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Understanding stem cell (SC) population dynamics is essential for developing models that can be used in
basic science and medicine, to aid in predicting cells fate. These models can be used as tools e.g. in studying
patho-physiological events at the cellular and tissue level, predicting (mal)functions along the
developmental course, and personalized regenerative medicine. Using time-lapsed imaging and statistical
tools, we show that the dynamics of SC populations involve a heterogeneous structure consisting of multiple
sub-population behaviors. Using non-Gaussian statistical approaches, we identify the co-existence of fast
and slow dividing subpopulations, and quiescent cells, in stem cells from three species. The mathematical
analysis also shows that, instead of developing independently, SCs exhibit a time-dependent fractal behavior
as they interact with each other through molecular and tactile signals. These findings suggest that more
sophisticated models of SC dynamics should view SC populations as a collective and avoid the simplifying
homogeneity assumption by accounting for the presence of more than one dividing sub-population, and
their multi-fractal characteristics.

tem cells are classically defined as unspecialized cells that can self-renew and give rise to differentiated cell

types during embryogenesis, and in the adult, during tissue homeostasis or injury repair. These functions

make them highly attractive to study for the purposes of understanding ontogeny and development, or for
their potential use in regenerative medicine and tissue engineering.

After more than 25 years of extensive research of numerous stem cell types, the field still struggles with how to
define stem cells based on a molecular or chemical signature. Defining stem cells using molecular surface markers
is a challenge. The lack of consistency in marker expression may be due the changing expression of markers
during stem cell manipulation, or maturation, or to population heterogeneity. Technical differences between
laboratories’ methods and reagents can also contribute to challenges in defining stem cells based on markers. This
study takes a system-level view on stem cells and particularly focuses on heterogeneity and population dynamics
which are poorly understood and contribute to ambiguity in the identification of cells responsible for specific
functions.

The notion of a stem cell population which is comprised of a network of cells with interacting functions is rarely
considered ex vivo. In vivo, it is well established that stem cells reside within a niche or microenvironment
consisting of different cell types that provide physical and chemical supportive factors. However, the in vitro study
of stem cells often does not consider a niche environment. Rather, attempts to study stem cells have predomi-
nantly focused on the isolation of purified subsets of cells with specific markers or functions' . Yet, several
reports suggest that a population level exists for various stem cell types including hematopoietic stem cells
(HSCs), mesenchymal stem cells (MSCs)''""*and muscle stem cells'*"*°. In support of this, several groups have
shown that an individual cell from a stem cell population can re-establish the heterogeneous parent
population® .

The basic science challenges with population heterogeneity subsequently lead to issues related to their use in
regenerative medicine, e.g., in ensuring cell potency or predicting ex vivo expansion or growth rates. Producing
therapeutic doses of stem cells by ex vivo expansion requires what the FDA terms ‘more-than-minimal manip-
ulation*”’which carries with it the risks of stem cells becoming contaminated, genetically transformed, or
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Figure 1| Heterogeneity in Stem Cell Populations. (a) Stem cell populations are comprised of mitotically active (dividing) and mitotically inactive

(nondividing: quiescent cells, terminally differentiated cells, senescent cells, and dying cells). (b) Proliferative heterogeneity results from asynchrony in life
stage which leads, in part, to the presence of these subpopulations. (c) More specifically, asymmetric divisions and fates or symmetric divisions'™ lead to
different subpopulations. Intrinsic or extrinsic factors play a role in whether the daughter cells are different due to internal cues or environmental cues.
(d) An example of development of heterogeneity from intrinsic cell differences. Asymmetry in DNA strand segregation would allow for stem cell self-
renewal. The (blue) stem cell would retain the oldest DNA strands. This cartoon shows segregation of 1 chromosome: the oldest/grandparent strand is

blue and designated 1.0, and the parent strand (a copy of the grandparent strand) is red and designated 1.1. All other copies are dashed lines and
designated copy numbers are 1.1.1, 1.1.1.1, 1.1.1.1.1 etc. If non-random strand segregation occurs among all chromatids in the cell, the result is
asymmetric divisions and self-renewal of the stem cell. We show here how heterogeneity could result in the expanding population. If distinct phenotypes
occur based on the DNA strand copy numbers, then these phenotypes can be categorized based on the template and copy number. E.g., after the 3
divisions shown in the lineage tree above, there would be 1 stem cell (1.0 and 1.1 strands, p0 phenotype), 3 pI cells would have (1.1/1.1.1 stands), 3 pII cells

(1.1.1/1.1.1.1) and 1 pIII cell (1.1.1.1/1.1.1.1.1).

functionally changed. Bio-manufacturing methods must predict the
time required to obtain potent dose(s) of stem cells, yet minimize the
amount of time that cells are manipulated ex vivo. Indeed, models
which can accurately predict the growth rate of a heterogeneous
population will be valuable tools in the development of a manufac-
turing process that minimizes cell culture time and reduces exposure
to foreign materials. Until now, very few approaches examine non-
linear behavior of stem cell growth**~°. Rather, the basic exponential
model which is used extensively in cell biology assumes a constant
division time, and that all cells are dividing. As such, the proliferative
heterogeneity of stem cell populations has only been addressed
superficially by segregating populations into dividing and nondivid-
ing cells in compartment models®*, structure population mod-
els>>** and agent-based models®**'. Few have addressed the
potential existence of distinct dividing subpopulations within the
heterogeneous stem cell population. For example, Glauche et al.>
developed a nonlinear, adaptive model which accounts for two
functional states-quiescence and proliferative-to explain HSC
Bromodeoxy-Uridine (BrdU)-label dilution data. Wilson et al.*
and Foudi et al.>* show that similar label dilution data can be modeled
by a two subpopulations with distinct division rates.

Mathematical models must consider population heterogeneity
that may manifest in individual cell proliferative behavior, in
molecular activity and metabolism, and/or in cell morphology. In
terms of proliferative heterogeneity, stem cells may progress through
the cell cycle at different rates, or may exit the cell cycle to various

fates (Fig. 1la). Stem cell populations consist of mitotically active
(dividing) and mitotically inactive (nondividing) cells. Included in
the non-dividing fraction are 1) quiescent cells, which have the theor-
etical potential to re-generate the entire population, 2) differentiated
cells, and 3) senescent cells. All these subpopulations are present in a
typical asynchronously growing population of cells (Fig. 1b). The
dividing fraction can be further distinguished into cells that give
rise to symmetric and asymmetric divisions/fates®"" (Fig. 1b&c).
Asymmetric divisions/fates lead to population heterogeneity, which
can be characterized using different parameters including molecular,
morphological or proliferative features. Asymmetry may result from
anumber of mechanisms including the immortal strand hypothesis®
(Fig. 1d). Proliferative heterogeneity, which we examine in this
paper, results from the presence of all these subpopulations and
asymmetric cell fates®.

In this paper, we demonstrate that the combination of statistical
tools and time-lapsed imaging of individual cells’ dynamics allows us
to study stem cells as a population or network of cells. This com-
bination of imaging-based approaches as previously used by
Bahnson et al.>* or, more recently, Scherf et al.’” and Rappaport et
al.*®, with rigorous multivariate statistics, and data-driven modeling
has been recognized recently as being of fundamental importance for
the future of cell biology™. As such, we hypothesize that higher level
cell-cell interactions are at work to coordinate cell fate decisions
leading to re-establishing heterogeneity. Indeed, we show here that
multiscale phenomena do exist for individual cells in the population
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Figure 2 | Time-lapsed image analysis of stem cell populations show heterogeneity in proliferative activity. (a) Cell division occurring in a human
muscle stem cell population. Total time lapsed is 4.5 hours, scale bar represents 50 microns. (b) Individual cell tracking (Cytotracker,) through 4
generations. The paths for parent and daughter cells are shown as an overlay on phase contrast images. Division times are used to construct cell lineage
trees. The vertical distance on the corresponding lineage trees represents the cell division time or the amount of time the cell was on screen.

Ipar; ¢) Heterogeneity in cell division times can be detected by cell lineage analysis (human muscle stem cells are shown here). Individual cells were
examined using time-lapsed imaging over 3 days. Lineage history trees show the presence of both dividing and nondividing cells in the population.
Variation in cell division times is also detected. Most current growth models assume homogeneity with a constant division time, and exponential growth.
(d) Identification of dividing and nondividing cells in time-lapsed images after addition of BrdU to media for 48 hours and immunostaining for BrdU.
Muscle stem cell populations contain both dividing (BrdU + cells, and nondividing (BrdU-) cells. Desmin staining illustrates that molecular
heterogeneity for the myogenic cytoplasmic protein does not correspond with proliferative heterogeneity.

for certain cell characteristics, namely cell division time (DT); this
process is power-law in nature and provides evidence for interactions
between subpopulations. Consequently, in this study, we show that
the dynamics of stem cell populations displays a heterogeneous
structure consisting of multiple sub-population behaviors and sug-
gest that rather than defining stem cells by exclusive cell markers,
efforts should be made to understand the stem cell population, its
subpopulations, and the interactions among them.

Results
Stem cell dynamics display a heterogeneous structure. Using time-

lapsed imaging®*®', we recorded the cell growth and examined the

structure and cell division dynamics for both muscle stem cells®**

from mouse and rat, and human mesenchymal stem cells***. Time-
lapsed images were acquired at 10-minute intervals over the course of
5 days. From these images, we obtained direct measurements of cell
cycle times (division times) as time elapsed between cytokinetic
events (Fig. 2a). Based on these data, we were able to construct cell
lineage trees of divisional history (Fig. 2b).

Heterogeneity was detected in cell lineage analysis of all stem cells
(Fig. 2c). Lineage history trees show the presence of both dividing
and nondividing cells in the population. Variation in DTs is also
detected. Proliferative heterogeneity was also identified by BrdU
labeling as we observed both BrdU+ and BrdU- cells; this did not
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correlate well with molecular heterogeneity in expression of the cyto-
plasmic myogenic protein desmin (Fig. 2d), which illustrates the
complexity of understanding heterogeneous characteristics.

For the stem cell DTs from all populations examined, we first
estimate the empirical cumulative distribution function (see
Figure 3.a and Supplementary Material Figures l.a, 2.a, and 3.a),
the empirical probability of observing a cell DT larger than a given
threshold (also called exceedance probability), then perform a max-
imum likelihood estimation (MLE) of well-known distributions and
investigate their goodness-of-fit with respect to the actual data (see
Supplementary Material Figures 1, 2, 3 and 4 and Notes 1, 2 and 3).
The main reason for analyzing the exceedance probabilities is to
quantify whether the stem cell growth exhibits an exponential or a
power law type of behavior. By analyzing the exceedance probability
of cell DTs for all three species, we find that the cell DTs are not well
approximated by exponential type of distributions (Supplementary
Material Figures. 1b, 2b, 3b) as one would assume. This is also shown
by the deviations of the empirical exceedance probabilities from the
Gaussian (Figures 3.a-b), log-normal (Figure 3.c) and gamma
(Figure 3.d) distributions. Instead, the graphical analysis in
Figures 3.e—f, and the Supplementary Figures 1, 2 and 3 and the
statistical results in Supplementary Tables 1, 2 and 3 show that the
exceedance probabilities are better fitted by long-tail distributions
such as a-stable, Student-t and generalized extreme value (Gev) dis-
tributions. However, to better assess the validity of modeling stem
cell DT's via uni-modal distributions, we estimate the statistical good-
ness-of-fit for each MLE fit which implies analyzing the fitting errors
between the empirical and postulated probability density function.
These results suggest that although the stem cell DT's exhibit a long-
tail type of behavior, this cannot be well fitted by uni-modal distribu-
tions alone (see Supplementary Notes 1, 2 and 3, and Tables 1, 2,
and 3).

A similar conclusion can be reached by analyzing the graphical
fittings in Figures l.c, 2.c and 3.c in Supplementary Material of
several well known unimodal distributions (i.e., Gaussian, Gamma,
Log-normal, Generalized extreme value, Student-t, Weibull, asym-
metric o-stable distribution) for the mouse and human cell DTs. In
addition to graphical evidence, the Kolmogorov-Smirnov test, the
Akaike Information Criterion and Hartigan’s Dip test* (see Notes 4,
5, and 6 in the Supplementary Material) suggest that stem cell DT's
cannot be modeled by an uni-modal distribution. This suggests that
there actually may exist two dividing subpopulations of stem cells,
each characterized by distinct dynamics of stem cells division rate;
this is reflected by different probability density functions (PDFs) of
the DTs.

To overcome the poor fitting of uni-modal distributions and
explain the observed heterogeneity in the PDFs of stem cell DTs,
we consider the bi-modal statistical investigation and two PDF can-
didates: i) a bi-modal Gaussian distribution (Figure 4.a) and ii) a bi-
modal asymmetric o-stable distributions (Figures 4.b-d). By
employing the MLE strategy for a mixture of two asymmetric o-
stable distributions and selecting the best fit according to the best
Kolmogorov-Smirnov (K-S) test result, we observe that the empirical
PDFs of mouse, rat, and human stem cell DT's are well fitted by the bi-
modal a-stable distribution. Indeed, both graphically and statistically
by looking at the error bars, we can see that the fitting involving the
a-stable distribution captures much better the overall trend than the
Gaussian one (Figure 4.a).

In sum, the magnitude of p-values of the K-S tests imply not only
that we cannot reject the bi-modal a-stable distribution as a viable
model for stem cell DTs, but also that the stem cells population
exhibits a heterogeneous structure consisting of at least two sub-
populations, namely a sub-population of stem cells that divide faster
(with an average DT of approximately 12 hours and corresponding
to first peak in the PDF plot of Figure 4.b), and a second sub-
population of stem cells with a slower dynamics (with an average

DT of approximately 18 hours corresponding to the second peak in
the PDF plot of Figure 4.b) which exhibits a long-tail type of
behavior.

Stem cell division times exhibit non-stationary behavior. Besides
the heterogeneous structure of stem cells population, we also observe
that the empirical PDF estimated from stem cell DTs exhibits a
pronounced time dependent behavior (Supplementary Material
Figure 5). This time dependent behavior is illustrated not only by
the changes in the shape of the empirical PDF at different time
windows, but also by the estimated values of the bi-modal PDF.
Indeed, the PDF investigation shows that stem cell growth is not a
stationary process, but rather a highly dynamic one characterized by
time-dependent PDF variation.

To further investigate the existence of a non-stationary behavior,
we measure the mean (Figure 5.a), variance (Figure 5.b), skewness
(Figure 5.c), and kurtosis (Figure 5.d) over a sliding window of 80 cell
DT recordings (from the time-ordered mouse stem cell DT data).
Additionally, Figures 5.e-g show the error bars in the time variation
of mean, variance, skewness, and kurtosis for mouse, rat, and human
cells. We observe that these higher order moments vary with time
which suggests that the cell division is a non-stationary process (see
Supplementary Materials Figures 6 and 7). For instance, the mean of
the rat stem cell DT's exhibit a wide range variation from 15 hours in
the beginning to almost 19 hours at later times. Similarly, the vari-
ance, skewness, and kurtosis exhibit a spiky behavior which cannot
be modeled if one assumes a stationary behavior. In addition, the
non-zero values for skewness and kurtosis show that the rat stem cell
DTs do not display a Gaussian behavior; this supports our predic-
tions concerning the existence of a non-Gaussian dynamics of stem
cell growth shown in Fig. 3. Further, the non-zero skewness shows
that the stem cell DT's are not symmetrically distributed around the
mean and may exhibit different tails at both ends of the PDF curve.
Similarly, the non-zero kurtosis implies that the stem cell DTs can
exhibit large values and so a better modeling approach than the
Gaussian-based framework needs to rely on long-tail distributions.

Moreover, the observed variability and spiky dynamics of these
higher moments imply that the stem cell DT's exhibit a heterosce-
dastic dynamics (i.e., some sub-populations exhibit different mo-
ment variability compared to others). An alternative proof of
existence of heteroscedastic dynamics is shown in the Supplemen-
tary Material Figure 8 where shuffled stem cell DT series lose their
correlation structure when compared to the initial data sets. In gen-
eral terms, the heteroscedastic dynamics means that the statistical
moments of the stem cell DT's and, implicitly, those associated with
stem cell growth exhibit a local variation which is very different from
the global one or asymptotic limits. In addition, the very existence of
this heteroscedastic behavior may not only confirm the heterogeneity
of stem cell population, but also be indicative of an aging phenom-
enon that is characteristic to all multi-cellular organisms. As we later
show in the paper, this aspect can play a crucial role not only in
constructing an accurate mathematical model of stem cells growth,
but also for predicting the structure and size of the entire population
over time with high confidence while accounting through non-sta-
tionary methods and tools for the age of a patient.

Stem cell growth rates possesses multi-fractal characteristics. For a
comprehensive investigation of the heteroscedastic dynamics of stem
cell growth, we investigate the relationship between the higher order
moments of stem cells dynamics and their order; we also estimate
both the multi-fractal spectrum and generalized Hurst exponent
function [A fractal is a geometrical object or stochastic process that
displays self-similarity, on all scales and is characterized by a single
fractal dimension. The fractal dimension is a mathematical concept
measuring the unique features such as geometrical shape of an object
or irregularity of a stochastic process. The object need not exhibit
exactly the same structure at all scales, but the same “type” of
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Figure 3 | Statistical investigation and interpretation of tracked stem cell division times. (a) Comparison between the cumulative distribution function
(CDF) and the 95% confidence intervals for the Gaussian distribution fitted via maximum likelihood estimation method and the empirical CDF of the
mouse stem cell division times. (b) Comparison between the exceedance probability (i.e., probability of observing a stem cell division time greater than a
specific threshold) and the 95% confidence interval for the fitted Gaussian distribution and the empirical inverse CDF of the mouse stem cell division
times. (c) Comparison between the exceedance probability and its 95% confidence intervals for the fitted Log-normal distribution and the empirical
inverse CDF of the mouse stem cell division times. (d) Comparison between the exceedance probability and its 95% confidence intervals for the fitted
Gamma distribution and the empirical inverse CDF of the mouse stem cell division times. (e) Maximum likelihood fitting and the error bars for

the uni-modal Gaussian probability density function (PDF). The empirical PDF is shown by the blue dots. (f) Maximum likelihood fitting and the
error bars for the a-stable PDF. Rejection of uni-modal mathematical modeling approaches for stem cell growth is motivated not only by the
inconsistencies observed via graphical inspection of the empirical PDF against postulated PDF, but also by the very small p-value probabilities of the
Kolmogorov-Smirnov (K-S) test (see the Supplementary Material).
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function of g-th order moment for mouse, rat and human muscle derived stem cell division times.

structures must appear on all scales. Similarly, a stochastic process is
regarded as fractal if its probability distribution function measured at
two scales is self-similar and related to each other via a power law
relationship. In contrast, a multi-fractal object or stochastic process

is characterized by a series of fractal dimensions.]. The rationale for
estimating the generalized Hurst function in Figure 4.f is two-fold:
(1) It allows us to detect the existence of multi-fractality. For instance,
if the generalized exponent is independent of the order g of the

| 4:4826 | DOI: 10.1038/srep04826

6



QO
T

o]

80)

80)
A
&

IN
S

I

=80)
o
o
= 80)
w a
R B

n

W
=}

|

~

n
=]

f

SRS

f Wit

"

A e FV

n

Skewness of cell division times (window
Kurtosis of cell division times (window
S o
e ———

E3
3 £
e <
% ;‘J \ TZI > J
o £
Et Myt | £ 30
c I
g 225
> 45 ¥ 1 il
= 3 20
L Ao
. o
5 , S 15
2 v B W gy
2 = : g
13 = 5
0 200 400 600 800 0 200 400 600 800

Cell division recording ID [temporal order] Cell division recording ID [temporal order]

e
mouse MDSC f
.40 40
o o
> = S =
2530 S 530
v B )
23 c 3
2 £ 2t
g2 § 220
\03 ~
‘Cg Q?u
3 9 38
_:glof = £10
c o ,':'%
gﬁ S
= £
0 - 0

mean  variance skewness kurtosis

mean

variance skewness kurtosis

400 600 800 GO

2 400 600 800
Cell division recording ID [temporal order]

2
Cell division recording ID [temporal order]

rat MDSC 9

20 human MDSC

30

20

10

ﬁi..o

mean

skewness & kurtosis: unitless

mean: hours , variance: hours 72,

i*i

variance skewness kurtosis

Figure 5 | Higher order moment analysis of mouse, rat, and human stem cells division times. (a) Moving average analysis of mean of mouse stem
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of the mouse stem cell division times. (f) Average values and errors for the mean, variance, skewness and kurtosis of the rat stem cell division times.
(g) Average values and errors for the mean, variance, skewness and kurtosis of the human MSC division times.

moment (see Figure 4.f), then the stochastic process is mono-fractal.
In contrast, if the generalized Hurst exponent is dependent of the
order g of the moment, then the process is called multi-fractal (see
Figure 4.f). (2) It allows us to compute the Hurst parameter and
discriminate between short-range and long-range memory effects.
For instance, if the Hurst exponent equals 0.5 then we can state that
the dynamics of stem cell populations is governed by short-range
memory or Markovian models. In contrast, if the Hurst exponent
ranges between 0.5 and 1, then the dynamics of stem cell populations
is said to possess long-range memory characteristics and non-
Markovian dynamical models are needed. While mono-fractality
implies that a single Lipschitz-Holder exponent® (i.e., a function
f(t) is said to have Lipschitz-Holder exponent a around point t if
f(t + x) — f(t) ~ x) characterizes the entire cell dynamics, the multi-
fractal behavior shows that the existing temporal heterogeneity in
stem cell population leads to multiple Lipschitz-Holder exponents.
The multi-fractal spectrum encapsulates in its distribution of
Lipschitz-Holder exponents information about multiple point
correlations existing both in space and time. Implicitly, it is also a
measure of the memory characterizing the stem cell dynamics.

By measuring the dependency of the higher order statistical
moments on their order value and using the Legendre transforma-
tion, we estimate the multi-fractal spectrum for the mouse, rat, and
human stem cell DT's (Figure 4.e and Supplementary Material Figure
9). One can clearly observe from Figure 4.e not only that the stem cell
DTs exhibit a wide multi-fractal spectrum, but also the Lipschitz-
Holder exponents are mostly negative. The fact that the stem cell DT's
display a significant range of negative Lipschitz-Holder exponents
implies that the stem cell growth process exhibits an oscillating
behavior consisting of active periods of growth (when the majority
of the cells are actively dividing) followed by periods when fewer cells
are recruited into the cell cycle. Alternatively, the results in Figure 4.f
(and Supplementary Material Figure 10) display a complex nonlinear

dependency between the generalized Hurst exponent and the g-th
order moment, which again supports the existence of multi-fractal
behavior in stem cell growth.

Based on these findings, our subsequent question is whether the
current models relying on the assumption of either having constant
or exponential growth in stem cell population size are suitable for
predicting the population size; answering this question is critical for
designing cell therapies or tissue engineered constructs for future
personalized medicine. Therefore, we next considered the time
lapsed traces of the number of stem cells in the population over time
and investigate the goodness-of-fit for three mathematical modeling
approaches: i) exponential growth associated with a non-fractal
dynamics (Figure 6.a); ii) power law growth corresponding to a
mono-fractal dynamics (Figure 6.b); and iii) a stretched exponential
hinting towards a multi-fractal approach (Figure 6.c). We observe
that the stretched exponential and power law type of models offer
better prediction capabilities than the state-of-the art exponential
models (see Figure 6.d). By ignoring the multiscale biological
dynamics and spatio-temporal correlations, the exponential models
can be misleading. Indeed, the exponential growth assumption can
lead to very optimistic predictions concerning the population size of
stem cells and this may have detrimental effects on the therapeutic
strategies. Our results suggest that the multi-fractal behavior of stem
cell dynamics can be modeled as a superposition of several stretched
exponential functions.

Discussion

Here, we show for the first time that distinct subpopulations of
dividing cells exist within several heterogeneous stem cell popula-
tions. We report that the populations show time-dependent and
fractal behavior. Both newborn derived mesenchymal stem cells
and adult derived muscle stem cells demonstrate these population
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Figure 6 | Implications of multi-fractal behavior on population size and their contrasting differences when considering simplified models.

(a) Comparison between the empirical average number of rat stem cells as a function of time and the exponential growth model. (b) Comparison
between the empirical average number of rat stem cells as a function of time and the power-law growth model. (¢) Comparison between the empirical
average number of rat stem cells as a function of time and the stretched exponential growth model. (d) Empirical average number of rat stem cells as a
function of time and three mathematical interpolations, i.e. exponential (red line), power law (black dotted line), and stretched exponential (green line).
Their best parameters are shown in the legends in plots a—c. The first 75% of the data samples (~150 hours) also shown in black circles are used to identify
the parameters of each model. The remaining 25% of the data samples (~50 hours) are used to test the prediction capabilities of each model. One can
notice that the stretched exponential and power law models have better prediction capabilities than the simple exponential model. This is in agreement
with our multi-fractal analysis which predicts that the intrinsic growth of stem cell population is characterized by non-exponential features.

characteristics. By employing non-Gaussian statistics, statistical
hypothesis testing and statistical inference, we identify the presence
of two unique dividing subpopulations of stem cells, each with a
distinct cell division rate and characterized by a different probability
density function of DT's. Previous reports treated stem cells as homo-
geneous populations and assumed either a constant division time for
the whole population or Gaussian distributed DTs. In terms of
improving how stem cells are defined, our study strongly supports
the notion of defining cells from a population level perspective in
order to account for cell-cell interactions that affect the population
structure (composition of different subpopulations) and dynamics
(interactions of and changes in the subpopulations).

Bacteria and yeast cell division and growth rates have been exam-
ined extensively for more than 50 years; the distributions appear to be
rather homogeneous*~"" and, to the best of our knowledge, there are
no reports of bi- or multi-modal growth rates. For instance, Tsuru et al.”?
recognize the existence of fluctuations in E.coli growth rates and
investigated how the changes in cell volume of individual bacteria
are correlated with fluctuations in protein concentration. Comple-
menting such a phenotypic diversity, a report by Niven et al. descri-
bes skewed cell division distributions in E. coli in the presence of
environmental factors”. The authors examined several distributions
to fit their data (also obtained via time-lapsed cell imaging) and no

definitive model distribution was identified, possibly due to the small
sample size”.

More recent studies of differentiated cells, particularly those that
use similar technology to permit the collection of a dataset of indi-
vidual cell measurements, also did not report bi-modality>***7*”>. For
instance, Tyson et al.”® emphasized the importance of investigating
the statistics of intermitotic times and modeled these times via an
exponentially modified Gaussian distribution. Based on their ana-
lysis, Tyson et al. concluded that their proposed exponentially
modified Gaussian models are not definitive and require further
improvement to accurately accommodate age structure and
dynamics of stem cell populations. Along the same lines, Chang
et al.”” demonstrate the existence of cell-to-cell variability in clonal
populations of mouse hematopoietic progenitor cells and showed a
link to heterogeneity of gene expression. Tan et al.”® used single-cell
gene expression to show functional heterogeneity in epidermal cells,
while Koschmieder et al.”” and Cantor et al.** investigated it in the
hematopoietic lineage. We see that such mechanism might be an
underlying cause of the heterogeneity in our populations of stem
cells. Furthermore, in our own previous reports, we used both stand-
ard Gaussian and non-parametric statistics to examine the distribu-
tions of cell cycle times in human and mouse stem cells. However,
lack of sophistication in our previous statistical analyses and the
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small size*>*, did not allow us to identify bi-modality (let alone
multi-modality) in stem cells dynamics which we report here.

Stem cell population heterogeneity may develop through the pro-
cess of spontaneous progression of stem cell differentiation. It is
worth mentioning that the interaction of the cells with the culture
substrate and the rigidity of the substrate are important factors in
modulating differentiation and cell phenotype heterogeneity as has
been shown by Gilbert et al.*'. In most scenarios, non-dividing qui-
escent cells are presumed to become activated to slowly dividing
multipotent stem cells which then progress to transiently amplifying
(TA) committed progenitors and finally non-dividing differentiated
cells. Here, we detected, in all populations the presence of a non-
dividing quiescent subpopulation that could re-enter the cell cycle.
The slowly dividing subpopulation for MSCs (16.8 hrs), rat stem
cells (21.2 hrs), or mouse stem cells (21.9 hrs) was at least 4 hours
slower than the fast diving subpopulation (human MSC 12.8 hrs, rat
stem cells 11.7 hrs, mouse stem cells 13.2 hrs). It is possible that the
slow dividing fraction represents multipotent cells, while the faster
dividing cells represent committed precursors or transiently-amp-
lifying cells. However, at this point, there are no clear methods to
physically separate these subpopulations, and BrdU pulsing experi-
ments (Fig. 2) did not show a correlation between the myogenic
precursor marker Desmin and BrdU rate of incorporation in stem
cell populations. Nevertheless, the statistical analysis demonstrates
the presence of two distinct populations which grow at different
rates. This was detected in different species, and in different
stem cell types, which suggests that it may be indeed a universal
characteristic.

The existence of these different phenotypes may allow for both
short-term and long-term functions of the stem cell populations in
response to tissue injury. Indeed, fast dividing TA cells can provide
immediate restoration of damaged/lost differentiated cells, while the
dynamic of TA cell depletion for acute repair may illicit a faster
transition rate for cells in the multi-potent state to move to the TA
state to re-establish some equilibrium of subpopulations. In this
scenario, because dividing cells expand according to a stretched
exponential, the quiescent stem cell activation could be conservative
and occur only in the case of severe tissue loss or damage. In the case
of normal tissue homeostasis, we could expect to observe oscillating
dynamics (Figure 5.a or Supplementary Material Figures 6.a-c and
7.a—c) related to cell division behavior in the population, as normal
cell death occurs, and lost cells are replaced.

Further, our statistical analysis demonstrates that the population
subsets display a non-stationary (i.e., time-dependent statistics).
Non-stationary statistical analysis shows that not only do individual
cells change over time, intrinsically, but the stem cell population also
changes over time. In part, the non-stationary phenomenon finding
shows that stem cells exhibit an aging process which is characteristic
to all living organisms. Consequently, the rates of transition between
subpopulation states will be important for understanding their
evolution over time.

The fractal behavior we observe in stem cell DTs identifies a
stochastic process that displays a probability density function that
is self-similar in nature®»™, i.e,, the distribution of cell DT’ at one
scale can be retrieved from that of another scale by using the fractal
dimension and a scaling coefficient. Simply speaking, the existence of
fractal statistics in stem cell DT's implies that the birth of a new cell is
not a random (i.e., uncorrelated) event from the development of
previous ones. In other words, there is some form of correlation
between cell divisions and this leads to a complex behavior which
cannot be quantified by current mathematical models of stem cell
growth. Nevertheless, due to numerous sources of variation (e.g.,
intrinsic differences, environmental interactions, nutrient availabil-
ity, cell density), stem cell DTs cannot be characterized by a single
fractal dimension, but by a set of scaling exponents which also
demonstrates the existence of heterogeneity in stem cell population

structure. Taking into account such characteristics allows us to con-
struct an accurate dynamical system approach as described by
Furusawa and Kaneko®** which may explain and, more importantly,
predict the stem cell dynamics. Furthermore, the newly proposed
model can be extended to include cell cycle and cell volume, along
the lines of Halter et al.** and Anderson et al.*’; these parameters may
be used to show the multi-fractal behavior as the cells interact with
each other.

The value for teasing out the subsets of cells, their interactions,
time-dependent and fractal behavior has implications for applied cell
therapeutics. First, it is needed to identify/define the stem cell prod-
uct. Second, it is necessary to accurately predict ex vivo growth rates
of the stem cell populations. In regards to developing an FDA-
approved cell therapeutic, purity and potency criteria need to be
established. Recognizing that subpopulations, and hence multiple
targets, exist in the stem cell population is essential to developing
tools to control the fate of stem cells. Although, we and others have
shown that the quiescent population exists and requires nonlinear
growth models**~***, our study is the first to show quantitatively and
qualitatively that more sophisticated growth models are warranted
due to the presence of multiple phenotypes. Models which account
for population dynamics can better predict whether cytokines or
growth factors that increase proliferation rates (e.g., for the purposes
of obtaining certain cell doses for transplantations) cause perturba-
tions in the dynamics of subpopulations, and how this affects the
behavior of the entire cells population.

This statistical approach may also be exploited for personalized
medicine strategies. Using high throughput live cell imaging and our
computational analyses, inter-patient variability and intrinsic intra-
patient variation in stem cells dynamics can be studied. In the era of
individualized medicine, the computational modeling may also
include genomics and proteomics information and the dynamics
of an individual biopsy-derived stem cell growth can be assessed
before developing the cell therapy approach. Personalized medicine
could also exploit our statistical investigation for estimating the rich-
ness of fractal behavior at the cellular level and make predictions at
higher scales. By early detection of losing fractal richness at the level
of stem cell evolution, one could predict the signs of genetic instab-
ility and onset of a disease well in advance of actual symptoms in the
patient, when it may be hard, or impossible, to intervene.

Further studies are needed to examine the molecular phenotype
and transition rates of the two dividing subsets identified here.
Epigenetic modifications may account for differences in phenotype
or division rates, or the cell-cell communications may modulate
division rates. The oscillating time-dependent behavior together with
the finding that these subpopulations interact with each other (i.e.,
cells do not grow in isolation, but instead interact at various scales).
In addition to that, the cells indeed interact with their microenviron-
ment” including the extracellular matrix*’, growth factors, chemo-
kines®, and the substrate they are adhering to®. These interactions
have been shown to affect the differentiation and fate decisions of
stem cells. All of these factors call for developing new mathematical
models describing their interaction and overall population growth. A
challenge to these studies will be the isolation of these subsets and
maintenance without re-establishing the heterogeneous parent
population.

Methods

We used time-lapsed imaging®' to directly examine the cell growth of mouse and rat
stem cells isolated from skeletal muscle tissue and human mesenchymal stem cells.
(Additional detail regarding imaging experimental set-up is included in®**' and stem
cell isolation®>** is included in the Supplementary Material Note). Time-lapsed images
were acquired at 10-minute intervals over the course of 5 days on collagen-coated
surfaces. To determine the divisional status of the cells, and the cell cycle length of
dividing cells, we used a custom developed program, i.e., ImageView (Karios
Instruments, Harmar, PA). Cell cycle length was recorded as the time elapsed between
cytokinetic events, as previously reported*-**'. Dividing cells were classified as cells
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with a visible DT. Non-dividing cells were classified as cells that were visible on screen
for over twice the average DT.

After determining DTs, the cells were tracked in order to perform lineage analysis
and determine differences between dividing and non-dividing cells while also iden-
tifying the quiescent cells. A custom built image analysis program, CytoTracker,
(Karios Instruments, Harmar,PA), was used to perform lineage analysis. A cell was
selected and followed for the entire time it was visible on screen. When a cell divides,
the division event is recorded, and each daughter cell was subsequently tracked. The
entire cell lineage is tracked until either the end of the video or the cells are lost to
follow up. Each cell is assigned a name in order to keep track of the lineage.

The initial parent cell is 1.0. The two daughter cells are named 1.1 and 1.2. Their
daughter cells are named 1.11, 1.12 and 1.21, 1.22 respectively. The tracks/locations (x
and y location) for the entire family of cells are recorded along with the cell name for
each jpeg image.This allows a cells lineage to be determined. The cell histories can
then be converted to a graphical display, or lineage tree which displays all the cells in
the family, and their DTs, or their time on screen if the cell was lost to follow up
(Figure 2). In the graphical displays, the vertical lines represent a cell, and the length of
the line corresponds to how long the cell was on screen. Lineage trees allow the
divisional status of a cell to be determined. A tree with many cells represents a cell that
is actively dividing and giving rise to progeny that continue to divide and contribute to
renewal of the population. The lineage trees also allow DTs to be compared, or to
identify cells that are non-dividing and visible on screen for over twice the division
time. Also, asymmetrical divisions can easily be identified.
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