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Summary

Orbitofrontal cortex (OFC) has long been known to play an important role in decision making.

However, the exact nature of that role has remained elusive. Here we propose a new unifying

theory of OFC function. We hypothesize that OFC provides an abstraction of currently available

information in the form of a labeling of the current task state, which is used for reinforcement

learning elsewhere in the brain. This function is especially critical when task states include

unobservable information, for instance, from working memory. We use this framework to explain

classic findings in reversal learning, delayed alternation, extinction and devaluation, as well as

more recent findings showing the effect of OFC lesions on the firing of dopaminergic neurons in

ventral tegmental area (VTA) in rodents performing a reinforcement learning task. In addition, we

generate a number of testable experimental predictions that can distinguish our theory from other

accounts of OFC function.

Introduction

Many studies have shown that orbitofrontal cortex (OFC) is important for learning and

decision making (see reviews by Murray et al., 2007; Wallis, 2007; Padoa-Schioppa, 2011;

Rushworth et al., 2011). Despite this progress, the exact role that the OFC plays in decision

making is unclear. Even without an OFC animals and humans can learn, unlearn and even

reverse previous associations, albeit more slowly than their healthy counterparts. What role

can the OFC be playing, whose absence would cause such subtle yet broadly permeating

deficits? We suggest that the OFC represents the animal's current location within an abstract

cognitive map of the task (formally, the current state in a state space).

Our hypothesis links OFC function to the formal theory of reinforcement learning (RL). In

recent years, RL has successfully accounted for a diverse set of findings, from behavioral

results in classical conditioning (Rescorla & Wagner, 1972) to the firing patterns of
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midbrain dopaminergic neurons (Schultz et al., 1997). At the heart of RL models is the

concept of a ‘state representation’, an abstract representation of the task that describes its

underlying structure – the different states of the task, and the (possibly action-dependent)

links between them. RL provides a set of algorithms by which one can learn a value for each

state, V(s), that approximates the total discounted future reward that can be expected when

the current state is s. These values then aid decision making in the service of harvesting

rewards and avoiding punishments.

In most RL models, it is assumed de facto that the animal magically knows the true state

representation of the task. However, it is clear that an integral part of learning a new task is

learning to represent it correctly (Gershman & Niv, 2010, 2013; Gershman et al., 2010;

Wilson & Niv, 2011). The state representation can be as simple as the two states needed to

model a Pavlovian conditioning experiment in which a single stimulus predicts reward (e.g.,

the states “light on” and “light off”), or as intractably huge as the state space of a game of

chess. The states can be tied to external stimuli (as in light on/off), or they can include

internal information that is not available in the environment and must be retained in memory

or inferred, such as one's previous actions or the context of the task (e.g., information about

the opponent's style of play in chess). More formally, one way to distinguish between simple

and complex tasks relates to whether states are fully or partially observable to the animal,

given perceptual information. In fully observable decision problems, states correspond to

easily detectable features of the environment, making these problems much simpler to solve

than partially observable problems, which are notoriously difficult to solve optimally

(Kaelbling et al., 1998).

We hypothesize that OFC is critical to representing task states in such partially observable

scenarios. We propose that OFC integrates multisensory perceptual input from cortical and

subcortical areas together with information about memories of previous stimuli, choices and

rewards, to determine the current state: an abstract label of a multitude of information, akin

to the current ‘location’ in a ‘cognitive map’ of the task. Importantly, although state

representations likely also exist elsewhere in the brain, we hypothesize that the OFC is

unique in its ability to disambiguate task states that are perceptually similar but conceptually

different, for instance by using information from working memory. Thus impaired OFC

function does not imply complete loss of state information, but rather that perceptually

similar states can no longer be distinguished – an OFC-lesioned animal can still learn and

perform basic tasks using RL, albeit using only observable (stimulus-bound) states based on

current perceptual information. As a result, basic learning and decision making are possible

without the OFC, but behavior becomes more and more impaired as tasks become abstract

and their states partially observable.

Results

Here we show how our theory can account for a number of experimental findings. We first

consider the archetypal ‘OFC task’ of reversal learning, as well as delayed alternation,

extinction and devaluation, before turning to neural findings that reveal more directly the

contribution that the OFC might make to RL.
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Reversal learning

Perhaps the most classic behavioral deficit associated with OFC dysfunction is impaired

reversal learning (Teitelbaum, 1964; Butter, 1969; Jones & Mishkin, 1972; Rolls et al.,

1994; Dias et al., 1996; Meunier et al., 1997; McAlonan & Brown, 2003; Schoenbaum et al.,

2002, 2003a; Chudasama & Robbins, 2003; Bohn et al., 2003; Izquierdo et al., 2004; Kim &

Ragozzino, 2005). Here we illustrate our theory through simulation of Butter (1969),

although we stress that the model similarly accounts for reversal learning deficits in other

animals and preparations.

In Butter (1969), monkeys displaced a plaque either on their left or on their right to receive

food reward. Only one location was rewarded in each block, its identity reversed once the

monkey reached a criterion of 90% correct. Reward contingencies were reversed five times.

Figure 1A summarizes the results: while initial learning was spared, OFC-lesioned animals

(grey) were impaired on reversals relative to sham-lesioned controls (orange).

To model behavior in this task we used a simple Q-learning algorithm (Sutton & Barto,

1998; Morris et al., 2004) that learns Q(a,st) – the value of taking action a in state st. This Q-

value is updated every time an action is taken and a (possibly zero) reward rt+1 is observed

according to

(1)

where α is a learning rate parameter and [rt+1 – Qold (at, st)] is the prediction error1. Using

the learned values, the probability of taking action a in state st is given by the softmax or

Luce rule:

(2)

where β is an inverse-temperature parameter that affects the tradeoff between exploiting and

exploring, and the sum in the denominator is over all possible actions. Unless mentioned

otherwise, in all simulations we used α = 0.03 and β = 3.

Our model proposes that all animals learned using this same model-free algorithm, but that

the crucial difference between sham and OFC-lesioned animals was in the states, st, about

which they learned values. In particular, in concordance with the true structure of the task,

for sham-lesioned animals we modeled the task using two different states: state 1, in which

choosing ‘right’ yields reward and choosing ‘left’ does not, and state 2, with the opposite

reward contingencies (figure 1C). In each state, the animal must learn values for the right

and left actions. Following an action, the state transitions according to the chosen action and

its outcome, and the next trial begins.

It is easy to see that such a state representation leads to rapid learning of reversals: when the

reward is on the right the model will be in state 1, and since a ‘right’ choice from this state is

1We omit the value of the subsequent state in equation 2 (cf. Sutton & Barto, 1998) as in this task trials involves one state with no
sequential contingencies. This renders our learning rule identical to Rescorla and Wagner (1972).
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most likely to be rewarded, the model develops a strong preference for the right action in

this state. Similarly, after the reversal, the model transitions to state 2, and learns a strong

preference for ‘left’ from this state. Reversing back to the initial contingencies will not

necessitate new learning, as the action propensities learned in state 1 are left unaltered. If

rewards and choices are deterministic, it is easy to see that the model will only take one trial

to reverse its behavior after such a re-reversal. In the face of decision noise, mistakes can

occur at a rate determined by β.

The two states in the above model are defined by memory of the action and outcome of the

last trial, but are perceptually identical. Thus, according to our hypothesis, when the OFC is

lesioned these two states are no longer distinguishable, and the task reduces to one state

(figure 1D). As a result, the reversal of behavior after a reversal of reward contingency

requires ‘un-learning’ of the preference that was acquired in the previous block, and

although initial learning is similarly slow for both the intact and the lesioned models, the

lesioned model takes much longer to learn subsequent reversals (figure 1B).

In general, the two states of our model of reversal learning can be seen as representing the

two phases of the task (‘reward more likely on left’ and ‘reward more likely on right’). Thus

our representation generalizes to probabilistic reversal learning tasks (e.g. Tsuchida et al.,

2010), in which the animal (and model) must infer what state it is in by using actions and

outcomes from multiple previous trials (Gershman et al., 2010).

Delayed alternation

The same reasoning can be applied to model the effect of OFC lesions on delayed

alternation tasks (Mishkin et al., 1969; Miller & Orbach, 1972; Butters et al., 1973; Mishkin

& Manning, 1978). In particular, we model Mishkin et al. (1969). In this task, monkeys

made a series of choices between two options, one of which was paired with a reward. The

rewarding option on the current trial was determined by the action on the previous trial such

that reward was always made available for the action opposite to that on the previous trial.

Thus the monkeys had to learn to alternate their responses, which, due to a 5s delay between

trials, required memory of the last action. Control animals learned this task easily, ultimately

performing at around 90% correct. Monkeys with OFC lesions, however, failed to perform

better than chance even after 2000 trials of training (figure 2A).

We modeled behavior of control animals using the state representation in figure 2C, in

which the current state is determined by the choice on the last trial (option A or option B).

With this state representation, the model learns the task easily (figure 2B) with performance

limited only by the degree of ‘random’ responding mediated by the inverse temperature

parameter β. To model OFC-lesioned animals, we again removed states that require

memory, resulting in only one (default) state. With this state representation, the model can

never learn to solve an alternation task, hence performance remained at 50% correct in the

lesioned case.

A crucial result is that even OFC-lesioned animals could learn the alternation task if the

delay was removed (Miller & Orbach, 1972). Thus, the ability to learn about the value of

alternation was unimpaired when a stimulus-bound two-state representation could be
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constructed, but grossly impaired when a short delay required a memory-based state

representation to be constructed. This suggests that value learning itself is unimpaired in

OFC-lesioned animals, and that the deficit lies in encoding of latent variables within the

state representation.

Extinction

Our model also captures deficits in extinction that are caused by OFC lesions, and makes a

number of easily testable experimental predictions about post-extinction phenomena

(Bouton, 2004). In extinction, a previously trained association between an outcome and a

certain state or action is changed such that the outcome is no longer available. Theories

suggest that extinction does not cause unlearning of the original association, but rather

results in learning of a new, competing association (Bouton, 2004; Redish et al., 2007).

Consequently, similar to the model of reversal learning, we modeled extinction using a two-

state system (see also Gershman et al. 2010).

In particular, we consider the experiment in Butter et al. (1963). Here monkeys were trained

to press a lever for food reward. After 30 minutes of reinforced pressing, an extinction phase

began: rewards were no longer available and extinction of responding was measured as the

number of presses in successive ten-minute blocks. The results, shown in figure 3A, clearly

demonstrate slower extinction for OFC-lesioned animals.

As previously, we modeled control animals (figure 3C) using a two-state model: the animal

is in state ‘P1’ if the previous leverpress was rewarded, and in ‘P0’ if it was not. These states

naturally distinguish the two contexts of reinforcement and extinction. We considered two

possible actions, either the animal presses the lever, P, or it does not, N. In our simulation,

pressing the lever led to one unit of reward during conditioning and −0.2 units in extinction,

to represent the cost of performing the action. Not pressing always yielded 0 reward. Again,

OFC-lesioned animals were modeled as having an impoverished state representation that

included only one memory-free state (figure 3D).

The simulation results are shown in figure 3B. As in the experimental data, extinction in the

two-state model was fast, as extinction transitioned the animal into the P0 state where new

action values for P and N were learned (starting from low initial values). The one-state

model of the OFC-lesioned animals, on the other hand, could only learn to stop pressing the

lever by changing the action value for P from a high value to a low one, which necessitated

more trials.

As with reversal learning, in the case of probabilistic reinforcement, animals would need to

integrate outcomes from multiple trials to infer which state, or context (conditioning or

extinction) they were in. For an exposition of how this kind of integration might be achieved

see Gershman et al. (2010).

Post-extinction predictions—To assess the effectiveness of extinction and to

investigate what was learned during extinction, researchers often re-test behavior after the

extinction phase is completed. In particular, four classic effects— spontaneous recovery,

reinstatement, rapid reacquisition and renewal (Bouton, 2004)—have been taken as evidence
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that extinction training does not normally lead to permanent modification of the original

association.

Our two-state model also exhibits these effects because the original associations between

stimulus and reward are maintained in the P1 state and can be recovered when this state is

reactivated. However, our one-state model predicts different results for OFC-lesioned

animals because there the original association is, in fact, erased during extinction. For

example, consider spontaneous recovery. Here conditioning (cue or action → outcome) and

then extinction (action → no outcome) are performed. Then, after days or even weeks,

animals undergo a test phase in which no outcome is available and the propensity to perform

the action is measured. Animals typically show recovery of responding at test to response

levels that are greater than those at the end of extinction, with more recovery the longer the

waiting time between extinction and test.

Our two-state model accounts for this behavior if we assume that the passage of time causes

the animal to be unsure whether it is in P1 or P0 at the start of testing. If a state is then

selected at random (for instance, with probability proportional to the time since it last

occurred), on average, animals will respond more in the testing phase than at the end of the

extinction phase. In contrast, when the OFC is lesioned (that is, in the one- state model)

extinction does truly extinguish the original association and thus our model predicts no

spontaneous recovery (Figure 3E).

The model's predictions are even starker for rapid reacquisition (Napier et al., 1992; Ricker

& Bouton, 1996), in which re-conditioning of a stimulus → outcome association occurs

more rapidly after extinction than in the original learning. The two-state model predicts this

phenomenon because re-conditioning will return the animal to the P1 state in which the old

action preferences remain. However, we predict that OFC-lesioned animals will not show

rapid reacquisition and indeed may even show slightly slower reacquisition than original

learning, if there is a small cost associated with the response (figure 3F).

Devaluation

The above tasks are predominantly explained using model-free RL (Daw et al., 2005).

However, OFC is also thought to be important for model-based RL in which animals use a

learned model of reward contingencies to compute values. A prototypical example of such a

model-based task is reinforcer devaluation (Colwill & Rescorla, 1985; Balleine &

Dickinson, 1998). In this paradigm (figure 4A), animals are trained to perform actions or

associate cues with an outcome. When the outcome is devalued outside the context of the

experiment, for example by pairing its consumption with indigestion-inducing poison,

actions that were trained with the devalued food are reduced at test, even if the test is

performed in extinction conditions, that is, with no additional experience of the contingency

between these actions and the devalued outcome. Such behavior indicates a capacity to

‘simulate’ the consequences of actions within a cognitive model of the task and thus realize

that a once valuable action would now lead to an unwanted outcome and hence should no

longer be chosen. These mental simulations (Daw et al., 2005) involve taking imaginary

paths through the states of the task and we propose that these imagined (but not externally

available) states are encoded in the OFC. Consistent with this proposal, OFC lesions impair
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performance in devaluation experiments, causing lesioned animals to respond equally to

devalued and non-devalued cues (Gallagher et al., 1999; Pickens et al., 2003; Izquierdo et

al., 2004; but see Ostlund and Balleine, 2007).

We illustrate this effect through the results of Pickens et al. (2003), reproduced in figure 4B.

Here rats were first taught to associate a light cue with food. Subsequently, the food was

devalued by pairing its consumption to injection of lithium chloride. Then, a testing session

measured the amount of time spent at the food cup when the light was presented. To

establish a baseline level of responding, in a control condition lithium chloride was

administered in the second stage but was not paired with the food. Sham-lesioned animals

showed reduced responding to the light in the paired condition relative to the unpaired

condition, as if they were imagining the (never experienced) chain of events light → food

→ poison. OFC-lesioned animals showed no such change in behavior as if they were

incapable of such model-based reasoning.

We modeled the behavior of sham-lesioned animals using the state representation shown in

figure 4C. We assumed that sham-lesioned animals used a mixture of model-based and

model-free learning to compute values. The model-free (MF) component learned a value,

VMF(s), for each state s, using standard temporal-difference prediction-error learning.

Specifically, as the model transitioned from state s to state s’ it computed a prediction error

(3)

which was used to update the model-free value of state s

(4)

where α = 0.1 was the learning rate and we assumed that the reward, r, was +1 during the

initial learning phase and −1 after devaluation. Thus, the model-free component learns a

positive value for the light state (as it only ever experiences the light paired with food) and,

in the devaluation stage, a negative value for the food state. The model-based (MB)

component, in contrast, uses the low value of the food state to update, even absent direct

experience, the value of the light state through imagined simulation:

(5)

where VMB(light) is the model-based value of the light, VMF(food) is the model-free value of

the food state and p(food | light) is the estimated (learned) probability of the light state

leading to the food state (set to 0.9 in our simulations). The total value of the light was then

a combination of the model-based and model-free values as in (Daw et al., 2005),

(6)

where we used ζ = 0.2 as the mixing fraction. According to this model, when the food is

devalued, sham-lesioned animals compute a low value for the light (figure 4D). The OFC-

lesioned model, however, lacks model-based planning abilities (ζ = 0) and thus shows no

effect of devaluation.
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This line of reasoning can also be used to explain other recent findings that are thought to

reflect the role of OFC in model-based RL, such as sensory preconditioning (Jones et al.,

2012), identity unblocking (McDannald et al., 2011), and Pavlovian over-expectation

(Takahashi et al., 2009). In each case, OFC-dependent behavior or learning requires a form

of mental simulation with the appropriate imagined (but not externally available) states.

Insights into the role of OFC from dopamine firing patterns

If OFC is involved in RL, then, in addition to changes in behavior, lesions to the OFC

should cause changes in the neural substrates of RL. Moreover, if our hypothesis is correct,

the changes in neural firing patterns should be consistent with the loss of non-stimulus-

bound states, but preservation of all other RL processes. Motivated by this idea, in

Takahashi et al. (2011) we investigated the effects of unilateral OFC lesions on prediction-

error signals in the VTA (Schultz et al., 1997).

In this experiment, described in detail in Takahashi et al. (2011), after a light came on, rats

initiated a trial by entering an odor port where they were presented with one of three odors.

One odor indicated that the left fluid well would be paying out a reward on this trial

(henceforth, a forced left trial), a second odor indicated that the rat must go right to get a

reward (forced right), and the third odor indicated that both wells were paying out (free

choice).

Critically, the amount and delay of the reward offered at each fluid well changed every 60

trials is shown in figure 5A: In the 1st block of trials one well paid out one drop of juice

after a short delay while the other paid out one drop after a longer delay. In the second block

these reward contingencies were reversed. In the third block the two wells offered a big

reward (2 drops of juice) and a small reward (1 drop of juice) and these contingencies

reversed again in the fourth and final block of the session. The experiment repeated with

similar sessions daily.

State representations of the task—We modeled both the rats’ behavior and the firing

of dopaminergic VTA neurons. The true generative state representation of the task (that is,

the representation that accords with the experimenter-defined reward contingencies) is

depicted in Figure 5B: A trial begins when the rat moves to the odor port (indicated by the

‘odor port’ state). An odor is then presented signaling a forced left (‘left’ state), free choice

(‘free’) or forced right (‘right’) trial. On forced right trials or free choice trials, if the rat

chooses to go to the right fluid well, it arrives at the ‘right port’ state. Over time, the state

changes to ‘right reward 1’, which denotes the time of juice delivery in blocks in which a

small or short reward is delivered, as well as the time of the first drop of juice if a big reward

is to be delivered. The state continues to transition to ‘right reward 2’, the time of the second

drop in big reward trials, ‘wait right’, a state that represents the unpredictable delay before

reward on long reward trials, ‘right reward 3’ which is the reward delivery time in long

reward trials, and finally the ‘end’ state. In contrast, if the rat chooses to go to the left fluid

well on a ‘right’ trial, the task transitions (without reward) to the ‘end’ state, signifying the

end of the trial. A similar sequence of states occurs for the left reward arc. Through repeated

experience with the task, it is reasonable to assume that rats learned this correct
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representation of the task contingencies, or at least the breakdown of the task into fairly

well-delineated states. We thus assumed this representation when modeling the sham-

lesioned group.

Although a straightforward description of the task, some states in this sequence are not

directly tied to fully observable stimuli. For instance, the ‘right port’ state does not

correspond directly to the physical right port, as going to that same physical port on a forced

left trial will not lead to this state. Moreover, we assume that the two physical food ports are

relatively indistinguishable from the vantage point of a rat waiting for reward with its nose

in the port. Of course, remembering the previous odor and action will uniquely identify the

state, however, this is precisely the type of information that we hypothesized would be

missing from the state representation if OFC function were compromised. We also assume

that temporal information is not available externally, and thus OFC-lesioned rats cannot

distinguish reward states that are separated only by the passage of time. Together, these

assumptions define the ‘OFC-lesioned’ state representation depicted in figure 5C, which

involves a single ‘reward port’ state and two rather than four states in the reward arc

(‘reward 1’ representing the first drop of juice and ‘reward 2’ representing the second drop

on big trials, externally distinguishable from reward 1 as it is immediately preceded by a

drop of juice).

Prediction errors—Our goal was to understand OFC-lesion induced changes in prediction

error signals recorded from dopaminergic neurons in the VTA (Schultz et al., 1997). These

signals convey the difference between predicted and actual outcomes (Sutton & Barto, 1998;

see Supplementary Material for a detailed description) and, in theory, should depend

strongly on how the task is parsed into states.

There are two points in a trial in which we can expect prediction errors: the time of reward

(if the reward obtained is different from the expected reward) and the time of odor

presentation (where prediction errors are due to the difference between the reward predicted

after sampling the odor, compared to the prediction before odor onset). Indeed, although

behavior in both groups was equated due to the lesion being unilateral, Takahashi et al.

(2011) observed small but clear differences between the firing of dopaminergic neurons on

the side of the lesion in sham- and OFC-lesioned animals, the specific pattern of which was

captured by our model. Here we look more closely at these differences at the time of reward.

Results at the time of the odor are presented in Supplementary Material.

Figure 6 shows the firing of VTA neurons at the time of unexpected rewards. These rewards

are unexpected at the start of a block, after reward contingencies have changed

unexpectedly, but given learning with the correct state representation, should be predicted

by the end of the block. Thus we compared the first two (‘early’) trials to the last five (‘late’)

trials of a block to test for effects of learning (see Supplementary Material for additional

details).

Sham-lesioned animals (figure 6A) showed a decrease in prediction error firing between

early and late trials in all cases (p < 0.05). Importantly, there was no effect of transition type
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on the difference between early and late prediction errors. These findings are consistent with

the predictions of the intact RL model (figure 6C).

In contrast, in the OFC-lesioned animals the difference in firing between early and late trials

was wholly absent (p = 0.74) in the ‘long’ to ‘short’ transition at the beginning of the second

block (figure 6B). The lesioned model predicts the lack of elevated prediction errors at the

beginning of this block. This is because the lesioned model cannot learn different

predictions for rewards on the left and right ports, but rather learns to predict the average

reward in the block. For the lesioned model, both blocks involve early rewards on a

seemingly random half of the trials, and delayed rewards on the other half. The model does,

however, predict positive prediction errors on block switches in which the average reward,

over both options, increases. This can be seen in the data for the ‘long’ to ‘big’ transition

from block 2 to 3, both for the first drop (previously delayed on half the trials, and now

surprisingly reliably early) and the second drop (which did not appear before, and now

appears on half the trials).

The lesioned model also predicts no change in prediction errors for the ‘small’ to ‘big2’

transition at the beginning of the fourth block, a prediction seemingly not borne out in the

data. However, in Takahashi et al.'s experiment, on some trials in the fourth block an extra

third drop of water was added to ‘big’ trials if the rat appeared to be losing interest in the

task. While the timing of this manually applied third drop was not recorded, examination of

the 14 spike raster plots in which the response of individual neurons to each drop is clearly

visible (for an example see supplementary figure 1) shows the third drop in 13 of the 14

examples. Adding this third drop indeed changes the average available reward, aligning the

lesioned model's predictions with the experimental results (Figure 6E). A prediction of the

model, then, is that without the third drop, this difference in firing between early and late

trials for the small → big2 transition would disappear.

Importantly, these neural results are inconsistent with prominent ideas according to which

the OFC contributes to RL by directly encoding expected value. As detailed in Takahashi et

al. (2011), an inability to learn or represent values would predict that dopaminergic firing at

the time of reward not change throughout a block, as obtained rewards would be completely

unpredictable – a prediction clearly inconsistent with the data. Observed differences in firing

at the time of the odor are also inconsistent with this idea that OFC encodes value

(supplementary figure 2). Altogether, the behavioral and neural results suggest that rather

than representing values per se, the OFC is involved in representing unobservable states,

which are often essential for learning or calculation of accurate values.

Discussion

We have proposed a role for orbitofrontal cortex in encoding the current state in a cognitive

map of task space, and shown how this role would manifest in associative learning and

decision-making tasks known to depend on the OFC. Specifically, we have proposed that the

OFC is necessary for disambiguating states that are not perceptually distinct. Our theory

explains classic findings in reversal learning, delayed alternation, extinction and

devaluation, along with neural results from a recent lesion experiment (Takahashi et al.,
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2011), and makes easily testable experimental predictions about post-extinction phenomena

in animals with OFC lesions. We now turn to discuss the implications of our theory, and

relate it to other results and models of OFC function.

Neural activity in OFC

According to our theory, we ought to be able to see state-related signals in the activity of

OFC neurons. The question thus arises: What is the neural signature of a state representation

for RL? We propose two conditions that should be satisfied by a brain region encoding

states:

1. Representation - all the variables that comprise the current state, as it is defined

for the purpose of RL, are encoded in the brain area.

2. Specificity - irrelevant variables that are not part of the current state are not

encoded in the area.

The first condition ensures that all relevant variables are at least present in the area, while

the second condition rules out areas whose encoding is not task specific. Our theory predicts

that neural representations in the OFC would satisfy these two conditions across tasks, and

specifically, that variables that are not necessarily perceptually available (such as memory

for previous actions or outcomes) would be represented in the OFC, but only if they are

required for the current task.

Representation—Although no experiments have explicitly tested these neural predictions,

several results are consistent with the first condition, in particular in tasks in which relevant

variables are not externally available. For instance, our model implies that both the previous

choice and the previous outcome should be encoded in OFC in reversal learning tasks,

which has been found (Schoenbaum & Eichenbaum, 1995; Sul et al., 2010; the latter also

found these variables in dlPFC and ACC). In a probabilistic reversal-learning task, Hampton

and colleagues (Hampton, Bossaerts, & O'Doherty, 2006) showed that BOLD activation in

ventromedial prefrontal cortex close to OFC was correlated with the underlying task state in

a Bayesian model.

A related experiment is the ‘shift-stay’ paradigm (Tsujimoto et al. 2009, 2011), in which

monkeys choose between two options with a strategy cue, presented at the start of a trial,

instructing as to whether the rewarded response is to ‘stay’ with their last choice or ‘switch’

to the other option. Such a task is readily solved with two states that combine the last choice

and strategy. Intriguingly, Tsujimoto et al. (2009, 2011) found neural correlates of these

variables in OFC.

Similarly, in delayed match-to-sample tasks, OFC encodes the remembered sample, a

critical component of the state (Ramus & Eichenbaum, 2000; Lara et al., 2009; the latter

study is especially interesting as it included ‘distractor’ drops of water that did not elicit

OFC firing), and in fMRI studies OFC activity has been associated with context-dependent

disambiguation of navigational routes (Brown et al., 2010) and task rules (Nee & Brown,

2012).
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Specificity—Addressing the specificity condition is more difficult as it is hard to know

exactly what state representation an animal is using in any given task. However, one could

look for differences in OFC representations in tasks with similar stimuli but different

underlying states. If OFC encodes the states of the task, even subtle changes in the task

should lead to changes in OFC firing. This was indeed shown in two tasks by Eichenbaum

and colleagues (Schoenbaum & Eichenbaum, 1995; Ramus & Eichenbaum, 2000; reviewed

in Schoenbaum et al., 2003b). In the first task, 4 of 8 odors predicted that a response at a

nearby fluid well would be rewarded. In the second task, 8 odors were used in the same

apparatus, but reward on a given trial was not predicated on odor identity, but rather on

whether the odor on the current trial was different from that presented on the previous trial.

In both cases the odor was relevant for performance, but in the first task the identity of the

odor was critical for predicting reward, while in the latter task whether or not the odors on

consecutive trials matched was critical. Intriguingly, approximately 77% of OFC neurons

were odor selective when odor identity was relevant, whereas only 15% of OFC neurons

were odor selective in the task in which match, but not identity, predicted reward.

Furthermore, in that latter task 63% of OFC neurons encoded whether the odor was a match

or non-match.

Simmons et al. (2008) also demonstrated that small changes in a task can cause significant

changes to OFC representations. In their task, monkeys were rewarded after 1, 2 or 3 correct

trials in a row, a number selected randomly after each reward. In a ‘valid cue’ condition

background color indicated to the monkey the number of trials before the next reward, while

in a ‘random cue’ condition there was no relation between background color and number of

trials to reward. As a result, only in the random cue condition the outcome of the previous

trial was informative for reward prediction, as after a rewarded trial the next trial would be

rewarded only on one third of the cases (a 1-correct trial requirement), while after an

unrewarded trial the next trial would be rewarded on one half of the cases (a 2-correct or a

3-correct requirement). Indeed, far fewer neurons encoded the last reward in the valid cue

condition (25%), where it was not informative regarding task state, than in the random cue

condition (50%). We further predict that OFC encoding of background color should be

different across the two conditions in this task.

Subdivisions of the OFC

The OFC is not a single, homogeneous region – connectivity analyses suggest a division into

distinct medial and lateral networks in monkeys (Carmichael & Price, 1996), humans

(Croxson et al., 2005; Kahnt et al., 2012) and rats (Price, 2007). Recent results implicate

medial OFC in encoding economic value and lateral OFC in more complex functions such

as credit assignment and model-based RL (Noonan et al., 2010; Rudebeck & Murray, 2011a,

2011b; Noonan, Kolling, Walton, & Rushworth, 2012). It seems likely that our theory

pertains more to the lateral than the medial OFC, although the lesion studies we discussed

typically targeted the entire OFC, and thus more work is needed in order to precisely

localize the representation of task states within OFC subregions.
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Interspecies differences in the OFC

We have not distinguished between rats and monkeys, treating what is defined as ‘the OFC’

in these very different species as essentially the same area. However, it is important to note

that there are large differences in anatomy across species, with OFC in rats having very

different cytoarchitecture than OFC in monkeys and humans (Wise, 2008; Wallis, 2012).

These stark anatomical differences have lead some researchers to question whether many of

the frontal structures found in primates, including OFC, have analogues in the rat (Wise,

2008; but see Preuss, 1995).

Interestingly, despite these differences, there are strong inter-species similarities at the level

of connectivity (Carmichael & Price, 1996; Price, 2007), neural activity, and function. This

is particularly true for the OFC, perhaps more so than any other prefrontal region (Preuss,

1995). For example, lesions to OFC cause similar deficits in reversal learning (Teitelbaum,

1964; Butter, 1969; Jones & Mishkin, 1972; Rolls et al., 1994; Dias et al., 1996; Meunier et

al., 1997; McAlonan & Brown, 2003; Schoenbaum et al., 2002, 2003a; Chudasama &

Robbins, 2003; Bohn et al., 2003; Izquierdo et al., 2004; Kim & Ragozzino, 2005),

extinction (Butter, 1969; McEnaney & Butter 1969) and devaluation (Gallagher et al., 1999;

Gottfried et al., 2003; Izquierdo et al., 2004) across species, and neural firing in different

species in these tasks is also very similar (Thorpe et al., 1983; Schoenbaum & Eichenbaum

1995; Critchley & Rolls, 1996a, 1996b; Schoenbaum et al., 1999; Gottfried et al., 2003;

O'Doherty et al., 2002; Morrison & Salzmann, 2009). We suggest that OFC encodes the

current task state in all of these species, with animals such as rodents perhaps being limited

in the complexity of the state that can be represented in their relatively small OFC, while

humans, who have a much more developed OFC, being able to deal with highly complex

tasks that involve many hidden states.

Interaction with other brain areas

Figure 7 illustrates how our theory of OFC fits into a larger model of RL in the brain. In

particular, we propose that OFC encodes task states, drawing on both stimulus-bound

(externally available) and memory-based (or internally inferred) information. These states

provide scaffolding for model-free RL in a network involving ventral striatum (encoding

state values V(s)) and dorsolateral striatum (encoding state-action values Q(a,s)). This

system is trained by prediction errors computed in VTA and substantia nigra pars compacta

(SNc), where reward input from areas such as the lateral habenula, hypothalamus and the

pedunculopontine nucleus is compared to predicted values from the ventral and dorsolateral

striatum. State information in OFC is also critical for model-based RL (Sutton & Barto,

1998; Daw et al., 2005), which makes use of learned relationships between states to plan a

course of action through mental simulation of imagined states.

In parallel, we propose that a purely stimulus-bound state representation, encoded in sensory

areas, can also be used for learning and decision making. These stimulus-bound states are

the sole basis for RL when OFC is lesioned, but may also be used for learning in intact

animals. For instance, concurrent use of a suboptimal, stimulus-bound, state representation

could account for some erroneous credit assignment seen even in sham-lesioned control

animals, as evidenced in Walton et al. (2010).
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Other areas that might encode task states

Several other areas have been proposed to encode task states. Perhaps chief among these is

the hippocampus. Like OFC, lesions in hippocampus cause deficits in spatial reversal

learning (Teitelbaum, 1964) and prevent post-extinction renewal (Ji & Maren, 2007).

However, this is true only when states are defined according to spatial location.

Hippocampal lesions seem to have no effect on non-spatial reversal learning, while OFC

lesions generally affect all types of reversal (Teitelbaum, 1964).

Seo and colleagues (2007) proposed that the dorsolateral prefrontal cortex (dlPFC) encodes

task states, based on neural recordings that showed that choices, stimuli and rewards were

encoded in dlPFC neurons. Indeed it seems clear that dlPFC satisfies the representation

condition, however, this area is less able to satisfy the specificity condition as dlPFC seems

to encode combinations of task relevant and task irrelevant stimuli. An intriguing possibility

is that dlPFC encodes a reservoir of candidate state variables from which OFC constructs the

current state using the variables found to be most relevant to the current task (Otto et al,

2009).

There is also a large literature on rule-based behavior that does not explicitly mention state

representations but is clearly related. Indeed, the outcome of learning with a sophisticated

state representation is a set of action values that essentially determine rules for the task by

specifying the most rewarding action in each state. Such rule-based behavior has long been

thought to depend on dlPFC (Banich et al., 2000; MacDonald et al., 2000; Petrides, 2000)

and recent imaging studies have further localized this function to the inferior frontal sulcus

and inferior frontal junction (Brass et al. 2008). However, it is important to distinguish

between a state, which is an abstract representation of the current location in a task, and a

rule, which specifies a mapping from conditions to actions. These two functions may be

associated with different brain areas, consistent with neuroimaging results in which tasks

involving the implementation of explicit rules invoke dlPFC activity (Banich et al., 2000;

MacDonald et al., 2000; Petrides, 2000), while tasks requiring non-trivial assignment of

rewards in a complex state space elicit activations in the lateral OFC (Noonan et al. 2011).

Further, Buckley and colleagues (2009) found differential effects of lesions to the OFC and

the dlPFC in a monkey analogue of the Wisconsin card sorting task: OFC lesions diminished

monkeys’ ability to learn new reward associations, consistent with an impaired

representation of state, while dlPFC lesions decreased the ability to use a previously learned

rule.

Finally, one might argue that encoding of state information is too general a function to be

ascribed to a single brain region, and that these representations are widely distributed,

perhaps over the entire prefrontal cortex. However, this seems at odds with the specificity of

deficits that occur as a result of OFC lesions (Buckley et al. 2009) – if the encoding of state

were more distributed, one might expect that lesions to other prefrontal areas would cause

similar deficits. Furthermore, the OFC might be uniquely well placed to integrate disparate

pieces of information, including sensory information and latent variables such as memories,

to compute the current state, due to its afferent connectivity, which is different from that of

other prefrontal areas. For instance, the OFC is the only prefrontal area to receive sensory

input from all sensory modalities, it has strong connections to areas such as dlPFC, ACC and
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hippocampus and has strong reciprocal connections with subcortical regions such as striatum

and amygdala that are critical to the representation of reward (Carmichael & Price 1995a,

Carmichael & Price 1995b, Murray et al. 2011).

Relation to other theories of OFC function

Over the years, many hypotheses of OFC function have been put forth. For example, that the

OFC inhibits prepotent responses (Ferrier, 1876; Fuster, 1997) or that it represents bodily

markers for affective state (Damasio, 1994). Here we discuss two popular recent accounts

that also relate OFC function to RL.

OFC encodes economic value—Perhaps the dominant theory of OFC function in the

past few years has been the idea that OFC encodes economic value (Padoa-Schioppa &

Assad, 2006). Interpreted in the language of RL, this essentially implies that OFC encodes

state values, V(s).

Recent studies have begun to cast doubt on this account. In particular, some patterns of

firing in OFC neurons are hard to interpret as a pure value signal. For instance, OFC neurons

have been found to encode variables such as spatial location (Roesch et al., 2006; Feierstein

et al., 2006; Furuyashiki, Holland, & Gallagher, 2008), satiety (Araujo et al., 2006),

uncertainty (Kepecs et al., 2008) and taste (Padoa-Schioppa & Assad, 2008). Indeed, our

own results, specifically the preservation of VTA firing at the time of the odor after OFC

lesions (Takahashi et al., 2011), are inconsistent with the view that OFC provides values to

the computation of prediction errors in dopamine neurons.

A more recent idea is that rather than storing learned values, OFC computes values in a

model-based way to enable flexible economic decision making and choices among many

different options in many different situations without explicitly storing a previously learned

value for each (Padoa-Schioppa, 2011). This account fits well with our theory. In particular,

while it is not yet clear whether OFC itself is involved in computing model-based values, we

propose that the OFC provides the state information that allows these computations to occur,

and is thus essential to such economic decision making.

OFC takes part in solving the credit assignment problem—Our theory is closely

related to a recent proposal that OFC (in particular lateral OFC) acts to solve the credit

assignment problem, i.e., to decide which reward should be attributed to which action for

learning (Walton et al., 2010; Noonan et al., 2012). This idea shares many properties with

our state-representation hypothesis, as correctly keeping track of the current state allows

credit to be assigned appropriately. However, in our theory credit assignment itself is not

damaged by the loss of the OFC, but rather the states to which credit is assigned are

changed. This subtle distinction is an important one as it points to a key difference between

the theories: our theory predicts that in tasks in which stimulus-bound states suffice, OFC

lesions will not appear to cause a deficit in credit assignment. Moreover, the credit-

assignment hypothesis suggests that past actions should always be represented in OFC for

credit-assignment, whereas we predict that past actions will only be encoded when they are

important for determining the states of the task.
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More generally, our theory accounts for the role for OFC in a wide range of tasks, not only

reversal learning, delayed alternation and extinction, but also devaluation, sensory

preconditioning and so on. Indeed, it predicts involvement in any situation where task states

are not stimulus bound. As such, our theory provides a unifying account of OFC function

that can be tested (and disproved) in a variety of different tasks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We propose that OFC encodes the current, abstract, state of a task for the

purposes of reinforcement learning.

• Diverse inputs to the OFC allow for states to include information that may not

be perceptually observable.

• State information is used for both model-based and model-free reinforcement

learning.

• We use the theory to account for results from OFC lesion experiments, and to

make testable experimental predictions
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Figure 1.
Reversal learning. (A) Experimental results showing the mean errors to criterion in initial discrimination learning and final

reversal for control (grey) and OFC-lesioned (orange) animals. (B) Model simulations of the same task. (C) State representation

of the task used to model control animals, in which the state depends on both the action and outcome on the last trial. (D)

Stimulus-bound state representation modeling OFC-lesioned animals.
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Figure 2.
Delayed alternation. (A) Experimental results showing the fraction of trials on which monkeys chose the correct option for

control (grey) and OFC-lesioned (orange) animals. (B) Model simulations on the same task. (C) State representation used to

model control animals, in which the state depends on the last action. (D) Stimulus-bound state representation modeling the

OFC-lesioned animals.
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Figure 3.
Extinction. (A) Experimental results. Lever-press rates were normalized to the maximum response rate in conditioning. (B)

Model results. (C) State representation used to model the control group in which the state depends on the last outcome. (D) State

representation used to model the OFC lesion group, with only a single state. (E) Model predictions for extinction (ext) and

spontaneous recovery (re). (F) Model predictions for reacquisition. Init: initial learning; reacq: reacquisition.
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Figure 4.
Devaluation. (A) Animals are first trained to associate a light with food. Then the food is devalued by pairing it with an

indigestion inducing poison, LiCl. In a control condition, the food and LiCl are unpaired during devaluation. Finally, the extent

of devaluation is indexed by measuring responding to the light. (B) Experimental results from Pickens et al (2003) showing

relative responding to the food cup when the light is turned on for sham and OFC-lesioned animals in the paired and unpaired

condition. (C) State representation of the devaluation task. (D) Model results showing the relative value of the light for the sham

and OFC-lesioned models.
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Figure 5.
Task design and state representations for Takahashi et al's (2011) odor guided choice task. (A) Time course of rewards for the

different blocks. Times associated with positive prediction errors caused by unexpected rewards are labeled in green. (B) State

representation used to model sham-lesioned controls. (C) State representation, used to model OFC-lesioned animals.
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Figure 6.
Firing of dopaminergic VTA neurons at the time of unexpected reward early (first two trials, red) and late (last five trials, blue)

in a block. Unlike in Takahashi et al. (2011), where neural responses were averaged over the different types of unexpected

reward delivery, here we divided the data into the four different cases, indicated by the green annotations in figure 5A: the short

reward after the long to short transition between blocks 1 and 2 (long → short), the arrival of the first (long → big1) and

second (long → big2) drops of reward after the long to big transition between blocks 2 and 3, and the second drop of the small

to big transition between blocks 3 and 4 (small → big2). (A) Experimental data for sham-lesioned controls (n = 30 neurons).

(B) Experimental data for the OFC-lesioned group (n = 50 neurons). (C) Model predictions for the sham-lesioned animals. (D)

Model predictions for OFC-lesioned animals. (E) Model predictions for the small to big transition (small → big2) taking into

account the variable third drop of juice.
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Figure 7.
Schematic of neural RL with hypothesized mapping of functions to brain areas. The environment provides rewards and sensory

stimuli to the brain. Rewards, represented in areas such as the lateral habenula (LH) and the pedunculopontine nucleus (PPTN),

are used to compute prediction error signals in ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). Sensory

stimuli are used to define the animal's state within the current task. The state representation might involve both a stimulus-bound

(externally observable) component, which we propose is encoded both in OFC and in sensory areas, and a hidden

(unobservable) component which we hypothesize is uniquely encoded in OFC. State representations are then used as scaffolding

for both model-free and model-based RL. Model-free learning of state and action values occurs in ventral striatum (VS) and

dorsolateral striatum (DLS), respectively, while model-based learning occurs in dorsomedial striatum (DMS) as well as VS.
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