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GABRA1 and STXBP1: Novel genetic
causes of Dravet syndrome

ABSTRACT

Objective: To determine the genes underlying Dravet syndrome in patients who do not have an
SCN1A mutation on routine testing.

Methods: We performed whole-exome sequencing in 13 SCN1A-negative patients with Dravet syn-
drome and targeted resequencing in 67 additional patients to identify new genes for this disorder.

Results: We detected disease-causing mutations in 2 novel genes for Dravet syndrome, with
mutations in GABRA1 in 4 cases and STXBP1 in 3. Furthermore, we identified 3 patients with
previously undetected SCN1A mutations, suggesting that SCN1A mutations occur in even more
than the currently accepted ;75% of cases.

Conclusions: We show that GABRA1 and STXBP1 make a significant contribution to Dravet
syndrome after SCN1A abnormalities have been excluded. Our results have important implica-
tions for diagnostic testing, clinical management, and genetic counseling of patients with this
devastating disorder and their families. Neurology® 2014;82:1245–1253

GLOSSARY
cDNA5 complementary DNA; dHPLC5 denaturing high-performance liquid chromatography; FS5 febrile seizures;GABA5
g-aminobutyric acid;GEFS15 genetic epilepsy with febrile seizures plus;WES5whole-exome sequencing;WT5wild-type.

Dravet syndrome (Online Mendelian Inheritance in Man #607208), previously known as severe
myoclonic epilepsy of infancy, is an infantile-onset epileptic encephalopathy characterized by a
distinctive electroclinical and developmental course culminating in intellectual disability and refrac-
tory seizures. The genetic basis of this disorder is attributed to heterozygous disease-causing mutations
in the sodium channel a1 subunit gene, SCN1A, in 75% of patients; 90% of mutations arise de
novo.1,2 A small proportion of girls and one mosaic male, with a phenotype resembling Dravet
syndrome, have mutations of protocadherin 19, PCDH19.3,4 Two patients with heterozygous trun-
cating GABRG2 mutations and 2 case reports with homozygous SCN1B mutations have also been
described.5–8 Finally, recently, 3 patients with de novo CHD2 mutations and several overlapping
features of Dravet syndrome were reported.9 These mutations, however, are rare, and the genetic
etiology of most patients with Dravet syndrome without mutations in SCN1A remains to be solved.
Here we employ a whole-exome sequencing (WES) and targeted resequencing approach for gene
discovery in SCN1A-negative patients with Dravet syndrome.

METHODS Standard protocol approvals, registrations, and patient consents. Informed consent was obtained from all patients and

in the case of minors, their parents or legal guardians. This study was approved by the human research ethics committees at Austin Health, the
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Patients: WES cohort. Probands with Dravet syndrome were

recruited from the epilepsy clinic at Austin Health, from the prac-

tices of the investigators, and by referral for epilepsy genetics

research from Australia and New Zealand. A diagnosis of Dravet

syndrome was based on the following criteria: onset less than 15

months of age with convulsive seizures (hemiclonic or general-

ized) that were often prolonged and triggered by fever. Other sei-

zure types emerged over time, including focal, myoclonic,

absence seizures, and drop attacks. Development was normal in

the first year of life with later slowing and intellectual disability.

The 13 patients subject to WES had been previously screened

for SCN1A point mutations using denaturing high-performance

liquid chromatography (dHPLC) (n5 4) or bidirectional sequenc-

ing (n 5 9). Small exonic deletion/duplications had also been

excluded using SCN1A multiplex ligation-dependent probe ampli-

fication and all patients were negative for large copy number var-

iants (reference 10 and unpublished data).

WES and analysis. The exome sequencing libraries of 34 individ-

uals, including 10 parent–proband trios, 1 mother–proband pair,

and 2 unrelated probands were prepared using the SeqCap EZ

Human Exome Library v2.0 (Roche, Nimblegen). Libraries were

sequenced on an Illumina HiSeq, using a 50 bp paired-end read

protocol as per the manufacturer’s recommendations. Reads were

aligned to the human genome (hg19) using the Burrows-Wheeler

Aligner,11 removing all potential PCR duplicates. The Genome

Analysis Toolkit12 was used for base quality recalibrations,

realignment around known indels, variant calling, and filtering to

retrieve only high-quality variants. We considered only rare,

disruptive (missense, nonsense, splice, frameshift) variants that

were not present in the ESP6500 control dataset (see URLs in

the appendix) for further analysis.

Patients: Targeted resequencing (WES) cohort.We performed

targeted resequencing of candidate genes in a cohort of 67Dravet and

Dravet-like patients. All 67 of these patients had been screened

for SCN1A mutations previously by the various collaborating

institutions. In addition, we performed SCN1A mutation screening

using molecular inversion probes and high-throughput sequencing.

Only SCN1A-negative patients were included in the validation cohort
(n 5 67).

Targeted resequencing of candidate genes. We selected 15

candidate genes (STXBP1, GABRA1, SCN1B, ATP6VOC, SLC8A1,
CLSNT1, NKAIN3, NOL11, RIMS2, KIF1B, CDK5RAP3, ABTB2,
STK31, KDM2B, SPATA13) from the WES analysis for mutation

screening in a validation cohort of 67 SCN1A-negative Dravet pro-
bands. From the 13 cases in whom WES was performed, we iden-

tified candidate genes belonging to one of 3 categories, based on

the presence of a rare variant in that gene. Three candidate

genes (STXBP1, GABRA1, SCN1B) were previously implicated in

epileptic encephalopathies or other epilepsies. An additional 5 genes

(ATP6VOC, SLC8A1, CLSNT1, NKAIN3, NOL11) were selected as
candidates as we identified a rare, de novo variant in a single proband.

Finally, we selected 7 genes with variants that segregated in a recessive

manner in a single proband (RIMS2, KIF1B, CDK5RAP3, ABTB2,
STK31, KDM2B, SPATA13).We usedmolecular inversion probes to

“capture” exonic regions and 5 flanking intronic base pairs of target

genes, and performedmassively parallel sequencing and variant detec-

tion as described previously.13,14

GABAA mutagenesis and in vitro transcription. Human

GABAA complementary DNA (cDNA) was cloned into the

pGEMHE vector containing a T7 promoter for in vitro transcription.

The Gly251Ser mutation was generated using QuikChange Site-

Directed Mutagenesis Kit (Agilent Technologies, Santa Clara, CA)

with primers forward 59-GAAGAGAAAGATTAGCTACTTTG

TTATTCAAACATACCTGCC and reverse 59-GGCAGGTATG

TTTGAATAACAAAGTAGCTAATCTTTCTCTTC. Gly251Ser

mutation is underlined. The GABRA1 (Gly251Ser) pGEMHE

plasmid was verified by DNA sequencing. cRNA was made

using linearized cDNA template and in vitro transcription

performed using the mMessage mMachine kit (Applied

Biosystems/Ambion, Austin, TX).

GABA modulation of wild-type and mutant receptors.
Oocytes from adult female Xenopus laevis were prepared as

previously described.6 Fifty nanoliters of cRNA encoding the

wild-type (WT) human A1, B2, and G2L and mutant A1

(Gly251Ser) GABA receptor subunits (12 ng/mL; stocks confirmed

spectrophotometrically and by gel analysis) were injected into the

cytoplasm of stage 5 or 6 oocytes using the Roboocyte Robot

(Multi Channel Systems, Reutlingen, Germany) and stored for

2 days prior to experimentation. Two-electrode voltage clamp

recordings were made in 96-well plates using the Roboocyte

automated platform. Oocytes were impaled using recording heads

with 2 glass electrodes containing 1.5 M potassium acetate and

0.5 M KCl and held at a membrane potential of 280 mV.

Oocytes were continually perfused with a ND96 solution (96 mM

NaCl, 2 mM KCl, 0.1 mM CaCl2, and 5 mM HEPES, pH 7.5)

using a Gilson 222 XL Liquid Handler and Gilson Minipuls 3

Peristaltic Pump (Gilson Medical Electronics, Middleton, WI). To

construct a dose-response curve, oocytes were exposed to a 30-second

application of test g-aminobutyric acid (GABA) (Sigma Aldrich,

Sydney, Australia) (range 1 mM–1 mM) followed by a 60-second

wash in ND96 and then a 15-second application of a maximum dose

of GABA (1 mM). Only 1 test concentration and 1 maximum

concentration of GABA was applied per oocyte. The effect of the

test GABA concentration on an individual oocyte was expressed as a

percentage of the maximal GABA response in the same oocyte. These

percentages were then averaged from many oocytes (range 8–20

oocyes per test dose). Maximum current at 1 mM GABA was also

averaged over many oocytes (100 for WT, 97 for Gly251Ser

mutation).

RESULTS We performed WES in 13 SCN1A-negative
Dravet syndrome probands (clinical features in table 1),
including 10 parent–proband trios, 1 mother–proband
pair, and 2 unrelated probands, to identify novel genetic
causes for this devastating disorder. On average, we gen-
erated 3.8 Gb of mapped sequence data per individual
and 92% of bases had.83 coverage across all samples.
On average, ;27,000 raw variants were identified in
each individual. We prioritized only disruptive (nonsy-
nonymous, splice, frameshift) variants that were not
present in the ESP6500 control dataset (see URLs in
the appendix) for further analysis and initially applied a
de novo model for gene discovery in these patients.

De novo variants.Under a de novo diseasemodel, we iden-
tified 15 rare, disruptive variants in 9 individuals, includ-
ing 2 individuals (T1895, T1911) who were originally
sequenced as singletons and whose mutations were con-
firmed as occurring de novo using Sanger sequencing in
the parents (table 2). Five of these de novo variants
occurred in known epilepsy genes. Unexpectedly, 3 var-
iants were detected in SCN1A that were not previously
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Table 1 Clinical features of patients with Dravet syndrome who underwent whole-exome sequencing or in whom mutations were identified by targeted resequencing

Patient
Age, y/
sex

Seizure onset age (mo),
seizure type Seizure types

Fever
sensitivity Intellect (regression) EEG MRI

Likely causative
gene Testing method

T20744 2/F 8, Brief H FDS, H, SE, TCS Present Mild delay (no) Normal Normal GABRA1 WES

T16706 7/F 11, Febrile, 20 min TCS Ab, FDS, H, Myo, TCS Present Moderate ID (yes) GSW Normal GABRA1 Targeted
resequencing

T23532 18/M 11, Febrile, 10 min H Ab, At, FDS, H, SE, T, TCS Present Moderate ID (yes) Focal
discharges

Calcified subependymal nodule
in left lateral ventricle

GABRA1 Targeted
resequencing

Co05 18/M 8, H SE Ab, At, FDS, H, Myo, SE, TCS Present Mild ID (unknown) GSW, MFD,
PPR

Normal GABRA1 Targeted
resequencing

T1915 11a/M 11, Afebrile cluster of TCS At, FDS, Myo, SE, T, TCS Present Severe ID, deceased aged
11 y (yes)

MFD Normal STXBP1 WES

EP1807 21/M 6, Febrile FDS Ab, FDS, Myo, TCS Present Severe ID (yes) MFD Atrophy STXBP1 Targeted
resequencing

T21717 6/F 12, Brief febrile TCS Ab, At, H, Myo, T, TCS Present Learning difficulties (no) Normal ND STXBP1 Targeted
resequencing

T888 23/F 6, Afebrile H SE Ab, FDS, H, Myo, SE, TCS Present Moderate ID (no) GSW, PPR Normal SCN1A WES

T1895 17a/M 11, Febrile SE aAb, At, FDS, Myo, NCS, SE,
TCS

Present Severe ID, deceased aged
20 (yes)

GSW, PPR,
MFD

Normal SCN1A WES

T17775 7/F 3, 10 min afebrile TCS Ab, At, FDS, H, Myo, NCS, SE,
TCS

Present Severe ID (yes) GSW, PSW,
MFD

Normal SCN1A WES

T22809 3/M 6, Febrile SE Ab, Myo, SE, TCS Present Mild ID (yes) Normal Normal SCN1B WES

T20038 10/F 6, Brief febrile TCS TCS Present Mild ID (no) Normal Normal None WES

T16860 26/M 2, Brief TCS Ab, At, FDS, Myo, SE, TCS Present Mild ID (unknown) Focal
discharges

Cerebellar atrophy None WES

T1911 8/M 7, TCS At, FDS, Myo, T, TCS Present Severe ID (yes) GSW, MFD Normal None WES

T3892 9/M 4, Febrile SE Myo, FDS, H, SE, TCS Present Moderate ID (no) GSW, PSW,
MFD

Normal None WES

T863 11/F 6, Ab Ab, At, H, Myo, NCS, SE, T,
TCS

Present Mild ID (yes) Normal Delayed myelination None WES

T19264 9/F 14, Febrile TCS Ab, FDS, H, Myo, SE, TCS Present Severe ID (no) GSW, PPR Normal None WES

T2985 39/M 6, Febrile, 15 min H At, FDS, H, Myo, SE, TCS Present Moderate ID (no) GSW, MFD Normal None WES

Abbreviations: aAb 5 atypical absence; Ab 5 absence; At 5 atonic; FDS 5 focal dyscognitive seizures; GSW 5 generalized spike-wave; H 5 hemiclonic; ID 5 intellectual disability; MFD 5 multifocal discharges;
Myo 5 myoclonic; NCS 5 nonconvulsive status; ND 5 not done; PPR 5 photo-paroxysmal response; PSW 5 polyspike wave; SE 5 status epilepticus; T 5 tonic; TCS 5 tonic-clonic seizure; WES 5 whole-exome
sequencing.
aDeceased.
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identified by Sanger DNA sequencing in 2 and dHPLC
in the third. Furthermore, we detected a single mutation

in 2 genes previously implicated in other epilepsy syn-

dromes,GABRA1 and STXBP1 (table 2).We identified 3

additional probands withGABRA1mutations (figure 1A)

and 2 patients with de novo STXBP1 mutations by tar-

geted resequencing in 67 patients with a clinical diagnosis

of Dravet syndrome (table 2).
Of the 10 trios who underwent WES, 3 probands

had no candidate de novo mutations that passed our

filtering criteria, whereas 4 subjects had de novo mu-

tations in one or more genes that are not known epi-

lepsy genes (table 2). Each gene was only implicated

in 1 patient, with unique de novo events in 8 genes.
In order to validate these genes in Dravet syndrome,
we prioritized 5 candidate genes (ATP6VOC,
SLC8A1, CLSTN1, NKAIN3, NOL11) for further
study. We excluded FARP2, COL6A3, and CYP26C1
as candidate genes given that they encode proteins
with no obvious neuronal function or had multiple
putatively truncating mutations in the ESP control
dataset. Targeted resequencing in these 5 candidate
genes in the validation cohort (n 5 67) revealed no
additional rare, de novo pathogenic variants.

Inherited mutations in known epilepsy genes. We iden-
tified all disruptive variants in known epilepsy genes

Table 2 Rare, disruptive variants of interest in 13 patients with Dravet syndrome detected by WES and 67 patients by candidate gene
targeted resequencing

Proband Gene Inheritance cDNA change GERP Amino acid change
Polyphen
score

ESP control allele
frequency (%)

Probands with mutations in known
epilepsy genes

T888 GAS2L2 De novo c.2347G.A 2.93 Arg783TRp 0.99 Not present

SCN1A De novo c.2044-1G.A 5.47 Unk NA Not present

IGSF8 De novo c.82G.A 4.9 Arg27Trp 1 Not present

T17775 SCN1A De novo c.383C.A 4.72 Ser128a NA Not present

T1895a SCN1A De novo c.1738G.A 4.19 Arg580a NA Not present

T1915a STXBP1 De novo c.847G.A 5.32 Glu283Lys 0.97 Not present

T20744 GABRA1 De novo c.751G.A 5.05 Gly251Ser 1 Not present

T23532c GABRA1 De novo c.335G.A 5.85 Arg112Gln 0.83 Not present

T16706c GABRA1 Unkd c.335G.A 5.85 Arg112Gln 0.83 Not present

Co05c GABRA1 De novo c.917A.C 5.47 Lys306Thr 0.99 Not present

T21717c STXBP1 De novo c.853G.T 5.95 Asp285Tyr 1 Not present

EP1807c STXBP1 De novo c.1334A.C 5.2 His445Pro 0.03 Not present

T22809 SCN1B Maternal c.363C.G 2.49 Cys121Trp 1 0.02

Probands with mutations in candidate
genes

T1911 NKAIN3 De novo c.216G.T 5.53 Trp72Cys 1 Not present

ATP6V0C De novo c.133_134delCT 4.85 Ser45Cysfsa37 NA Not present

SLC8A1 De novo c.2888G.C 5.48 Cys963Ser 1 Not present

T16860 NOL11 De novo c.14411G.A 4.86 Unk NA Not present

T19264 FARP2 De novo c.964C.G 4.32 Leu322Val 0.99 Not present

COL6A3 De novo c.8763_8764insT - Pro2922Thrfsa10

T20038 CLSTN1 De novo c.2607C.A 4.71 Ser869Arg 0.98 Not present

CYP26C1 De novo c.731A.G 5.16 His244Arg 0.42 Not present

T2985b WES sample with no de novo mutations in known or candidate genes

T3892 WES sample with no de novo mutations in known or candidate genes

T863 WES sample with no de novo mutations in known or candidate genes

Abbreviations: cDNA5 complementary DNA; GERP5 genomic evolutionary rate profiling; NA5 not available; Unk5 unknown; WES5 whole-exome sequencing.
All amino acid changes resulting from frameshift mutations are predicted using Mutalyzer (see URLs in the appendix).
a These probands were not sequenced as part of a trio but rather as singletons; the de novo nature of the variant was confirmed by Sanger DNA
sequencing.
b Proband was sequenced as mother–child pair; remaining probands were all sequenced as part of a proband–parent trio.
c All variants were detected by targeted resequencing.
d Parents unavailable to determine variant segregation.
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with an allele frequency in the ESP dataset of,1% in
the 8 patients with Dravet syndrome who underwent
WES, but did not carry de novo mutations in known
epilepsy genes (table e-1 on the Neurology® Web site
at Neurology.org). Of interest, we detected a maternally
inherited c.363C.T (p.Cys121Trp) in SCN1B in
T22809; this individual had no candidate de novo
mutations (figure e-1). This mutation has been
described in families with other types of epilepsy.15,16

Autosomal recessive model for Dravet syndrome. Given
that 2 recessive cases of Dravet syndrome have been re-
ported,7,8 we applied this disease inheritance model in
the 7 probands without mutations in known epilepsy
genes and identified 15 genes with variants that followed
an autosomal recessive pattern (variant allele frequency
,1%) (table e-2). Targeted resequencing was per-
formed in 7 candidate genes (RIMS2, KIF1B,
CDK5RAP3, ABTB2, STK31, KDM2B, and

SPATA13). We excluded the remaining genes as they
have been implicated in unrelated disorders (MLL2,
PDE6B, PCNT) or have no known or obvious neuronal
function (VWA5B2, OAS3, DCHS2, DNAH3,
DNAH11). We found no instances of autosomal reces-
sive inheritance in our validation cohort (n 5 67).7,8

Dose response of the GABRA1 mutant p.Gly251Ser to

GABA.To assess the effect of the p.Gly251Ser GABAA

mutation on neuronal function, we measured GABA-
mediated currents in X laevis oocytes expressing mutant
(p.Gly251Ser) GABAA (e-Methods). Maximum current
values recorded at 21 mM GABA dosage showed a
2.6-fold reduction in the amplitude of GABA-
induced currents in vitro for the p.Gly251Ser
mutant (max I 6 SEM: 2,621 6 142, n 5 97)
compared to WT (max I 6 SEM: 7,010 6 325,
n 5 100) (figure 1B). Furthermore, the GABA
dose-response curves showed a 5-fold decrease in

Figure 1 GABRA1 mutations in epilepsy and effects on g-aminobutyric acid (GABA) response

(A) The amino acid locations of the8mutations identified in patientswithDravet syndrome (purple) and other epilepsy syndromes (green). There is no clear genotype–
phenotype correlationwith respect to either nature or localization of themutation and severity of phenotype. (B) Maximal current response (1mMGABA) of thewild-
type (WT) and p.Gly251Ser mutant. (C) GABA dose-response curves of the WT and p.Gly251Ser mutant in Xenopus laevis oocytes. CAE 5 childhood absence
epilepsy; EE 5 epileptic encephalopathy; GGE/FS 5 genetic generalized epilepsies/febrile seizures; JME 5 juvenile myoclonic epilepsy.
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sensitivity to GABA of the p.Gly251Ser mutant
compared to WT (figure 1C).

DISCUSSION We applied massively parallel sequenc-
ing approaches in 67 SCN1A-negative patients with
Dravet syndrome to identify novel de novo genetic
causes for this devastating disorder. Overall, we show
that GABRA1 and STXBP1 are new causes for Dravet
syndrome. Furthermore, we identified 3 patients with
undetected SCN1A mutations, despite previous muta-
tion screening. This finding verifies the efficacy of our
WES approach in gene discovery and the accuracy of
clinical diagnosis. Furthermore, we propose that Dravet
syndrome is due to mutations in SCN1A more often
than the generally reported estimate of 75%,1 as some
mutations pass undetected using conventional muta-
tion detection techniques.

Overall, we identified 4 novelGABRA1mutations in
patients with Dravet syndrome. The clinical presenta-
tion was typical for Dravet syndrome, with the only
uncommon feature being atonic drop attacks in 2 of
the 4 cases. Three of the 4 variants arose de novo, while
the inheritance of the fourth variant, a c.335 G.A,
p.Arg112Gln in proband T16706, could not be deter-
mined as parents were unavailable. However, this same
mutation (p.Arg112Gln) arose de novo in another pro-
band (T23532), suggesting this is a recurrent pathogenic
mutation resulting in Dravet syndrome. This finding
redefines GABRA1 from a gene associated with mild
genetic generalized epilepsies and febrile seizures17–19 to
a gene also implicated in severe epilepsies such as Dravet

syndrome (figure 1A). Our results are supported by the
recent identification of a de novo mutation in GABRA1
in a patient with epileptic encephalopathy.20

We propose that the p.Gly251Ser GABRA1muta-
tion reduces the ability of mutant receptors to con-
tribute to phasic inhibition as demonstrated by the
decreased sensitivity to GABA and a significantly
reduced amplitude of GABA-induced currents. It is
likely that the additional 2 missense GABRA1 muta-
tions (p.Arg112Gln, Lys306Thr) act in a similar fash-
ion. Overall, these studies suggest that seizures in
these patients are the result of impaired functioning
of GABA inhibition in the brain.

We also describe 3 Dravet syndrome patients with
de novo missense mutations in STXBP1. Our 3 patients
had a Dravet phenotype with onset in the first year of
life; however, 2 had both tonic and atonic seizures. Both
seizure types are rare early in Dravet syndrome, although
tonic seizures are reported in older patients.21 Status
epilepticus was only seen in 1 case. Heterozygous de
novo STXBP1 mutations cause early-onset epileptic
encephalopathies and neurodevelopmental disorders.
Of the .50 patients with STXBP1 encephalopathy
described, the majority present by 3 months of age, with
Ohtahara syndrome or other early-onset epileptic ence-
phalopathies.22–32 Our patients had onset from 6 to 12
months, which is later than usually seen in STXBP1
encephalopathy. It is typically associated with epileptic
spasms, and notably these were not observed in our
patients with Dravet syndrome. The wide range of
STXBP1 mutations show no genotype–phenotype cor-
relation with respect to mutations and clinical presenta-
tion (figure e-2).

STXBP1 plays a role in the release of neurotransmit-
ters into the synapse, via regulation of syntaxin. The 3
de novo missense mutations described here all lead to
the replacement of a charged residue with a neutral
amino acid. These alterations are likely to destabilize
the STXBP1 protein or affect binding to syntaxin, as
has been shown previously for the Cys180Tyr missense
mutation,22 though experimental validation needs to be
performed.

We identified no de novo mutations in proband
T22809; however, this individual was shown to carry a
maternally inherited c.363C.T (p.Cys121Trp) in
SCN1B. This mutation has been described in genetic
epilepsy with febrile seizures plus (GEFS1) in 41
affected individuals from 4 families. The affected indi-
viduals displayed heterogeneous epilepsy phenotypes
ranging from mild (febrile seizures [FS]) to moderate
(temporal lobe epilepsy) and severe (epilepsy with
myoclonic-atonic seizures).15,16 GEFS1 families
may include individuals with Dravet syndrome who
also inherit a dominant familial mutation.33 The
p.Cys121Trpmutation affects a highly conserved residue
and putatively disrupts a disulphide bridge in the

Comment:
Dravet syndrome—“Old gene,” novel mechanism

Dravet syndrome (DS, OnlineMendelian Inheritance inMan#607208), or severe
myoclonic epilepsy in infancy, is one of the most severe types of genetic epilepsy. Indi-
viduals with DS face a high risk of sudden unexpected death in epilepsy. In $75% of
cases, DS is associated with mutations of the gene encoding the a1 subunit of the
sodium channel, SCN1A. However, the genetic causes of DS without mutations in
SCN1A remain largely unknown.

Carvill et al.1 performed whole-exome sequencing in 13 SCN1A-negative DS
candidates and targeted resequencing in 67 additional patient candidates to discover
novel genes underlying DS other than SCN1A. They identify 2 novel genes,GABRA1
and STXBP1, that have an association with DS; GABRA1 and STXBP1 mutations
have been reported in other epilepsies but not in DS. Furthermore, the authors exam-
ined and characterized one GABRA1 mutation, p.Gly251Ser, using in vitro electro-
physiology techniques. Compared to wild-type, the p.Gly251Ser mutation showed
substantial reduction of sensitivity to g-aminobutyric acid. These in vitro functional
studies supported their genetic findings that GABRA1 mutation causes DS. Overall,
this study presents novel genetic mutations of DS, providing insights for developing
new diagnostic testing and drug targets and possibly leading to individualized ther-
apeutic strategies for DS patients with different genotypes.

1. Carvill GL, Weckhuysen S, McMahon JM, et al. GABRA1 and STXBP1: novel
genetic causes of Dravet syndrome. Neurology 2013;82:1245–1253.
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extracellular domain of the protein. p.Cys121Trp mu-
tants induce a hyperexcitable state in vitro.34 The
p.Cys121Trp SCN1B mutation potentially contributes
to the presentation of Dravet syndrome in proband
T22809 and causes the FS in his mother. Interestingly,
it was nonpenetrant in his maternal grandmother, which
is in keeping with the low penetrance observed in
GEFS1 families.35 Other unaffected SCN1B
c.363C.T (p.C121W) carriers (n 5 6) have been re-
ported,16 and the variant is present in controls, suggesting
other genetic or nongenetic factors modify the epilepsy
phenotype. These observations recapitulate those seen in
other patients with Dravet syndrome, where;3–5% of
cases have inherited a pathogenic SCN1A variant, typi-
cally from a more mildly affected parent with GEFS1.36

Recently, 2 reports of recessive SCN1B mutations caus-
ing Dravet syndrome have been published, although one
had an atypical phenotype,37 but no heterozygous dom-
inant mutations have been reported.7,8 Our patient did
not carry additional mutations in SCN1B, nor did we
identify additional SCN1B mutations in our validation
cohort (n 5 67) by targeted resequencing of the gene.
Collectively, these results suggest that SCN1Bmay play a
susceptibility role in the pathogenesis of Dravet syn-
drome, though further investigations are required.

We show that the genetic etiology of SCN1A-negative
Dravet syndrome can, in part, be attributed to de novo
mutations in GABRA1 and STXBP1. Of note, muta-
tion screening of GABRA1 in cohorts of patients with
genetic generalized epilepsy and epileptic encephalopa-
thies have rarely identified pathogenic mutations
(data not shown and references 14, 17, 18, and 20).
Our finding of 4 GABRA1 mutations in 77 SCN1A-
negative patients with Dravet syndrome suggests that
GABRA1 mutations may be largely limited, at least in
terms of epileptic encephalopathies, to Dravet syn-
drome, though further studies are needed. Conversely,
STXBP1 mutations are seen in other epileptic enceph-
alopathy phenotypes, suggesting considerable pheno-
typic heterogeneity compared to GABRA1.

GABRA1 and STXBP1 are significant contributors to
SCN1A-negative Dravet syndrome that should be tested
in patients with Dravet syndrome negative for SCN1A
mutations. With identification of further cases with Dra-
vet syndrome due to these genes, specific phenotypic
patterns may emerge that distinguish these rarer causes
of Dravet syndrome from those due to SCN1A muta-
tions. We would argue that, in SCN1A-negative individ-
uals, targeted resequencing of known epilepsy genes is a
more cost-effective and high-throughput approach to
diagnostic testing.
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APPENDIX
Accession numbers

SCN1A (NM_001165963.1), STXBP1 (NM_003165.3), GABRA1

(NM_000806.5), SCN1B (NM_199037.3), ATP6VOC (NM_001198569.1),

SLC8A1 (NM_021097.2), CLSTN1 (NM_001009566.1), NKAIN3

(NM_173688.2), NOL11 (NM_015462), RIMS2 (NM_001100117.2),

KIF1B (NM_015074.3), CDK5RAP3 (NM_001278197.1), ABTB2

(NM_145804.2), STK31 (NM_031414.4), KDM2B (NM_032590.4), SPA-

TA13 (NM_001166271.1).

Web resources

BWA-v0.5.6 (http://bio-bwa.sourceforge.net/)

GATK-v2.2-9 (http://www.broadinstitute.org/gatk/)

Seattle seq-v134 (http://snp.gs.washington.edu/SeattleSeqAnnotation/)

National Heart Lung and Blood Institute (NHLBI) Exome sequencing

project (http://evs.gs.washington.edu/EVS/)

Polyphen-2 (http://genetics.bwh.harvard.edu/pph2/)

Allen brain atlas (http://www.brain-map.org/)

Mutalyzer (https://mutalyzer.nl/index)

Online Mendelian Inheritance in Man (http://www.omim.org)
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