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Pancreatic 𝛽 cell failure leads to diabetes development. During disease progression, 𝛽 cells adapt their secretory capacity to
compensate the elevated glycaemia and the peripheral insulin resistance. This compensatory mechanism involves a fine-tuned
regulation to modulate the endoplasmic reticulum (ER) capacity and quality control to prevent unfolded proinsulin accumulation,
a major protein synthetized within the 𝛽 cell. These signalling pathways are collectively termed unfolded protein response (UPR).
The UPRmachinery is required to preserve ER homeostasis and 𝛽 cell integrity. Moreover, UPR actors play a key role by regulating
ER folding capacity, increasing the degradation of misfolded proteins, and limiting the mRNA translation rate. Recent genetic and
biochemical studies on mouse models and human UPR sensor mutations demonstrate a clear requirement of the UPR machinery
to prevent 𝛽 cell failure and increase 𝛽 cell mass and adaptation throughout the progression of diabetes. In this review we will
highlight the specific role of UPR actors in 𝛽 cell compensation and failure during diabetes.

1. Introduction

Type 2 diabetes (T2D) mellitus is a chronic metabolic disease
with “epidemic” proportions. Its global prevalence was esti-
mated to be 6.4% worldwide (285 million adults in 2010) and
is predicted to rise to approximately 7.7% (439 million) by
2030 [1]. T2D is a multifactorial disorder resulting from an
interaction between genetic and environmental conditions
(sedentary lifestyle and Western diet) and characterized by a
peripheral insulin resistance, hyperglycaemia, and pancreatic
𝛽 cell dysfunctions. Two defects have been reported during
diabetes development, a gradual deterioration of 𝛽 cell
functions and a reduction in pancreatic 𝛽 cells mass. 𝛽 cell
failure is not limited to T2D but is rather a common feature of
all forms of diabetes, including the autoimmune type 1
diabetes (T1D), autosomal dominant onset diabetes of young
(MODY), Wolfram syndrome, and Wolcott-Rallison syn-
drome (WRS).

In the early stage of diabetes development, the response of
pancreatic islets challenged by nutrients and/or insulin resis-
tance is a hypersecretion of insulin to maintain normoglyca-
emia. To this end, an adaptative and compensatory response
of 𝛽 cells is required. The process of 𝛽 cell compensation is a
combination of𝛽 cellmass expansion and an increase of acute
glucose-stimulated insulin secretion. Postmortem analyses of
pancreas of nondiabetic obese patients show an increase of
𝛽 cell volume, implying postnatal plasticity of 𝛽 cell mass.
Moreover the 𝛽 cell compensation process is associated with
an improved capacity of the secretory machinery to support
increased insulin production. Subsequently, the production
of large amounts of insulin by compensating islet 𝛽 cells
places a continuous demand on the ER for proper protein
synthesis, folding, trafficking, and secretion. When the fold-
ing capacity of the ER is exceeded, misfolded or unfolded
proteins accumulate in the ER lumen, resulting in ER stress.
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The cytoprotective response to ER stress is the unfolded
protein response (UPR). Paradoxically, UPR signalling acti-
vation leads to opposite cell fates, that is, adaptation/survival
versus death. Increasing evidence links the endoplasmic reti-
culum (ER) stress to 𝛽 cell deterioration and apoptosis [2, 3].
Recent experiments performed in db/dbmice and ob/obmice
models at different times of disease progression revealed that
the maintenance (or suppression) of adaptive UPR is associ-
ated with 𝛽 cell compensation (or failure) in obese mice [4].
Moreover, Engin et al. recently showed a progressive loss of
UPR mediator expression before the onset of diabetes in
NODmice [5].The administration of the chemical chaperone
tauroursodeoxycholic acid to rescue the deleterious ER stress
response improved pathophysiological signs of diabetes with
a recovery of 𝛽 cell survival and adaptation to stress [5]. In
addition, the authors showed a decline of the UPR mediator
in both experimental models and T2D human islets, suggest-
ing that decreased expression of 𝛽 cell UPR actors can play a
central role in 𝛽 cell compensation and subsequently T2D
occurrence [6].

2. The UPR Pathway

Three canonical ER resident molecules mediate UPR res-
ponse, namely, protein kinase R-like ER kinase (PERK),
inositol-requiring enzyme 1 (IRE1), and activating transcrip-
tion factor 6 (ATF6), which are maintained inactive by their
association with the immunoglobulin heavy chain-binding
protein (BiP, GRP78) in normal conditions (Figure 1(a)). The
accumulation of unfolded proteins in the ER leads to the
release of PERK, IRE, and ATF6 and their subsequent acti-
vation [7, 8]. The downstream signalling effectors from these
pathways converge to the nucleus and activate UPR target
genes, finally reducing the ER input (Figure 1(a)).Their action
is bipartite, with an acute programme that attenuates the ER
workload and a latent transcriptional one that builds ER
capacity.

PERK is a type 1 ER transmembrane kinase with a stress
sensing luminal N-terminal domain. During ER stress PERK
phosphorylates the 𝛼-subunit of eIF2-𝛼 on serine 51 leading
to a delivery inhibition of the initiator methionyl-tRNAi to
the ribosome and ultimately resulting in global protein trans-
lation attenuation [9] (Figure 1(a)). This phosphorylation
event directly contributes to the reduction of ER stress and
protects cells fromER stress-mediated apoptosis [10]. Intrigu-
ingly, the mRNA transcription of UPR target genes is selec-
tively activated by eIF2𝛼 phosphorylation, as these poly-
cistronic mRNAs have inhibitory upstream open reading
frames (uPRFs) and are thus preferentially translated by the
ribosome. These include the bZiP transcription factor 4
(ATF4) that acts as a regulator of UPR target genes such as
C/EBP-homologous protein (CHOP) and growth arrest and
DNA damage inducible gene 34 (GADD34), as well as genes
involved in the redox balance and amino acid synthesis
[11]. GADD34 interacts with the catalytic subunit of protein
phosphatase (PP1c) and controls the level of eIF2-𝛼 phos-
phorylation by a negative feedback loop [12], allowing the
restoration of an UPR basal state once ER stress is resolved.

IRE1 is a central regulator of UPR. Like PERK, IRE1 is also
a type 1 transmembrane kinase with an N-terminal luminal
domain that senses ER stress signalling. Two homologues of
IRE1 have been described, IRE1𝛼 and IRE1𝛽. IRE1𝛼 is
expressed ubiquitously, showing high expression levels in the
pancreas and placenta [13], whereas IRE1𝛽 is only expressed
in the intestinal epithelium and lung [14]. IRE1 possesses
kinase as well as endoribonuclease activities. Once the ER
stress is triggered, IRE1 activates its RNase domain through
its dimerization and transautophosphorylation and causes an
unconventional splicing by the removal of 26-nucleotide
intron from the X-box binding protein 1 (XBP1) mRNA
(Figure 1(a)). The subsequent spliced XBP1 (XBP1s) mRNA
encodes a leucine zipper transcription factorwith a high tran-
scriptional activity that upregulates genes encoding ER pro-
tein chaperones, ER associated protein degradation (ERAD),
and lipid biosynthetic enzymes [15, 16]. IRE1 has also a non-
specific RNase activity that degrades mRNAs localized near
the ER membrane, thereby reducing protein import into the
ER lumen [17]. High levels of ER stress also activate the kinase
activity of IRE1 and initiate a signalling cascade of apoptosis
signal-regulating kinase 1 (ASK1)/cJun amino terminal kinase
(JNK), which can participate in the apoptotic cell fate [18].

ATF6 is an ER located type 2 transmembrane proteinwith
a basic leucine zipper DNA binding domain (Figure 1(a)).
Two ubiquitously expressed isoforms of ATF6 have been
described, ATF6𝛼 and ATF6𝛽 [19]. Under ER stress condi-
tions, ATF6𝛼 translocates from the ER to theGolgi apparatus,
where it is cleaved by Site-1 protease and Site-2 protease
(S1P/S2P). The newly generated cytosolic fragment migrates
to the nucleus and activates UPR gene transcription [20, 21].
The exclusive or the combined action of cleaved ATF6𝛼 and
XBP1s is able to activate all three ER stress response elements:
ERSE, UPRE, and ERSE2 [22]. ATF6𝛽 was first described as
a repressor of ATF6𝛼 [23]. However, mouse embryonic fibr-
oblasts generated fromATF6𝛽 null mice did not show altered
UPR gene induction, suggesting a minor role for ATF6𝛽 in
ER stress response [24]. In contrast, ATF6𝛼 null mice have
a significant alteration in their UPR gene expression profile,
suggesting a central role for ATF6𝛼 in ER protein quality
control and protection against ER stress [24]. As the double
ATF6𝛼/𝛽 knockdown is lethal, the authors suggested that
ATF6𝛼 and ATF6𝛽 provide a complementary function
during early development [24]. Moreover ATF6 activity is
regulated by theWolfram syndrome 1 (WFS1) protein, which
targets ATF6 to the E3 ubiquitin ligase HRD1, consequently
resulting in its ubiquitination and proteasomal degradation
[25]. A number of other ER stress transducers that share a
high sequence homology with ATF6 have been identified,
such as Luman, OASIS, BBF2H7, CREBH, and CREB4
(reviewed in [26]). However, despite their structural similar-
ities, each ATF6 homolog seems to have specific functions in
UPR regulated processes in specific organs and tissues [26].

2.1. 𝛽 Cells Compensation and UPR Actors. 𝛽 cell is a highly
specialized secretory cell which responds to elevated post-
prandial glycaemia by increasing mRNA proinsulin transla-
tion and insulin secretion [27]. The periodic waves of proin-
sulin mRNA translation generate biosynthetic loads that
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Figure 1: Physiological and physiopathological UPR activated pathways in 𝛽 cells. (a) Under physiological conditions, increased proinsulin
synthesis in response to postprandial glucose activates UPR to reduce ER stress and to promote 𝛽 cell adaptation. The UPR triggers
transcription of folding protein (BiP, GRP94,. . .), protein quality control (ERAD), UPR retrocontrol protein (GADD34), and attenuates
protein translation (elF2𝛼). Additionally, the UPR regulates calcium homeostasis via PERK, promotes proinsulin synthesis via IRE1𝛼, and
increases insulin secretion via a WFS1-AC8 pathway. (b) Under physiopathological conditions, the UPR is hyperactivated leading to IRE1𝛼
hyperphosphorylation, which in turn induces proinsulin mRNA degradation, JNK pathway activation, and XBP1 mRNA splicing. XBP1s
alone or in synergy with ATF6 lead to expression of ER chaperon (Herp1, EDEM, HRD1, p58IPK, and ERAD) and subsequent ER expansion.
Both ATF4 and sXBP1 increase CHOP mRNA expression. Under these conditions the UPR feedback is deregulated.
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induce UPR. To manage this burden imposed by proinsulin
synthesis, 𝛽 cells increase their ER size, as exemplified during
diabetes development. In the prediabetic state, 𝛽 cell must
adapt its ER machinery to the new hyperglycaemic environ-
ment, promoting 𝛽 cell compensation. The use of genetically
modified mouse models and genetic studies from human
diabetic patients demonstrated that UPR actors support this
adaptation as well as 𝛽 cell compensatory mechanism [4, 28].

2.2. Insulin Mutants and 𝛽 Cells Compensation. Misfolding
of proinsulin is associated with ER stress and severe dysfunc-
tions leading to a massive destruction of 𝛽 cells. In vivo evi-
dences were observed in both Akita and Munich mice carry-
ing cysteine residues mutations that interfere with disulphide
bond formation [29, 30]. Interestingly, inactivation of the
UPR induced proapoptotic Chop gene delayed the onset of
diabetes in heterozygous Akita mice, suggesting a key role for
CHOP in ER stress-mediated 𝛽 cell apoptosis [30]. Diabetes
of youth (MIDY) is a syndrome caused by a heterozygous
mutation of the coding sequence of proinsulin leading to an
autosomal-dominant and insulin-deficient diabetes [31].This
mutation has been shown to be the second most common
cause of permanent neonatal diabetes related to ER stress [32,
33]. In line with these observations, inducible expression of
the human analogue proinsulin C96Ymutation of Akitamice
in rat insulinoma-1 (INS-1) caused ER stress and cell apop-
tosis. However, upregulation of UPR and ERAD seems to
have a protective effect [34]. In vivo expression of the same
proinsulin mutant driven by the weak Ins1 promoter induced
both ER stress and pancreatic compensation [35]. Altogether
these data demonstrate a clear link between misfolding of
proinsulin and ER stress induction.

2.3. PERK-elF2𝛼-ATF4 Pathway in 𝛽 Cells Compensation.
Loss of function mutation in the EIF2AK3 gene-encoding
PERK was associated with WRS, which has been confirmed
by the functional characterisation of Perk knockout mice
[36]. Embryonic development of these mice is normal but
they exhibit a postnatal growth retardation, skeletal dysplasia,
and progressive loss of 𝛽 cells, associated with defects in ER
secretory machinery and proinsulin folding [37, 38]. How-
ever, generation of𝛽 cell specific Perk knockoutmice revealed
that 𝛽 cell death was not increased, but rather 𝛽 cell prolifer-
ation and differentiation were repressed during the embry-
onic and postnatal state [39]. Other studies on these mice
models demonstrated an impaired ER to Golgi anterograde
trafficking, retrotranslocation out of the ER, and proteasomal
degradation, showing requirement of PERK for ER andGolgi
integrity and processing of ATF6 [40]. In contrast to the first
rapport, specific𝛽 cell induciblePerk deletion inmice showed
a rapid progression of insulin dependent diabetes regardless
of mice age [41]. The authors showed, on the one hand, that
this phenotype was due to an increased 𝛽 cell proliferation
after the induction of PERK deletion due to the increased
activation cyclin D-dependent kinase activity. On the other
hand, they showed a significant increase in 𝛽 cell death, asso-
ciated with an activation of other UPR actors and a distur-
bance in calcium homeostasis [41]. Moreover, a recent work

demonstrated that PERK, in concert with calcineurin, regu-
lates ER calcium reuptake through calnexin interaction and
a negative regulation of the sarcoplasmic endoplasmic retic-
ulum calcium ATPase pump (SERCA) [42] (Figure 1(a)).
PERK thus appears to sense glucose by direct sensing of
ER calcium levels, raising the possibility that the primary
function of PERK in 𝛽 cell is to modulate proinsulin quality
control and trafficking.

Within the 𝛽 cell, phosphorylation of elF2𝛼 is mostly
PERK dependent in ER stress conditions (Figure 1(b)). Mice
harbouring a homozygote knock-in mutation at the PERK-
mediated phosphorylation site (Ser51Ala) of elF2𝛼 display a
severe 𝛽 cell deficiency detectable in late stage embryos and
die within 18 h after birth as a consequence of hyperglycaemia
associated with defective neoglucogenesis [43]. Heterozygote
mice development is normal; however, when challenged with
a high fat diet, they develop severe obesity, glucose intoler-
ance, and impaired insulin release. In this genetic context
reduced insulin content, fewer granules, ER distension, and a
prolonged association of proinsulin with BiP have been
observed.Thus, elF2𝛼 phosphorylation is required forUPR to
prevent𝛽 cell failurewhen insulin demand is increased.These
findings demonstrate a central role of elF2𝛼 phosphorylation
in 𝛽 cell adaptation during compensation [44]. The genera-
tion of conditional homozygote ser51Ala elF2𝛼mutation in 𝛽
cell confirmed this observation.Thesemice exhibit a high rate
of 𝛽 cell apoptosis, likely caused by hypoinsulinemia, severe
glucose intolerance, and hyperglycaemia. Furthermore, the
authors showed ER distension and mitochondrial damage
associated with a lower basal expression of the majority of
UPR genes and 𝛽 cell antioxidant responsive genes. Alto-
gether these data indicate that the correct UPR and antiox-
idant response controlled by PERK-elF2𝛼 signalling are
required for 𝛽 cell adaptation and survival [45].

Phosphorylation of elF2𝛼 leads to attenuate global trans-
lation of most mRNA although translation of ATF4 is selec-
tively stimulated in this context [11] (Figure 1(b)). The role of
ATF4 in insulin secretion and 𝛽 cell survival is controversial.
Pioneer studies showed that Atf4 knockout mice on a 129SV
genetic background are lean, hypoglycaemic, and resistant to
diet-induced obesity, probably as a result of increased energy
expenditure. However, no effect was observed on plasma
insulin level when mice were fed with normal diet, whereas
insulin levels were shown to be lower in Atf4 null mice com-
pared to wild-typemice when fed with a high fat diet [46, 47].
Paradoxically, other studies usingAtf4KOmice on C57BL6/J
genetic background demonstrated that these mice are hypo-
glycaemic and hyperinsulinemic with an increased 𝛽 cell
mass and function.The phenotype of thesemice could be sec-
ondary to an overexpression of osteocalcin in osteoblasts, a
bone derived secreted molecule promoting insulin secretion
and insulin sensitivity [48]. The genetic background may
explain the differences observed in these Atf4 null mice
models. The role of ATF4 in insulin synthesis and 𝛽 cell
adaptation to ER stress remains unclear, and further studies
using a 𝛽 cell specific Atf4 KOmouse model may be useful to
answer this question.

ATF4 activation by elF2𝛼 also leads to the transcription of
elF4-E binding protein (4E-BP-1), a well-documented gene
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involved in 𝛽 cells adaptation to stress [49]. In fact, trans-
lation attenuation by elF2𝛼 phosphorylation is transient,
subsequently leading to the feedback dephosphorylation by
GADD34, whereas 4E-BP1 suppresses prolonged translation
by the inhibition of cap-dependent translation [49, 50]. 𝛽 cell
specific 4e-bp1 KO mice are normal without any metabolic
disorder when fed normal diet but are insulin resistant and
show 𝛽 cell defects under high fat diet due to induced ER
stress [49, 51, 52].Moreover, the inactivation of 4e-bp1 gene in
Min6 cell line results in sensitization to ER stress and
increased 𝛽 cell loss and hyperglycaemia in diabetic mouse
models [49].These findings suggest a central role of 4E-BP1 in
𝛽 cell adaptation to ER stress. In contrast, other groups
indicated that suppression of 4E-BP1 expression is involved in
beneficial effects of high-density lipoproteins on 𝛽 cells sur-
vival [53], suggesting that the role of ATF4 in 𝛽 cell compen-
sation might depend on several cellular interactions.

2.4. IRE1𝛼-XBP1 Pathways in 𝛽 Cells Compensation. IRE1𝛼 is
the major isoform expressed in the pancreas and plays a cen-
tral role in 𝛽 cell adaptation to ER stress (Figure 1(b)). IRE1𝛼
is required for embryonic development as demonstrated by
the embryonic lethality of global IRE1𝛼KOmice. IRE1𝛼 plays
a crucial role in insulin biosynthesis.The generation of IRE1𝛼
conditional KO mice revealed that IRE1𝛼 deletion caused
mild hyperinsulinemia and hyperglycaemia and a lower body
mass under normal diet [54]. Physiological activation of UPR
by glucose results in IRE1𝛼 phosphorylation, without increas-
ing XBP1 mRNA splicing. Moreover, knockdown of IRE1𝛼 in
INS-1 insulinoma cell line resulted in decreased proinsulin
biosynthesis or insulin content without impacting global
protein synthesis or insulin secretion, suggesting a beneficial
effect of IRE1𝛼 activation by transit exposure to glucose in 𝛽
cells [55]. However, chronic exposure to high glucose leads to
hyperphosphorylation of IRE1𝛼, which in turn results in
selective degradation of proinsulin mRNA [56]. This may be
part of the 𝛽 cell protective mechanism from apoptosis under
chronic hyperglycaemia induced ER stress. This adaptative
mechanism combined to UPR activation may explain the
reduced insulin secretion in type 2 diabetic patients in the
absence of 𝛽 cell death. IRE1𝛼 dephosphorylation is medi-
ated by proteins phosphatase A2 (PP2A) through ternary
complex containing the scaffold protein RACK1 (receptor for
activated C kinase 1). Under glucose stimulation or ER stress,
RACK1 mediates IRE1𝛼, RACK1, and PP2A complex for-
mation and promotes IRE1𝛼 dephosphorylation by PP2A,
thereby inhibiting IRE1𝛼 activation and attenuating IRE1𝛼-
dependent increase in insulin production. Moreover, IRE1𝛼
activation is increased and RACK1 abundance is decreased in
db/db mice [57]. The endoplasmic activity of IRE1𝛼 is also
involved in the activation of a key metabolic enzyme, AMP-
activated kinase (AMPK), in response to nitric oxide (NO)
and ER stress in𝛽 cells [58]. AMPK is a holoenzyme activated
by changes in AMP/ATP ratio, shifting from glucose to the
use of lipids as an energy source in order to respond to cellular
demand [59]. Activated AMPK by GTPase dynamin related
protein 1 (DRP1) phosphorylation prevents ER and mito-
chondrial alteration in stressed𝛽 cells [60]. In addition IRE1𝛼

modulates nuclear factor 𝜅 light chain enhancer (NF-𝜅B)
target gene expression and IL-1𝛽 activation under mild ER
stress, which could contribute to chemokine-induced 𝛽 cell
death [61].

Upon UPR mediating IRE1𝛼 activation, XBP1 splicing is
the major event. Several reports indicated that XPB1s target
genes and its downstream effect are cell specific andmight be
dependent on the activating pathways. Like IRE1𝛼, XBP1 defi-
cient mice died between 10.5 and 14.5 day after birth because
of cardiac myocyte defects [62]. Heterozygous Xbp1 mice
exhibited significant increase in body mass associated with a
progressive hyperinsulinemia and glucose intolerance when
fed with a high fat diet [63].These mice showed increased ER
stress and decreased insulin receptor expression in the liver.
The 𝛽 cell-specific deletion of XBP1 in mice resulted in a
modest hyperglycaemia and glucose intolerance caused by
decreased insulin secretion [64]. The loss of XBP1 markedly
decreased the number of insulin granules and impaired
proinsulin processing. Further analysis revealed that XBP1
deficiency not only participated in the ER stress in 𝛽 cells but
also caused constitutive hyperactivation of its upstream acti-
vator, IRE1𝛼, which could degrade a subset of mRNAs encod-
ing proinsulin-processing enzymes [64]. In summary, 𝛽 cell
defects in XBP1 mutant mice result from a combined effect
of XBP1 suppression on canonical UPR and its negative feed-
back activation of IRE1𝛼. Altogether these findings suggest a
dual and opposite role for IRE1𝛼 in𝛽 cells. A precise regulated
feedback circuit involving IRE1𝛼 and its product XBP1s is
required to achieve optimal insulin secretion and glucose
control. In contrast, sustain production of XBP1s leads to
inhibition of PDX1 andMAFA expressions, promoting𝛽 cells
dysfunction and apoptosis [54].

2.5. ATF6 Pathways in 𝛽 Cell Compensation. Both ATF6 iso-
forms are required for positive regulation of UPR. However,
the transcriptional activity of ATF6𝛽 is lower than that of
ATF6𝛼.Thedouble knockdownof the two isoforms caused an
embryonic lethality demonstrating overlapping functions of
ATF6𝛼 and ATF6𝛽, which are essential for embryonic devel-
opment [24]. ATF6𝛼 KO mice demonstrated a severe hypo-
glycaemia suggesting that suppression of ATF6𝛼 increased
insulin sensitivity [65]. Treatment of these mice with a
pharmacological ER stress inducer leads to liver dysfunction
and steatosis [66]. Furthermore, when fedwith a high fat diet,
ATF6𝛼nullmice developed insulin resistance associatedwith
impaired insulin secretion and lower insulin content, rein-
forcing the idea of a key role of ATF6𝛼 in 𝛽 cells adaptation
and insulin resistance [65]. Recently, a basal expression of
active ATF6𝛼 was demonstrated to be essential for 𝛽 cell
survival even under unstressed conditions. Interestingly,
specific functions of ATF6𝛼 have been revealed depending on
its interaction with XBP1. When ATF6𝛼 is acting alone, it
induces the expression of a cluster of genes involved in pro-
tein folding such as BiP andGRP94.When it heterodimerizes
with XBP-1 they are modulating the expression of specific
class of target genes, such as genes involved in protein degra-
dation (EDEM, Herpude1, HRD1, and p58IPK) [24]. In con-
trast, a deleterious effect of active ATF6𝛼 overexpression on
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𝛽 cell function and expression of insulin, PDX1, and MAFA
in INS-1 cells was shown [67]. Interestingly, some reports
demonstrated that some ATF6 variants are associated with
type 2 diabetes and new onset diabetes after transplantation
(NODAT), suggesting potential links between ATF6𝛼 and
human diabetes pathophysiology [68, 69]. It is important to
note that, from the myriad of ATF6 homolog described until
now, only old astrocyte specifically induced substance
(OASIS) was identified in 𝛽 cell [70]. However, microarray
analysis of INS-1 𝛽 cell line overexpressing the active form
of OASIS showed its implication in extracellular matrix
production and protein transport but not in the classical ER
stress response [70].

A great interest has been focused on the ATF6𝛼 negative
regulator WFS1 because of its association with the Wolfram
syndrome, a rare genetic disorder [71, 72]. Loss of function
mutation in thewfs1 gene encodingwolframin protein caused
neurodegenerative disorders characterised by juvenile onset
diabetes mellitus, optic atrophy, and hearing impairment
[73, 74]. WFS1 KO mice exhibit an activated ER stress espe-
cially in 𝛽 cells, leading to 𝛽 cell loss through impaired cell
cycle progression and increased apoptosis [75]. Conditional
WFS1 knockdown in 𝛽 cell induced diabetes as a result of
enhanced ER stress and apoptosis [76]. Moreover WFS1 is
essential for glucose and glucagon-like peptide 1 (GLP1)
stimulatedAMPproduction and regulation of insulin biosyn-
thesis and secretion [77]. Under glucose stimulation, WFS1
translocates from the ER to plasma membrane, where it
stimulates cyclic adenosine monophosphate [73] synthesis
through an interaction with adenylyl cyclase 8 (AC8), which
subsequently promoted insulin secretion [77] (Figure 1(a)). A
recent report using induced pluripotent stem (iPS) cells to
create 𝛽 cells from individuals with Wolfram syndrome
confirmed these observations. In this study,WFS1 deficient 𝛽
cells showed increased levels of UPR genes and decreased
insulin content, leading to 𝛽 cell dysfunctions as previously
described in mouse models [78].

2.6. The UPR/ER Stress Induction of 𝛽 Cell Apoptosis. As
discussed above, the UPR regulates both survival and death
effectors. It is now clear that the three unfolded protein
sensors—IRE1a, PERK, and ATF6—influence the life-death
decision.The inability of UPR outputs to restore homeostasis
may generate continuous signalling from these sensors,
tipping the balance in favour of apoptosis. The ER might
actually serve as a site where apoptotic signals are generated
and integrated to elicit the death response. ER stress leads to
apoptosis by activating both mitochondrial dependent and
independent pathways. Several stimuli have been linked to
ER stress-induced apoptosis including hyperglycaemia,
exposure to long-chain free fatty acids (e.g., palmitate) [79–
81], hyperinsulinemia occurring in the prediabetic stage [82],
glucose deprivation [83], islet amyloid polypeptide (IAPP)
expression [84], and exposure to inflammatory cytokine [85].
Players involved in the cell death response include PERK/
elF2𝛼-dependent transcriptional induction of proapoptotic
transcription factor CHOP which represses Bcl-2 [86], IRE1-
mediated activation of ASK1/JNK [18], and cleavage and
activation of procaspase 12 (caspase 4 in humans) [87, 88].

CHOP has retained a special attention as a central media-
tor of apoptosis. Its expression is lowunder physiological con-
dition but is strongly induced upon ER stress [89].The induc-
tion of CHOP is regulated by ATF4 [11, 90] and ATF6 [91–93]
and its role in ER stress-induced apoptosis was demonstrated
both in vitro and in vivo [94]. Mice lacking CHOP are pro-
tected from renal toxicity of the ER stressor tunicamycin, an
inhibitor of glycosylation [94]. CHOP deletion promotes 𝛽
cells survival in both genetic and diet-induced insulin resis-
tant mice models [30, 92]. Pancreatic 𝛽 cells are also sensitive
to oxidative stress, but 𝛽 cells from CHOP knockout mice
are protected and maintain insulin secretion under oxidative
stress [92, 95]. Moreover, islets from these mice showed
resistance to NO, a chemical agent implicated in 𝛽 cells
disruption in type 1 diabetes [96]. In contrast, CHOP defi-
ciency in a genetic background of nonobese diabetic mice
(NOD-Chop−/−) did not affect the development of insuli-
tis, diabetes, and 𝛽 cells apoptosis [97]. Interestingly,
CHOP knockout mice on a C57BL/6 background showed a
different phenotype, with abdominal obesity and hepatic ste-
atosis, while preserving normal glucose tolerance and insulin
sensitivity [98].

Under ER stressCHOPpositively regulates the expression
of genes involved in apoptosis including GADD34 [50, 99],
the ER oxidoreductin 1 𝛼 (ERO1𝛼) [100], death receptor 5
(DR5) [101], and the pseudokinase tribbles related 3 (TRB3)
[102]. As shown for CHOP deletion, genetic inactivation of
these genes protected against 𝛽 cell ER stress-induced apop-
tosis [100, 103–105]. Additionally, CHOP represses the expres-
sion of the antiapoptotic gene Bcl2 and enhances oxidant
injury [106]. Finally, deletion of CHOP was reported to
prevent the cytokine-mediated cleavage of caspase 9 and cas-
pase 3 and subsequent𝛽 cells apoptosis by reducing cytokine-
induced NF-𝜅B activity and the expression of key NF-𝜅B
target genes involved in apoptosis and inflammation [107].

ER stress-mediated apoptosis can also be signalled
through IRE1𝛼 dependent activation of JNK pathway [18].
IRE1𝛼 interacts with TBF receptor associated factor 2
(TRAF2) andASK1mediating JNKphosphorylation [18, 108].
The analysis of ASK1 deficient mice showed that ASK1 loss of
function attenuated insulin resistance, cardiac inflammation
and fibrosis, vascular endothelial dysfunction, and remod-
elling induced by diet-induced obesity [109]. Moreover,
deletion of ASK1 in homozygous Akita mice protected 𝛽 cells
from ER induced apoptosis and delayed the onset of diabetes
[110]. The IRE1𝛼/TRAF2 complexes also contributes to ER
stress-induced apoptosis by promoting the clustering of
procaspase-12 and its activation by cleavage in response to ER
stress [111]. In addition, the IRE1𝛼/TRAF2 complex interacts
with IKK, an inhibitor of NF-𝜅B, mediating its activation and
promoting cell apoptosis in response to ER stress [112, 113].
Finally, members of Bcl2 family including BAX, BAK, BIM,
andPUMAhave been reported to directly interactwith IRE1𝛼
demonstrating a physical link between members of the core
apoptotic pathway and the UPR [114, 115]. In contrast,
IRE1𝛼 forms a stable protein complex with Bax inhibitor-1
(BI-1) protein, suppressing cell death [116]. The IRE1𝛼/BI-1
association decreased the ribonuclease activity of IRE1𝛼 and
seemed to be required for early adaptive responses against ER
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stress-induced apoptosis [116]. The control of IRE1𝛼 activity
appears to be central in the mechanism protecting 𝛽 cells
fromER stress-induced apoptosis. Further studies are needed
to understand the various aspect of IRE1𝛼 regulation and the
contribution of the others actors of UPR in the ER stress-
induced apoptosis.

2.7. The UPR in Human Diabetes. Clear evidence of the
existence of ER stress in human 𝛽 cells has been reported in
the last decade [2, 3, 6, 117]. First analysis of islets fromhuman
T2D patients showed an ER extension butmodest signs of ER
stressmarker in human pancreatic samples and isolated islets.
However, glucose stimulation induced increasedUPR in T2D
islets cells [3]. Somemarkers of ER stress are increased in T1D
human islets with partial ER stress [117, 118]. A recent report
shows an alteration in the expression of specific branches of
UPR mediators in T2D 𝛽 cells [6]. These findings support
the hypothesis of a decline in 𝛽 cell adaptation/compensation
during the progression of diabetes in human.

3. Conclusion

The 𝛽 cell has a marked capacity to adapt to environment
changes by increasing its mass and function. Diabetic signs
occur when this adaptative mechanism fails to compensate
for the increasing insulin demand. Activation of UPR actors
is triggered in the early stage of the compensatorymechanism
and may play a central role in 𝛽 cell adaptation and subse-
quent functions. Further studies are required to understand
the physiological significance and the direct implication of ER
stress andUPR in the early stage of diabetes physiopathology.
Moreover, the relationships among UPR actors, their activa-
tion, and 𝛽 cell fate (adaptation/survival versus 𝛽 cell dys-
function/apoptosis) remain to be fully clarified.Theoretically,
the size of 𝛽 cell mass is controlled by a balance between pro-
liferation and apoptosis. Either increase of 𝛽 cell apoptosis or
decrease in 𝛽 cell adaptation and compensation could, there-
fore, reduce the 𝛽 cell mass in T2D patients. Studies carried
out during diabetes development are required to better
understand the mechanism of compensatory capacity and
subsequent𝛽 cell loss in humans.This is of particular interest,
since it could have beneficial impact for the treatment of
metabolic diseases such as diabetes.

It is important to note that most UPR molecules have an
adaptive function in 𝛽 cells. Their role in the switch from
survival to apoptosis is clearly demonstrated in vitro and in
animal models but it remains unclear whether the same
mechanisms occur in human 𝛽 cell. Isolating and culturing
primary 𝛽 cells may be very stressful and do not perfectly
reflect the in vivo context. Therefore the use of alternative
method such as immunohistochemistry is powerful to deter-
mine the role of each branch of UPR in diabetes.
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pour la Recherche sur le Diabète, Lille2 University, Conseil
Régional Nord-Pas de Calais and Lille Métropole Commu-
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