additional information may aid in the reconstruction of low

contrast details within an image.

F. Real Experiments on Mice Retinal SDOCT Images Utilizing a Suboptimal Training Set

In this experiment, to enhance images captured from the optic nerve of a mouse, we used the

same training set we previously used for human experiments. Furthermore, we utilized an

SDOCT system with a different axial resolution than the training set. Thus, the training

dataset is suboptimal for this experiment. While we strongly advocate utilizing training sets

which are structurally close to the test set, this example tests the robustness of proposed

algorithms for enhancing datasets which are not optimally represented in the training set.

Fig. 11 shows qualitative and quantitative comparisons of densely sampled averaged image

and results reconstructed by Bicubic, BM3D [64] +Bicubic, and SBSDI on real mouse

images with three sampling conditions (without subsampling, with 50% data missing and

with 75% data missing). As can be observed, though the training samples used in the

dictionary and mapping learning stage are from human foveal, separate from the mouse

images, SBSDI results are very competitive as compared to the Bicubic and BM3D+Bicubic

methods. We note that despite our best efforts, due to the animal’s slight movements, the

images captured for each of these sampling rates are slightly displaced as compared to the

averaged image. However, such slight differences can be ignored and are expected in any

such realistic imaging situation.

V. Conclusion and Future Works

In this paper, we proposed an efficient sparsity based image reconstruction framework called

SBSDI that is directly applicable to clinical SDOCT images. Unlike our previous technique

[38], SBSDI performs simultaneous interpolation and denoising and does not require
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capturing images of differing quality from the target subject. We demonstrated that the

SBSDI method outperforms other current state-of-the-art denoising-interpolation methods.

Since our SBSDI algorithm reduces the time needed to obtain high quality reconstructed

results, it could have a wide range of applications, such as reducing patient discomfort

during retinal imaging, applying it to lower cost OCT machines that have slower acquisition

speeds, postprocessing already acquired OCT images with low SNR and low resolution, and

as a preprocessing step for automatic image analysis (e.g., segmentation). In addition, a

promising area of potential future research is to greatly accelerate the SBSDI algorithm by

more efficient coding coupled with utilizing a general purpose Graphics Processing Unit

(GPU) [26], so that it can be incorporated into daily clinical practice.

To our knowledge, this is the first sparsity based interpolation algorithm that demonstrates

superior performance on clinical ophthalmic SDOCT data over other state-of-the-art

nonsparse representation techniques. We showed that for our specific experiment, this

algorithm may improve the imaging speed of the SDOCT system by a factor of 80 over

standard registration and averaging without a significant reduction in image quality.

Since the code for the CS-recovery method of [24] is not publicly available, our

implementation for Figs. 8 and 9 may differ in details with the algorithm in [24]. Also, to

better illustrate the differences between the regular and sparse sampling strategies, we

focused on the 2-D implementation of the method in [24]. Indeed, regardless of the sampling

strategy, we expect that a 3-D implementation of [24] will result in better reconstructions.

Following our previous work in this field, we have made the data set and the software

developed for this project publically available at http://www.duke.edu/~sf59/

Fang_TMI_2013.htm. We are the first group in the SDOCT sparse imaging and image

processing field that has made their paper’s code and dataset freely available online. We

hope that this paper will encourage other colleagues to share their code and data online as

well.

In this paper, we demonstrated the applicability of our algorithm for simultaneously

denoising and interpolating images from normal and nonneovascular AMD subjects. In our

future publications, we will demonstrate the applicability of our method for analyzing

SDOCT images of other ocular diseases such as cystoid macular edema retinas. In addition,

we selected the parameters empirically in the experimental section, and kept them fixed for

all images. Note that, the optimal choices for such parameters might be different for varied

applications. Therefore, another future work will establish a more systematic way of

selecting these parameters for different conditions. Moreover, while our interpolation

method was more successful than the popular methodologies that it has been compared with,

careful evaluation of experimental results shows that all these techniques are more

successful as a denoising mechanism rather than as an interpolator. For example, in an

optimal imaging scenario, we would expect to be more successful in creating high-quality

images from 10 images with 1000 A-scans as compared to an imaging scenario in which 40

images, each with 250 A-scans, are captured. Of course, in real-world clinical applications,

we do not always have the luxury of designing our image acquisition protocol.
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Fig. 1.
Process schematic for creating an HH SDOCT image and its LL counterpart.
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Fig. 2.
Selection of patches from the LL and HH images to construct their corresponding dictionaries of basis functions. Since the patch

positions in these two images are known, the constructed dictionaries can be strictly matched. In mathematical representation,

both LL and HH patches are lexicographically ordered as columns (atoms) of the corresponding dictionary.
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Fig. 3.
Illustration of the sparse coefficients αL,L and αH,H obtained by the decomposition of LL patch xL,L and HH patch xH,H over

dictionaries DL,L and DH,H with OMP algorithm. The positions of the nonzeros coefficients in αL,L and αH,H are identical while

their values might be different.
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Fig. 4.
Dictionary and mapping learning algorithm.
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Fig. 5.
SDOCT B-scan acquired from the fovea (d) often have more complex structures than those in periphery regions (b), (c), (e), (f).

(a) Summed-voxel projection [51] (SVP) en face SDOCT image of a nonneovascular age-related macular degeneration (AMD)

patient. (b), (c), (e), (f) B-scans acquired from the green, yellow, blue, and purple lines (periphery regions). (d) B-scan acquired

from the red line (fovea region).
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Fig. 6.
Algorithmic flowchart illustrating learning processes for structural dictionaries and mapping functions.
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Fig. 7.
Outline of the SBSDI framework.
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Fig. 8.
Two types of sampling patterns and their reconstruction results by CS-recovery [62], Bicubic, Tikhonov [63], BM3D

[64]+Bicubic, ScSR [32], 2-D-SBSDI-nomap, 2-D-SBSDI, and our SBSDI method. (a) Randomly sampled image with 50%

data missing. (b) Image (a) reconstructed by CS-recovery [62] (PSNR = 19.46). (c) Regularly sampled image with 50% data

missing. (d) Image (c) reconstructed by CS-recovery [62] (PSNR = 19.01). (e) Image (c) reconstructed by Bicubic (PSNR =

17.77). (f) Image (c) reconstructed by Tikhonov [63] (PSNR = 22.23). (g) Image (c) reconstructed by BM3D [64] +Bicubic

(PSNR = 23.26). (h) Image (c) reconstructed by ScSR (PSNR = 22.11). (i) Image (c) reconstructed by 2-D-SBSDI-nomap

(PSNR = 23.05). (j) Image (c) reconstructed by 2-D-SBSDI (PSNR = 23.96). (k) Image (c) reconstructed by SBSDI (PSNR =

24.56). (l) Registered and averaged image which was acquired 80 times slower than the image in (i)–(k).
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Fig. 9.
Two types of sampling patterns and their reconstruction results by CS-recovery [62], Bicubic, Tikhonov [63], BM3D

[64]+Bicubic, ScSR [32], 2-D-SBSDI-nomap, 2-D-SBSDI, and our SBSDI method. (a) Randomly sampled image with 75%

data missing. (b) Image (a) reconstructed by CS-recovery [62] (PSNR = 20.83). (c) Regularly sampled image with 75% data

missing. (d) Image (c) reconstructed by CS-recovery [62] (PSNR = 20.67). (e) Image (c) reconstructed by Bicubic (PSNR =

17.75). (f) Image (c) reconstructed by Tikhonov [63] (PSNR = 22.68). (g) Image (c) reconstructed by BM3D [64] +Bicubic

(PSNR = 23.28). (h) Image (c) reconstructed by ScSR (PSNR = 23.09). (i) Image (c) reconstructed by 2-D-SBSDI-nomap

(PSNR = 23.68). (j) Image (c) reconstructed by 2-D-SBSDI (PSNR = 23.99). (k) Image (c) reconstructed by SBSDI (PSNR =

24.58). (l) Registered and averaged image which was acquired 160 times slower than the image in (i)–(k).
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Fig. 10.
An example real experimental dataset with results reconstructed by Tikhonov [63], Bicubic, BM3D [64]+Bicubic, 2-D-SBSDI-

nomap, 2-D-SBSDI, and SBSDI method. The left and right columns show images from the fovea and 1.5 mm below the fovea

area, respectively. (a) Original images (b) bicubic reconstruction (Left: PSNR = 18.51, Right: PSNR = 17.84). (c) Tikhonov [63]

reconstruction (Left: PSNR = 23.07, Right: PSNR = 21.99). (d) BM3D [64]+Bicubic reconstruction (Left: PSNR = 26.33, Right:

PSNR = 23.24). (e) 2-D-SBSDI-nomap reconstruction (Left: PSNR = 25.06, Right: PSNR = 22.46). (f) 2-D-SBSDI

reconstruction (Left: PSNR = 26.20, Right: PSNR = 23.10). (g) SBSDI reconstruction (Left: PSNR = 26.77, Right: PSNR =

23.52). (h) Registered and averaged images which were acquired 80 times slower than the image in (g).
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Fig. 11.
A real experimental dataset from a mouse optic nerve with results reconstructed by Bicubic, BM3D [64]+Bicubic, and SBSDI

methods. We intentionally selected a suboptimal training set for the SBSDI method based on human images captured on a

different SDOCT system to evaluate robustness of the SBSDI algorithm with respect to training sets. (a) Average image. (b) Top

Left: Test image (with no subsampling). Top Right: Bicubic reconstruction, PSNR = 28.63, CNR = 0.85, MSR = 3.12. Bottom

Left: BM3D+Bicubic reconstruction, PSNR = 31.89, CNR = 2.26, MSR = 11.15. Bottom Right: SBSDI reconstruction, PSNR =

32.69, CNR = 2.64, MSR = 13.69. (c) Top Left: Test image (with 50% data missing). Top Right: Bicubic reconstruction, PSNR

= 28.43, CNR = 0.77, MSR = 3.31. Bottom Left: BM3D+Bicubic reconstruction, PSNR = 31.27, CNR = 2.03, MSR = 11.36.

Bottom Right: SBSDI reconstruction, PSNR = 32.48, CNR = 2.33, MSR = 13.72. (d) Top Left: Test image (with 75% data
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missing). Top Right: Bicubic reconstruction, PSNR = 29.18, CNR = 0.69, MSR = 3.30. Bottom Left: BM3D+Bicubic

reconstruction, PSNR = 33.26, CNR = 2.06, MSR = 19.50. Bottom Right: SBSDI reconstruction, PSNR = 32.93, CNR = 2.47,

MSR = 20.96.
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