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Learning by imitation is fundamental to both communication and
social behavior and requires the conversion of complex, nonlinear
sensory codes for perception into similarly complex motor codes
for generating action. To understand the neural substrates un-
derlying this conversion, we study sensorimotor transformations
in songbird cortical output neurons of a basal-ganglia pathway
involved in song learning. Despite the complexity of sensory and
motor codes, we find a simple, temporally specific, causal corre-
spondence between them. Sensory neural responses to song
playback mirror motor-related activity recorded during singing,
with a temporal offset of roughly 40 ms, in agreement with short
feedback loop delays estimated using electrical and auditory
stimulation. Such matching of mirroring offsets and loop delays
is consistent with a recent Hebbian theory of motor learning and
suggests that cortico-basal ganglia pathways could support motor
control via causal inverse models that can invert the rich corre-
spondence between motor exploration and sensory feedback.
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The brain has evolved diverse strategies for combining sensory
and motor signals, a prerequisite for many complex behaviors

including hunting, communication, and observational learning of
motor skills. For example, to accurately sense the external world
while simultaneously moving within it, the nervous system must be
able to detect changes in its sensory inputs that are not a predictable
consequence of self-motion. Indeed, many sensory neurons respond
with high sensitivity to unpredictable stimuli during motor behavior
despite self-caused sensory feedback (1–5). Such remarkable sen-
sitivity can be achieved by circuit mechanisms that counteract sen-
sory feedback associated with self-generated motor output (6). Such
mechanisms are also known as corollary discharges (7) or forward
models of the motor system (8), which are synaptic mappings from
motor neurons onto sensory neurons that can either predict or
suppress sensory feedback from self-generated motor output.
In contrast to our understanding of how the brain cancels

predictable, motor-induced sensory feedback, much less is known
about neural mechanisms for computing motor codes that pro-
duce desired sensory targets. However, the ability to learn to
produce desired behaviors by observing others is considered to be
a key advantage of sociality and a main driver for the evolution of
culture (9, 10). Learning by imitation occurs spontaneously when
humans learn to speak, parrots imitate surrounding sounds (11),
or songbirds learn to imitate a tutor’s song (12). However, insights
into the neural implementation of sensory-guided motor learning
remain sparse, largely because we lack empirical information
about the principles underlying the flow of neural activity through
synaptic mappings from sensory to motor areas. Such mappings
are known as inverse models and flow in the opposite direction of
forward models that direct motor activity to sensory areas.
To learn about principles of sensorimotor integration in the

zebra finch, a vocal learner, we focus our attention on cortical
premotor nuclei necessary for song production and song learning.
The premotor area HVC is involved in generating the stereotyped
song motifs of adult birds (13), whereas the lateral magnocellular

nucleus of the anterior nidopallium (LMAN) forms the output of
a basal-ganglia pathway involved in generating subtle song vari-
ability (14–17). HVC neurons produce highly stereotyped firing
patterns during singing (18, 19), whereas LMAN neurons produce
highly variable patterns (15, 20, 21).
To gain insights into LMAN’s role in motor control, we consider

recent theoretical work that establishes a conceptual link between
inverse models and vocal-auditory mirror neurons (22–24). We
consider three (nonexhaustive) possibilities about the flow of
sensory information into motor areas. First, auditory afferents with
some feature sensitivity could map onto motor neurons involved in
generating those same features (Fig. 1A). This mapping forms a
causal inverse, in which a sensory target input generates a motor
activity pattern required to cause, or generate that same sensory
target. Second, auditory afferents with some feature sensitivity
could map onto motor neurons that typically fire after the ones
involved in generating those features (Fig. 1B). This mapping
forms a predictive inverse, in which a sensory input at some point
in a stereotyped acoustic sequence elicits a predictive motor ac-
tivity pattern required to generate the next acoustic signal in that
sequence. Third, the auditory-to-motor connections could be
randomly wired (Fig. 1C), in which case there would be no regu-
larity in the relationship between sensory and motor responses.
Rather than directly characterize the auditory-to-motor mapping

(a daunting task), we probe this mapping indirectly by studying
the neural responses it causes in experiments in which we com-
pare auditory responses elicited by playback of the bird’s own
song (BOS) to motor responses recorded during production of
these songs. Indeed, the three possibilities in Fig. 1 make specific,
testable predictions at the level of single neurons. Consider for
example a motor neuron downstream of a causal inverse model
(i.e., neuron 2 in Fig. 1A). This motor neuron generates song
feature B after a motor latency ðτmÞ. Now, when the bird is not
singing, this motor neuron also has a sensory selectivity for song
feature B (because it is downstream of a causal inverse model).
Therefore, during song playback, this same motor neuron will fire
after playback of song feature B with an auditory latency τa. Thus,
if one temporally aligns both the playback-evoked spike train and
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the singing-related spike train with the onset of song, the playback
train will lag, or mirror the singing related train by a mirroring offset
equal to the sensorimotor loop delay τ= τa + τm. In more subtle
scenarios in which the motor neuron has selectivity for multiple
acoustic features, or is subject to greater degrees of noise, this
temporal alignment between the motor and sensory responses of
the neuron can still be detected through the position of a peak in
the cross-covariance function (CC function) between the playback
and singing related spike trains both time-aligned to song (Fig. 1A,
Lower), even when the offset may not be visually apparent by simply
looking at spike trains (see SI Methods and Fig. S1 for a theory of
the CC function in the case of multiple latency auditory responses).
Conversely, consider a motor neuron downstream of a pre-

dictive inverse model (i.e., neuron 2 in Fig. 1B). Just as before,
the neuron generates song feature B with a latency τm. However,
because it is downstream of a predictive inverse model, when the
bird is not singing, this neuron now has a sensory selectivity for
the previous song feature, A. This selectivity occurs because
a predictive inverse model takes a sensory stimulus, in this case
song feature A, and generates a motor command for the next
feature, in this case song feature B. Thus, when aligned to song,
the playback spike occurs τa after syllable A while the singing
related spike occurs τm before song feature B. The result is that
the mirroring offset will be much smaller than the total senso-
rimotor loop delay τ, and the peak in the CC function will be
much closer to zero time lag. Finally, in the random scenario in
Fig. 1C, we expect no pronounced peak in the CC function.
In theory, whether to expect a causal or predictive inverse

depends on the sequence stereotypy of produced song features

(23, 24). What are those features? A song feature could be
a song syllable, in which case the sequence of features is ste-
reotyped because adult zebra finches sing stereotyped syllable
sequences ABC-ABC (Fig. 1B). Stereotyped song sequences are
generated mainly by stereotyped firing patterns in HVC, and
according to previous theory (23, 24), we expect a predictive
inverse and its associated signature of small mirroring offsets, to
arise in HVC.
Alternatively, a song feature could be a brief pitch increase or

decrease, in which case the features and their variable sequences
(ABC, DBA; Fig. 1A) are mainly generated by variable LMAN
firing patterns. Accordingly, we expect to find a causal inverse
upstream of LMAN (23, 24). Indeed, in HVC neurons the mir-
roring offset between motor-related spiking and song-playback
evoked spiking is less than 10 ms (25), much less than the roughly
40-ms loop delay of HVC estimated using electrical stimulation
of HVC and using auditory stimulation of the ear (26–31). By
contrast, mirroring offsets in LMAN have not been quantified
yet, leaving it open as to whether they provide evidence for
causal inverses.

Results
We first estimated LMAN’s motor latency τm by electrically
stimulating LMAN neurons during singing using chronically
implanted electrode pairs (Fig. 2A). Brief single or paired cur-
rent pulses delivered at a random or a fixed time during a har-
monic song syllable induced transient increases in frequency
modulation (FM) of song (Fig. 2B and Fig. S2A). Transient song
distortions (also of nonharmonic syllables) started in the range of

Fig. 1. Three hypothetical sensorimotor mappings and associated mirroring
offsets. Sensory-to-motor mappings could implement a causal inverse of the
motor plan (A), a predictive inverse (B), or be random (C). Under a causal
inverse, generated by variable sequences of song features (ABC-CBA), a spike
burst in a motor neuron (neuron 2) triggers the production (black arrow) of
a song feature (feature B) after latency τm, and the neuron receives sensory
feedback (thick green arrow) from that same feature after an additional
latency τa. In such a neuron, we expect to see a cross-covariance (CC) peak
(red arrow) between singing-related and playback-evoked spike bursts
(black vertical bars) at a time lag (the so-called mirroring offset, red hori-
zontal bar) given by the delay of the sensorimotor loop τ= τm + τa. Under
a predictive inverse (B), generated by stereotyped sequences of song fea-
tures (ABC-ABC), the motor neuron 2 again triggers song feature B, but at
the same time receives reliable feedback from the previous song feature A
(thick green arrow). Thus, we expect to see a CC peak at a time lag much
smaller than the sensorimotor loop delay τ. Finally, under a random sensory-
to-motor mapping (C), we expected no CC between the motor- and sensory-
evoked firing.

Fig. 2. LMAN sensorimotor loop delay. (A) Sagittal schematic of the song-
bird brain. Both HVC and the LMAN project to the premotor RA. DLM, dorsal
lateral nucleus of the medial thalamus; nXIIts, hypoglossal nucleus. (B)
Electrical stimulation in LMAN using paired 0.2-ms current pulses of 500 μA
(separated by 1 ms) during song leads to transient distortions of song syl-
lables (brief pitch decrease, red square bracket) compared with catch trials.
(Top) Log-power sound spectrograms (high and low power shown in yellow
and black, respectively) of a nonstimulated (catch) syllable and a stimulated
(stim) syllable. A stack plot of frequency modulation (FM; Middle) and the
mean FM (Bottom) across 488 nonstimulated syllables (catch trials) and 454
stimulated syllables (Stim) reveals a transient FM increase corresponding to
a brief pitch decrease (white square bracket in the sound spectrogram)
roughly 20 ms (dashed red line) after stimulation onset (time origin, thick
red line). (C) Log-power sound spectrogram (Top), raster plot (Middle), and
mean firing rate (Bottom) of a LMAN single unit with short auditory latency
of 18 ms to playback onset of the bird’s own song (n = 307 playbacks).
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20–42 ms after stimulation onset (median latency, 30 ms; n = 3
birds; n = 8 syllables).
We estimated LMAN’s auditory latency τa in single neurons of

quiet (possibly sleeping) birds by exposing them to BOS stimuli
played in the dark. We found onset latencies of auditory responses
in the range of 12–112 ms (median latency = 26 ms, n = 18/56
single or multiunit sites with clear onset responses within 120 ms of
sound onset, n = 6 birds; Fig. 2C and Fig. S2B).
In combination, our estimate of the LMAN loop delay is in the

range of 32–154 ms, with a median of 56 ms, similar to the loop
delay estimate in HVC (26–31). The theory (SI Methods) predicts
that the mirroring offset in randomly firing premotor areas such
as LMAN is within the range of short loop delays (because nearby
pre-post spike pairs are expected to lead to strong synaptic po-
tentiation, thus favoring short delays (24). Hence, we expect
LMAN mirroring offsets to be in the range of 32–56 ms (shortest
to median loop delay).
To measure the LMAN mirroring offset, we extracellularly

recorded from LMAN single and multiunits both when birds
were singing and subsequently when we broadcast the produced
songs in random order through a loudspeaker. Zebra finches
produce songs in bouts composed of introductory notes followed
by one to five repetitions of a stereotyped song motif each
containing 1–10 song syllables (Fig. 3A, ii). During production of
song bouts (undirected song), recorded LMAN neurons tended
to fire spike bursts (interspike intervals less than 10 ms), whereas

in response to subsequent song playback they fired mostly single
spikes (Fig. 3A, ii and iii). Spiking rates during singing were
higher than during playback (mean firing-rate ratio song to
playback = 2.5, range = 0.9–18, n = 50 single and multiunit sites;
Fig. S3). We aligned spike trains with the stereotyped song motif
and visually confirmed the high firing variability in LMAN cells
(Fig. 3A, iii).
CC functions between motor-related spike trains within the

boundary of the stereotyped song motif and corresponding
playback spike trains exhibited peaks often at a lag near 40 ms
after motor-related spikes (Fig. 3A, iv and Fig. S4A). Overall,
CCs averaged over the 32- to 56-ms lag interval tended to be
positive (in 22/50 single or multiunit sites, the median CC was
positive and different from zero, Wilcoxon signed-rank test, P <
0.05; at 4/50 sites the median CC was negative, P < 0.05). Almost
always, CC functions exhibited peaks also at time lags other than
32–56 ms (e.g., at −100 ms in Fig. 3A, iv). These other peaks oc-
curred at diverse time lags and were irrelevant for testing our 32-
to 56-ms mirroring offset hypothesis because they are expected to
occur in neurons that fire more than once per song motif (e.g.,
when intervals between caused song features are short).
We also performed a population analysis by normalizing CC

functions by their Jackknife SD estimates (to de-emphasize
higher firing rates at multiunit sites) and then averaged the
normalized CC functions (n = 50 LMAN sites including 18 sin-
gle units, n = 7 birds; Methods). The resulting population CC

Fig. 3. LMAN mirroring offset. (A) Large positive mirroring offset in an LMAN single unit. (A, i) Song oscillogram (Upper) and raw extracellular voltage trace
of neural activity (Lower; Inset shows a spike burst). (A, ii) Song spectrogram of an example song bout, a song motif (marked by a red horizontal bar). The
spike raster plot (Lower) shows spikes generated during production of that bout (blue rasters) and during 27 playbacks of that bout (black rasters). Firing-rate
curves (Lower) are plotted in corresponding colors. (A, iii) Summary showing spike rasters during production (blue) and during playback (black) of different
song motifs (delimited by vertical red lines); the firing-rate curves below are averages over all motifs (not all shown). Song-evoked firing tends to lead
playback-evoked firing, in particular at the end of the motif. (A, iv) The CC function (thick red curve) of motif-related spike trains peaks at a time lag of about
50 ms. (B) The average (normalized) motif CC function (red curve) peaks at a time lag near 40 ms and exceeds there a significance threshold (black curves) of +
3 Jackknife SDs (n = 50 sites in seven birds). (C) A similar behavior is seen in the population-averaged (and normalized) bout CC function (n = 48 sites in seven
birds, red curve). A population-averaged random shift predictor (red dotted curve) remains below the 3 Jackknife significance threshold (black curves).
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function (Fig. 3B) peaked at a time lag in the range of 40–60 ms
(suggesting a lead of motor activity on sensory responses).
To investigate mirroring also beyond single song motifs, we

computed bout CC functions over entire song bouts (including
song motifs and introductory notes). The resulting population CC
function, normalized and averaged over all recording sites (n = 48
LMAN sites, n = 7 birds), also peaked near 40 ms (Fig. 3C), in
agreement with the peak of the population CC function over
motifs (Fig. 3B). In summary, at individual recording sites, we
found a tendency for nonzero mirroring offsets. This tendency was
amplified by averaging over recording sites to result in a significant
average mirroring offset near 40 ms, suggesting a correspondence
between sensory and motor responses.
To place the observed CC functions into perspective, we com-

pared them to theoretical upper and lower bounds. We formed
a lower bound by circularly shifting all playback-evoked spike
trains by a random shift uniformly chosen within the duration of
the song motif, thus eliminating any hypothetical temporal re-
lationship between playback and motor responses. The resulting
random-shift predictor (obtained after normalizing and averaging
CC functions associated with randomly shifted spike trains) did not
exceed the previously defined significance threshold of 3 Jackknife
SDs (Fig. 3C), demonstrating that the nonzero mirroring offset we
found could not simply occur by chance. We also estimated an
upper bound of mirroring strength that corresponds to perfect
mirroring limited only by intrinsic variability in playback-evoked
responses. That is, we replaced all song-related spike-trains by one
trial of a corresponding playback-evoked spike train, shifting it
by −40 ms, and cross-correlated it with all other spikes trains
evoked by the same song stimulus. If intrinsic variability was ab-
sent, all playback-evoked responses would be identical and the
population CC function (which by virtue of division by the SD is
a signal-to-noise estimate) would exhibit an infinitely high peak.
Instead, we found an upper bound of the population CC function
of 1.2, about six times above the observed peak of 0.2 in Fig. 3C. In
summary, the LMAN mirroring strength of 0.2 (in units of signal
to noise) at the 40-ms offset was more than five times higher than
that of a random code (SD of random shift predictor) and about
17% of the upper bound corresponding to perfect mirroring.
We also estimated the temporal offset between LMAN sen-

sory- and motor-evoked activity by inspection of the spike-trig-
gered average (STA) sound amplitude, a curve that reports the
average sound amplitude preceding and following a spike (Fig.
S4 B and C). Sound amplitudes peaked on average 29 ms after
LMAN motor spikes, and during playback, they peaked on
average 8 ms before LMAN spikes (n = 50 LMAN sites), sug-
gesting that LMAN neurons respond preferentially to increases
in sound amplitudes and evidencing a combined motor-playback
temporal offset of about 37 ms, which is within the range of
estimated loop delays and mirroring offsets.

Discussion
Taken together, our mirroring offset analysis supports the hypoth-
esis that LMAN neurons are part of, or downstream of, a causal
inverse model (Fig. 1A). The roughly 40-ms mirroring offset we
found was expectedly near the short end of estimated LMAN loop
delays and much larger than mirroring offsets reported in HVC
(25), all in agreement with a Hebbian view of sensorimotor in-
tegration in premotor areas (23, 24).
We found LMAN mirroring to be much weaker than the

reported HVC mirroring. Among the sources contributing to
weak mirroring in LMAN, we identified intrinsic noise in LMAN
BOS responses. Intrinsic noise by itself limited mirroring strength
at the level of individual neurons to a signal-to-noise ratio of less
than 1.2. Obviously such noisy LMAN auditory responses hinder
our ability to precisely measure sensorimotor correspondences.
To mitigate the effects of intrinsic noise and response gating as
much as possible, we performed the playback sessions while birds

were quietly resting in the dark. Possibly the sleep state was not
very deep throughout the experiment, which may have reduced
auditory responses and their correlation with singing-related ac-
tivity (21, 32). Although noisy LMAN responses to BOS playback
may limit our ability to perform mirroring analyses, they need
not limit the bird’s ability to learn inverse models through
synaptic learning rules simply because birds learn naturally
using auditory feedback during singing and not BOS playback
in a quiescent state. In the auditory forebrain, signal-to-noise
ratios of more than 10 have been observed (4), revealing that
highly sensitive song-related auditory signals are present in the
forebrain and that such sensitive signals could underlie the
formation of causal inverses.
A shortcoming of our experiments is that we have tested the

mirroring hypothesis only on a population level, although in
theory it could be tested on a single-neuron level. Namely, if the
motor latency of an individual neuron is τm and its auditory la-
tency is τa, then the expected mirroring offset is τm + τa. A major
obstacle to testing the single-neuron hypothesis is the difficulty
of measuring motor latencies in single neurons: To do so, we
would have to stimulate neurons during singing either alone or
together with their cofiring neurons, which we were unable to do.
Also, LMAN neurons could exhibit diverse auditory response
latencies depending on both the time point in the motif at which
they are stimulated and the feature composition of the auditory
stimulus, as is the case for auditory responses in the primary
auditory cortex analog field L (4). Thus, we imagine that a single
LMAN neuron may exhibit a wide range of auditory latencies
depending on the presynaptic neurons that drive it’s spiking at a
given time. In the wake of this complexity associated with testing
the mirroring hypothesis in single neurons, we tested for the exis-
tence of inverse models at a population level under the simplifying
theoretical assumption that the eligibility trace for synaptic learning
is a monotonically decaying function of time (nearby spike pairs
lead to stronger potentiation than more widely separated spike
pairs, which agrees with nearly all known spike-time dependent
plasticity rules). This assumption implies that the population aver-
aged mirroring offsets would lie within the earlier range of loop
delays because synapses that mediate short-latency responses have
higher eligibility and experience more potentiation than synapses
that mediate long-latency responses (see SI Methods for a theoret-
ical analysis).
In a sense, our theoretical prediction that mirroring offsets

correspond to shorter loop delays is analogous to the imme-
diacy effect in operant conditioning: In this effect, immediate
reinforcement is more effective for modifying a response than
delayed reinforcement. Indeed, birds can adapt their songs to
escape from negatively reinforcing acoustic stimuli that are de-
livered during low-pitch renditions of their songs (33). In these
operant conditioning experiments, birds were found to be unable
to adapt their songs to escape negative reinforcement when the
latency between pitch measurements and acoustic stimuli was 100
ms (33), revealing that birds are able to detect correlations be-
tween their songs and auditory stimuli when latencies of the latter
are short but not when they are long.
The lag of 8 ms in our population analysis of STA sound am-

plitudes during playback (Fig. S4C) is short, even compared with
the mean peak latency of 14 ms observed in spectro-temporal
receptive fields (STRFs) in field L, the analog of primary auditory
cortex (34). Although STRFs are not directly comparable to STAs,
we conclude from the short 8-ms lag that presumably LMAN
neurons are tuned to increases in sound amplitudes (such as
occurring during syllable onsets) and not to peak amplitudes
(such as occurring near the middle of syllables). Indeed, the
average STA curve in Fig. S4C reaches its maximal slope about
25 ms before spikes, in agreement with the median lag of au-
ditory response onsets.
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In essence, our population analysis allowed us to conduct a first
test of the inverse model hypothesis, but it leaves open several
directions. Clearly, the range of validity of the causal inverse
hypothesis remains unresolved; it remains to be investigated
whether causal inverses apply to single neurons and even down to
specific sound features generated by these neurons. In future
work, to obtain improved latency estimates and to test the inverse
model hypothesis on the single neuron level, it will be necessary
to hold the signal of a single cell for a much longer time than the
few minutes we were able to. There are promising new recording
techniques that may provide the order of magnitude improve-
ment required (35).
In the postulated Hebbian learning rule leading to forma-

tion of inverse models, synaptic strengthening occurs when
presynaptic activity follows postsynaptic activity and not vice
versa (24). This order allows sensory feedback arriving at
motor neurons to be associated with past postsynaptic patterns
of motor activity that could have caused this sensory feedback.
Such rules have first been described in mormyrid electric fish (36)
where they explain the formation of negative mirror images (cor-
ollary discharges) of reafferent (self-generated) sensory input (2).
In mammals, a similar rule has been found to describe synaptic
connections from cortex to the basal ganglia (37). Thus, a causal
inverse may reside in the efferent synapses of a cortical area up-
stream of the basal ganglia homolog; or, based on anatomy,
a causal inverse could be connected to a dopaminergic ventral
tegmental area (38, 39), thereby establishing a possible link of our
findings with reinforcement learning theories (see below). Other
candidate pathways for the causal inverse could lead to LMAN
through HVC or through the thalamo-cortical projections from
the dorsolateral nucleus of the thalamus (DLM). HVC projects to
the basal ganglia loop and so indirectly to LMAN. However, in-
activation of HVC in anesthetized birds had almost no effect on
auditory responses of LMAN neurons (Fig. S5). Further experi-
ments will be needed to explore these and possibly other pathways
leading to LMAN, like the recently discovered LMAN shell (40)
(note that we cannot rule out that some of the antidromically
activated cells in our study were located in the LMAN shell rather
than in LMAN because of the close proximity of LMAN and its
shell, their combined efference to the arcopallium, and the un-
certainty of recording sites in our experiments).
A causal inverse upstream of LMAN could be formed during

a sensorimotor phase of song development and be beneficial to
that development. That is, the causal inverse could be formed
when young birds engage in motor explorations during the sen-
sorimotor learning phase, in agreement with LMAN’s known
role in producing song variability in this critical phase (41, 42).
Once the inverse mapping is established, it could be used to
select downstream motor patterns in agreement with a sensory
target and therefore steer the developing song in the right direction.
By contrast, it is less clear how predictive inverses leading to
HVC could be involved in motor learning. However, predictive
inverses may aid vocal communication, especially when fast pro-
cessing is required (43), e.g., during vocal exchanges with milli-
second timescale precision in pair duetting birds (44) or during
counter singing episodes (25).
Causal inverse models can in theory support some forms of

single-trial imitation, but there are few reports on fast learning in
zebra finches [although changes in the juvenile songs are iden-
tified after 2 d of exposure to the tutor’s song (45), which
motivates further investigations into this possibility]. A promising
avenue into LMAN-mediated fast learning are recent experi-
ments on negative song reinforcement in which LMAN, after
having been transiently prevented from contributing to vocal
output, was shown after recovery to instantaneously mediate
vocal escape behaviors (41), which was suggested to provide
support for a motor efference copy to LMAN (41). Alternatively,
we propose that such instantaneous escape behaviors arise from

a causal inverse model upstream of LMAN. Our alternative ex-
planation has the advantage that it invokes no postulated effer-
ence copy between a hypothetical premotor area and LMAN
(but rather a causal inverse for which we find support). More-
over, in our scenario, LMAN can implement escape behaviors
regardless of the source of variability (e.g., be it of neural or
muscular origin), whereas in the efference copy scenario, escape
would be confined to explorations mediated by the source of the
efference copy (and by LMAN).
If reinforcement signals (e.g., dopamine) were mediated via

causal inverse models instead of being released nonspecifically as
assumed in many computational models (46, 47), then motor
learning could be more efficient, in accordance with model-based
reinforcement strategies (48). Indeed, simple reinforcement learn-
ing strategies can be enhanced with inverse models as a means to
solve the structural credit assignment problem inherent in re-
inforcement learning (49). Our findings can thus be seen as pro-
viding neural support for efficient learning capabilities in basal
ganglia pathways. Indeed many physiological and theoretical studies
of learning in the basal ganglia have focused on the role of dopa-
minergic afferents onto striatal neurons in carrying reward pre-
diction errors that are useful for reinforcement learning. On the
other hand, the results of ref. 37 reveal that afferent cortical syn-
apses onto striatal neurons also exhibit plasticity in which post-
synaptic before presynaptic firing strengthens the synapse, a rule
useful for inverse model learning, according to the theory of refs. 23
and 24. These results, when combined with evidence presented here
for a causal inverse model in the cortical output area of a basal
ganglia pathway, suggest that cortico-basal ganglia pathways could
contain rich physiological mechanisms capable of combining in-
verse model and reinforcement based learning.
In general, learning to imitate any complex action poses a

challenging problem for sensorimotor circuits: a sensory rep-
resentation of the action must be converted into motor activity
patterns capable of reproducing the action. Our approach of fo-
cusing on mirroring offsets and to relate these offsets to the ex-
istence and type of inverse models may be useful not only for
uncovering basal ganglia circuit mechanisms for vocal learning,
but also for explaining a wide range of imitation behaviors beyond
vocal learning. We speculate that the careful measurement of
mirroring offsets may also provide insights into other mirror
neuron systems including visual-tactile neurons in mammalian
premotor cortex (50).
Overall, our work suggests we may need to enlarge our hy-

pothesis space for cortico-basal ganglia function by developing
and testing theoretical models in which both associative Hebbian
plasticity and dopamine dependent reward driven plasticity could
interact to mediate sophisticated model based reinforcement
learning strategies. At a computational level, these multiple,
interacting forms of plasticity could allow organisms to combine
classical reinforcement and control-theoretic inverse models to
efficiently learn sensorimotor behaviors.

Methods
We chronically recorded from LMAN neurons in n= 9 freely moving adult
male zebra finches (>90 d after hatch) using miniature motorized micro-
drives. Each song bout was played back a random number of times in the
dark because auditory responses in premotor areas of birds are state de-
pendent—they tend to be gated off in the awake and aroused bird but
gated on during sleep (51, 52).

We analyzed song (S) and playback (P) spike trains ρSðtÞ and ρPðtÞ
(mean-subtracted) that we aligned to the common sonogram and that
were either restricted to stereotyped song motifs or to song bouts
composed of several motifs and introductory notes. We averaged CC
functions CSPðτÞ= 1

T

R T
0 ρSðtÞρPðt + τÞdt (with T representing motif or bout

duration) over all playbacks of a given song motif/bout. We then com-
puted the mean CC function (Fig. 3A, iv) by averaging over all song
motifs/bouts. In the mirroring analysis, we excluded the data from three
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LMAN single units because they were suppressed by playback and did
not produce sufficient spikes to be correlated with motor activity.

Note that the key signature of inverse models is the CC between spike
trains in motor and precisely corresponding sensory states. In principle, one
could observe a peak in CC evidencing an inversemodel even if spiking during
song and playback was uniformly distributed in time, i.e., even if song and
playback-evoked firing rate curves in Fig. 3B, ii and iii and Fig. S4A, ii were
perfectly flat. In other words, the shapes of motif-aligned firing-rate curves
may be indicative of mirrored responses but are useless to demonstrate
their absence.

When computing population-averaged CC functions, to discount firing-
rate differences among recording sites, we first normalized individual CC
functions by their Jackknife estimate of SD before averaging (average in
the interval [−150, 150] ms; Fig. 3 B and C). We assessed significance of
peaks in population-averaged CC functions (Fig. 3 B and C) by their ex-
ceeding a threshold of 3 SDs estimated using Jackknifing over recording
sites (3 Jackknife SDs σ correspond roughly to P = 0.01). We also explored

normalizing CC functions by the Jackknife estimate of SD in the interval
[30, 50] ms, yielding qualitatively similar results.

All playback trials in which the bird produced a vocalization or other
sound were discarded. Given the weak auditory responses in LMAN neu-
rons, we recorded their spike responses during long periods of time to
obtain sufficient statistics (order of hundreds of song playbacks within 10–
20 min). Because it was difficult to maintain either good single-unit iso-
lation or stable multiunit activity across these long periods, in the pop-
ulation plots (Fig. 3 B and C), we averaged clear single-unit responses with
stable multiunit responses.
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