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Introduction
The regulation of systemic and pulmonary circulation is a very 
important issue in cardiovascular research.  Systemic circula-
tion differs from pulmonary circulation in several important 
aspects.  The same pathological stimuli may elicit different 
responses from either systemic or pulmonary circulation.  
For example, under hypoxia (20–60 mmHg pO2), pulmonary 
arteries contract while systemic arteries relax[1].  Vasoactive 
substances such as endothelin (ET) and angiotensin II (Ang 
II) play very important roles in the cardiovascular system 
but induce different vascular responses in pulmonary and 

systemic circulation[2–4].  The above-mentioned studies have 
revealed many differences in the responses of systemic and 
pulmonary circulation to pathophysiological stimuli.

In their carefully performed study, Olson et al examined ver-
tebrate vessels and found that H2S produced temporally and 
quantitatively identical responses even though the responses 
varied from constriction (lamprey dorsal; IDA) to dilation (rat 
aorta; rA) to multiphasic (rat and bovine pulmonary arteries; 
rpA and bPA, respectively)[5].  They discovered that the con-
centration of vasoactive H2S in the vessel was governed by a 
balance between endogenous H2S production and its oxidation 
by available O2

[5].  In our study, we tried to analyze the differ-
ence between rat aorta and pulmonary artery at the vasorelax-
ant stage and further explored the role of KATP channels in the 
regulation of the vasorelaxant effect by hydrogen sulfide.  

The endogenous gaseous signaling molecule hydrogen 
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sulfide (H2S) functions as a physiological regulator[6–12].  
Recent studies have shown that cystathinonine gamma-lyase 
(CSE), cystathionine beta synthase (CBS), and 3-mercapto-
pyruvate sulfurtransferase (3MST) are three H2S generating 
enzymes[13–14].  It is shown that H2S relaxes blood vessels and 
lowers blood pressure by opening ATP-sensitive K+ channels 
in vascular smooth muscle cells[15].  To examine and compare 
the pathways used for the endogenous production of H2S in 
aortic and pulmonary arteries, we tested the expression of the 
above-mentioned enzymes.  It has been demonstrated that H2S 
acts as an endogenous KATP channel opener to regulate vascu-
lar tone and that Kir6.1 and SUR2B are the main KATP channel 
subunits expressed in the vascular smooth muscle cells. So 
we tested the protein and mRNA expression of SUR2B and 
Kir6.1 in aortic and pulmonary arteries to investigate the pos-
sible mechanisms responsible for the regulation of vasore-
laxation by H2S.  H2S deficiency has been observed in animal 
models of systemic and pulmonary hypertension[16–18].  It also 
plays important roles in the pathogenesis of cardiovascular 
diseases[16–24].  The main mechanism for the cardiovascular 
actions of H2S was considered to be the activation of KATP 
channels, because H2S increased whole-cell KATP channel cur-
rents in rat aortic vascular smooth muscle cells[15].  However, 
whether H2S exerts different vasorelaxing effects on aortic and 
pulmonary artery rings is unknown.  If it does, the potential 
mechanisms behind these effects are not understood.  There-
fore, this study was designed to observe the vasorelaxing 
effect of H2S on isolated aortic and pulmonary artery rings of 
rats in vitro and to identify the possible mechanisms.

Materials and methods 
Reagents
Glibenclamide (Gli), 5-hydroxydecanoate (5-HD), and nicar-
dipine were purchased from American Sigma Aldrich Com-
pany.  NaHS was dissolved in deionized water and freshly 
prepared solution was used.

Animal preparation
The animal experimental procedures conformed to the “Guide 
for the Care and Use of Laboratory Animals” published by the 
National Institutes of Health (NIH) in the United States and 
was approved by the Animal Research Committee of Peking 
University.  Adult male Wistar-Kyoto (WKY) rats weighing 
220–250 g were purchased from Vital River (Beijing, China).  
Rats were housed in cages and fed a standard laboratory 
diet and fresh water.  The cages were kept in a room with 
controlled temperature (24 °C±1 °C), relative humidity (65%–
70%), and a 12-h light/dark cycle.  

Preparation for aortic and pulmonary artery rings
Male Wistar rats (n=10) were anesthetized with urethane 
(1 g/kg body weight) intraperitoneally.  The thoracic cavity 
was opened quickly, and the thoracic aorta and pulmonary 
artery were rapidly dissected and cleaned from fat and con-
nective tissues.  The artery was separated as carefully as pos-
sible to maintain the vascular activity.  Rings 2–3 mm in length 

were cut and placed in 0 °C Krebs solution and immersed in 
20 mL of organ baths containing pre-warmed Krebs’ bicarbon-
ate buffer filled with 95% O2–5% CO2 at 37 °C.  The composi-
tion of the Krebs solution was as follows (mmol/L): NaCl: 120, 
KCl: 5.5, CaCl2: 2.5, MgCl2·6H2O: 1.2, NaH2PO4: 1.2, NaHCO3: 
20, EDTA-Na2: 0.03, glucose: 10, and pH: 7.2–7.4.  Organ baths 
were filled with oxygenated (95% O2–5% CO2) Krebs solution.

Changes in tension were recorded using force transduc-
ers connected to a PowerLab (BL Newcentrary, TaiMeng, 
Chengdu, China).  First, the aortic rings were stretched pas-
sively to a tension of 1 g, while the pulmonary rings were 
stretched at 0.6 g.  The rings were equilibrated for 1 h before 
starting the experiment.  The endothelia of the rings were 
kept functionally unbroken, as confirmed by their relaxation 
after acetylcholine treatment (1 μmol/L).  The rings were 
contracted with norepinephrine (NE, 1 μmol/L).  When the 
vasoconstriction curves of the rings reached the plateau phase 
of maximum tension, H2S at 50–1000 μmol/L was given and 
the changes in tension were recorded.  In another experiment, 
aortic and pulmonary artery rings were incubated with two 
kinds of KATP channel blockers for 30 min (at a concentration 
of 1×10-6 mol/L) before the physiological dose of 100 μmol/L 
NaHS was given to observe whether the vasorelaxing effect of 
H2S could be blocked.  The relaxation ratio was calculated by 
the relaxation degree and preshrinking degree and expressed 
as a percentage (%).  The relaxation degree and shrinking 
degree, in grams, were recorded by electrophysiolograph.  

Measurement of CSE, CBS, SUR2B and Kir6.1 expression in 
aortic and pulmonary artery rings by Western blotting 
Aortic and pulmonary artery rings from Wistar rats (n=10) 
were homogenized and lysed.  Equal amounts of proteins 
were boiled and separated by SDS-PAGE and electrophoreti-
cally transferred to nitrocellulose membranes according to 
the experimental protocol.  The primary antibody dilutions 
were 1:1000 for CSE, 1:4000 for CBS, 1:500 for SUR2B, 1:200 for 
Kir6.1, and 1:4000 for GAPDH antibodies.  Secondary antibody 
(Santa Cruz) was used at a 1:10000 dilution.  The immunoreac-
tions were visualized by electrochemiluminescence (ECL) and 
exposed to X-ray film (Kodak Scientific Imaging film).  

Measurement of CSE, SUR2B and Kir6.1 expression in aortic and 
pulmonary rings by immunohistochemistry 
After dewaxing by dimethylbenzene, sections of aortic and 
pulmonary artery rings were placed in distilled water and 
treated with 3% H2O2 for 12 min.  The slides were washed 
with PBS three times for 5 min each.  The antigens were then 
exposed for 15 min.  The slides were rinsed again, and the 
samples were blocked for 30 min with goat serum working 
fluid.  Polyclonal antibodies to CSE (1:150), SUR2B (1:50), and 
Kir6.1 (1:50) were added and incubated at 4 °C overnight.  On 
the following day, slides were rinsed three times for 5 min in 
PBS and then incubated with biotinylated anti-mouse, goat, 
or rabbit IgG at 37 °C for 60 min.  Slides were rinsed again in 
PBS three times, and horseradish peroxidase streptavidin was 
added for 30 min at 37 °C, followed by three 5 min-washes 
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with PBS.  DAB was added for color development, and the 
sections were counter-stained with hematoxylin.  The sections 
were dehydrated through a graded ethanol series, treated with 
dimethylbenzene, and then mounted on slides.  The presence 
of brown granules in aortic and pulmonary smooth muscle 
cells and endothelial cells was defined as positive signal.  For 
negative controls, sections were processed as described above 
except that the primary incubation was performed with non-
immune goat serum instead of primary antibodies.

Measurement of SUR2B, Kir6.1, and 3MST mRNA expression in 
aortic and pulmonary artery rings using quantitative real-time 
polymerase chain reaction (PCR)
RNA from aortic and pulmonary artery rings of rats (n=7) 
was extracted using Trizol reagent (GibcoBRL) and reverse 
transcribed using an oligo d(T)18 primer and M-MLV reverse 
transcriptase.  Primers and TaqMan probes used for the 
quantification of cDNAs in samples were designed using the 
Primer Express 3.0 software (Applied Biosystems, Foster City, 
CA, USA).  Primers and probes were synthesized by the SBS 
Company, Limited (Beijing, China).  Quantitative real-time 
PCR was carried out using an ABI PRISM 7300 instrument 
(Applied Biosystems).  The sequences of the primers and 
probes are shown in Table 1.  The PCR condition for SUR2B, 
Kir6.1 and 3MST were as follows: pre-denaturation at 94 °C 
for 5 min, then 94 °C for 30 s, 59.5 °C for 30 s, and 70 °C for 1 
min for 40 cycles.  The PCR condition for β-actin was 95 °C 
for 5 min, 95 °C for 15 s, and 60 °C for 1 min for 40 cycles.  The 
amount of β-actin cDNA in the sample was used to calibrate 
the amount of sample needed for quantification.

Statistical analysis
The data were analyzed by Excel and SPSS 13.0 statistical 
software, and all values were expressed as mean±standard 
deviation.  The relaxation reaction at different concentrations 
of NaHS on aortic and pulmonary artery rings was analyzed 
by an independent sample t-test.  The relaxation reaction to 
treatment of aortic and pulmonary artery rings with physi-

ological concentrations of NaHS (the WKY+NaHS, Gli+NaHS, 
and 5-HD+NaHS groups) was analyzed by one-way ANOVA.  
LSD analysis was used for comparing data between the two 
groups.  The expression of SUR2B, Kir6.1, CSE, CBS, and 
3MST in aortic and pulmonary arteries was compared using 
the paired-sample t analysis.  A level of P<0.05 was set as sta-
tistically significant.

Results
The maximum diastolic effect of aortic and pulmonary artery 
rings to different concentrations of NaHS in rats 
NaHS caused vasorelaxation in rat thoracic aortic and pulmo-
nary artery rings pre-contracted with 1 μmol/L NE in vitro in 
a dose-dependent manner.  H2S at concentrations of 50–1000 
μmol/L dilated aortic rings more noticeably than pulmonary 
artery rings (P<0.05, Figure 1).  The EC50 of the vasorelaxant 
effect on aortic rings was 152.17 μmol/L, while the effect on 
pulmonary artery rings had an EC50 of 233.65 μmol/L.

The effects of a cytomembrane KATP channel blocker and mito-
chondrial membrane KATP channel blocker on the vaso relaxing 
effect of H2S on aortic and pulmonary artery rings 
The vasorelaxing effect of H2S was markedly blocked by 
cytomembrane and mitochondrial membrane KATP channel 
blockers (Gli and 5-HD) in aortic rings (P<0.01, Figure 1).  In 
contrast, the H2S-induced vasorelaxing effect on pulmonary 
artery rings could only be blocked by the cytomembrane KATP 
channel blocker (P<0.01, Figure 1) but not by the mitochon-
drial membrane KATP channel blocker (P>0.05, Figure 1).

The different vasoactive response of aortic and pulmonary artery 
rings to different concentrations of NaHS in rats
Within 30 min, all concentrations of hydrogen sulfide (50–1000 
μmol/L) gradually relaxed the rat aorta over time until it 
reached its maximum level of vasorelaxation.  However, in 
rat pulmonary arteries, NaHS (concentrations of 50, 100 and 
200 μmol/L) produced a constriction followed by a relaxation, 

Table 1.  The sequence of the primers and probes of SUR2B, Kir6.1, 3MST and β-actin.

  Forward primer SUR2B-F: 5′-ACCCGCGAGTACAACCTTCTT-3′
 SUR2B Reverse primer SUR2B-R: 5′- TCTCATCGCTCAAGAGAAACTCAT-3′
  Probe SUR2B-P: 5′-AGCCATCATCAGCGTTCAGAAGCT-3′

  Forward primer Kir6.1-F: 5′-ACCCGCGAGTACAACCTTCTT-3′
 Kir6.1 Reverse primer Kir6.1-R: 5′-TATCGTCATCCATGGCGAACT-3′
  Probe Kir6.1-P: 5’-AGGTCATTCACTTCTGCGTTTCTCTTCTCCAT-3′

  Forward primer 3MST-F: 5′-CGGCGCTTCCAGGTAGTG-3′
 3MST Reverse primer 3MST-R: 5′-CTGGTCAGGAATTCAGTGAATGG-3′
  Probe 3MST-P: 5′-CGCAGCTGGCCGTTTCCA-3′

  Forward primer β-Actin-F: 5′-ACCCGCGAGTACAACCTTCTT-3′
 β-Actin Reverse primer β-Actin-R: 5′-TATCGTCATCCATGGCGAACT-3′
  Probe β-Actin-P: 5′-CCTCCGTCGCCGGTCCACAC-3′
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and then followed by a reduced relaxation.  This effect was not 
obvious at higher concentrations (500 and 1000 μmol/L) in rat 
pulmonary arteries (Figure 2).  

Immunohistochemical analysis of CSE expression in aortic and 
pulmonary artery rings
CSE protein in aortic and pulmonary artery rings of rats in the 
control group was strongly expressed in the inner membrane 
and tunica media vasorum.  The presence of brown gran-
ules in aortic and pulmonary artery smooth muscle cells and 
endothelial cells was defined as a positive signal (Figure 3).  

CSE and CBS expressions in aortic and pulmonary artery rings by 
Western blotting 
Compared to that in pulmonary artery rings, the expression 
of CSE protein in aortic rings was notably enhanced (P<0.05, 
Figure 4).  However, there was no difference in CBS protein 
expression between aortic and pulmonary artery rings (P>0.05, 
Figure 4).

Expression of SUR2B, Kir6.1 and 3MST by real-time PCR
As measured by semi-quantitative real-time PCR, SUR2B 
mRNA was higher in aortic rings than in pulmonary artery 
rings (P<0.05, Figure 5).  However, Kir6.1 mRNA expression 
did not differ between aortic rings and pulmonary artery rings 
(P>0.05, Figure 5).  3MST mRNA was lower in aortic rings 
than in pulmonary artery rings (P<0.05, Figure 5).

Immunohistochemical analysis of SUR2B and Kir6.1 expression 
in aortic and pulmonary artery rings
The SUR2B and Kir6.1 proteins in aortic and pulmonary artery 
rings from WKY rats were mainly expressed in the medial 
layer of the vessel.  The brown granules in both aortic and 
pulmonary artery smooth muscle cells and endothelial cells 
viewed were defined as positive signals (Figure 6).

SUR2B and Kir6.1 expression in aortic and pulmonary artery 
rings as shown by Western blotting 
Compared to the pulmonary artery rings, the expression of 
SUR2B protein increased in the aortic rings of the Wistar rats 
(P<0.05, Figure 4), but there was no difference in Kir6.1 pro-
tein expression between aortic and pulmonary artery rings 
(P>0.05, Figure 4).

Discussion
In the present study we found that NaHS resulted in the vas-
orelaxation of rat thoracic aortic rings in a dose-dependent 
manner, which was more pronounced than the vasorelaxation 
that occurred in pulmonary artery rings.  In aortic rings, both 
cellular and mitochondrial membrane KATP channel blockers 
markedly inhibited H2S-induced vasorelaxation.  In contrast, 
H2S-induced vasorelaxation in pulmonary artery rings could 
only be blocked by a cellular, but not mitochondrial, mem-
brane KATP channel blocker.  The expression of SUR2B protein 
and mRNA in aortic rings increased compared to pulmonary 
artery rings.

H2S, a novel gaseous signaling molecule, has been consid-
ered to play an important role in the regulation of cardiovas-
cular functions[6–10].  Endogenous cardiovascular H2S is mainly 
produced by CSE[8–10].  R ecent evidence from CSE knockout 
mice suggests that loss of CSE gene expression results in a 
decrease in H2S production and a subsequent rise in blood 
pressure[16].  Furthermore, Shibuya et al and Olson et al showed 
that CSE, CBS, and 3MST were the three important H2S gen-
erating enzymes[13, 14].  In our study, we found that the mRNA 
expression of 3MST in rat aorta was lower than that in the 
pulmonary artery, whereas the CSE protein was higher in the 
rat aorta than in the pulmonary artery.  However, there was 
no difference in CBS protein expression in the rat aorta and 
pulmonary artery.

H2S plays an important role in the regulation of systemic 

Figure 1.  The maximum relaxation response of aortic and pulmonary artery rings to different concentrations of NaHS in rats, and the effect of a KATP 

channel blocker on the vasorelaxing effect of hydrogen sulfide on aortic and pulmonary artery rings (n=10). bP<0.05, cP<0.01 compared to aortic rings.  
fP<0.01 compared to aortic rings without giving KATP channel blocker.  iP<0.01 compared to pulmonary artery rings without giving KATP channel blocker.  
Gli: glibenclamide, 5-HD: 5-hydroxydecanoate.
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Figure 3.  Immunohistochemical analysis of CSE expression in aortic and pulmonary artery rings (DAB×200).  (A) The aortic ring negative control was 
processed without CSE primary antibody.  The thickness of the inner elastic layer was uniform and the structure of smooth muscle cells was normal.  (B) 
The aortic ring was processed with CSE antibody.  CSE protein was strongly expressed in the inner membrane and tunica media vasorum.  The brown 
granules in aortic smooth muscle cells and endothelial cells were defined as positive signals.  (C) The pulmonary artery ring was processed with CSE 
antibody.  The brown granules were observed in pulmonary artery smooth muscle cells and endothelial cells.  CSE, cystathinonine gamma-lyase.

Figure 2.  The different vasoactive response of aortic and pulmonary artery rings to different concentrations of NaHS in rats at the different time points.
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and pulmonary circulation[25–30].  Olson et al showed that in rat 
pulmonary arteries, NaHS produced a transit constriction fol-
lowed by relaxation for 20 to 30 min, which was then followed 
by a second constriction[5].  In a later study, this same group 
carefully examined the effects of Na2S on the conductance 
and resistance responses of the cow and sea lion pulmonary 
arteries and showed that the sea lion arteries had vasodilating 
characteristics[31].  We analyzed the vascular response to H2S 
for 30 min.  We found that in rat pulmonary arteries, NaHS at 
concentrations of 50, 100, and 200 μmol/L produced a transit 
constriction followed by a relaxation for about 20 min, which 
was then followed by a reduced relaxation.  However, this did 
not occur in the rat aorta.

In this study, we found that NaHS caused vasorelaxation of 
rat thoracic aortic and pulmonary artery rings pre-contracted 
with 1 μmol/L NE in vitro in a dose-dependent manner.  The 
mechanism for the vasoconstrictive response to norepinephine 
is the action of NE on the vascular alpha adrenaline receptors, 
resulting in the vasoconstrictive response.  A previous study 
showed that in sheep in vivo, the vasoconstrictor response to 
alpha-adrenergic stimulation was less in the pulmonary cir-
culation compared to the systemic circulation of the fetus[32].  
This same study also indicated that alpha-adrenergic receptor 
density was less pronounced in fetal intrapulmonary vascular 
smooth muscle than that in fetal aortic VSM[32].  The vasorelax-
ing effect of H2S on aortic and pulmonary rings is dependent 

Figure 5.  Expression of SUR2B, Kir6.1 and 3MST by real-time PCR (n=7, mean±SD).  bP<0.05 compared to aortic rings.  SUR2B, a KATP channel subunit.  
Kir6.1, a KATP channel subunit. 3MPST, 3-mercaptopyruvate sulfurtransferase.

Figure 4.  CSE, CBS, SUR2B and Kir6.1 expression 
in aortic and pulmonary artery rings as detected 
by Western blotting (n=10, mean±SD).  bP<0.05 

compared to aortic rings.  CSE, cystathinonine 
gamma-lyase; CBS, cystathionine beta synthase; 
SUR2B, a KATP channel subunit; Kir6.1, a KATP channel 
subunit.
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on this initial pre-contraction.  As far as we know, the differ-
ences in the vasorelaxing effects of H2S between the aortic 
and pulmonary rings involve the following mechanisms: 
the mechanical properties of the blood vessels, the targeting 
ion channel KATP expressions and density where H2S acts on.  
Thus, in our study, we attempted to examine if there were any 
KATP expression-mediated mechanisms in which H2S acts on 
the different arteries.  H2S at concentrations of 50–1000 μmol/
L dilated aortic rings more significantly than pulmonary artery 
rings.  This result indicates that H2S at the same dose induces 
a stronger vasorelaxing effect in aortic rings compared to pul-
monary artery rings.

H2S acts as a regulator of cardiovascular function[33, 34].  The 
opening of smooth KATP channels by H2S has been suggested 
to be one of the mechanisms responsible for H2S-induced 
vasorelaxation in vascular smooth muscle both in vitro and in 
vivo[24].  H2S can open KATP channels in the cell membrane of 
aortic vascular smooth muscle, causing cytomembrane hyper-
polarization.  The KATP channel is very important in the car-
diovascular system[35–41] and H2S acts as an endogenous KATP 
channel opener.  KATP channels are recognized for their cardio-
protective role in ischemia[35].  Evidence suggests that Kir6.1 
and SUR2B are the main KATP channel subunits expressed in 
the vascular smooth muscle[42–44].

Therefore, we investigated the possible mechanisms respon-
sible for the differences in vasorelaxation between aortic 
and pulmonary artery rings induced by H2S by targeting 
KATP channels using cell and mitochondrial membrane KATP 
channel blockers.  The results showed that cellular (Gli) and 
mitochondrial (5-HD) membrane KATP channel blockers could 
block H2S-induced vasorelaxation in aortic rings.  In contrast, 
in pulmonary artery rings, only the cell membrane KATP chan-
nel blocker effectively blocked H2S-induced vasorelaxation.  In 
aortic rings, vasorelaxation by NaHS was 38.4% at a concen-
tration of 100 μmol/L, which was reduced to 20.4% and 26.9% 
when aortic rings were pre-treated with cell and mitochondrial 
membrane KATP channel blockers, respectively.  In pulmonary 
artery rings, the percent of vasorelaxation was 22.2% follow-
ing 100 μmol/L NaHS, which was reduced to 12.8% when 
pre-treated with the cell membrane KATP channel blocker.  
However, pre-treatment with the mitochondrial membrane 
KATP channel blocker did not alter pulmonary artery ring vas-
orelaxation.  We presume that H2S likely induces more obvi-
ous vasorelaxation in aortic rings because H2S opens the KATP 
channels more widely in aortic rings than in pulmonary artery 
rings.

Next, we further examined whether there was any differ-
ences in KATP channel expression between aortic and pulmo-

Figure 6.   Immunohistochemical analysis of SUR2B and Kir6.1 expression in aortic and pulmonary artery rings (DAB×200).  (A) The aortic ring negative 
control was processed without SUR2B primary antibody.  This control had normal smooth muscle cell and endothelial cell structure without brown 
granules.  (B) The aortic ring was treated with SUR2B antibody.  SUR2B protein was strongly expressed in the inner membrane and tunica media 
vasorum.  The presence of the brown granules in aortic smooth muscle cells and endothelial cells was defined as positive signals.  (C) The pulmonary 
artery ring was processed with SUR2B antibody.  Brown granules were observed in pulmonary artery smooth muscle cells and endothelial cells.  (D) The 
aortic ring negative control was treated without Kir6.1 primary antibody.  The structure of smooth muscle cells and endothelial cells was normal and 
had no brown granules.  (E) The aortic ring was treated with Kir6.1 antibody.  Brown granules were strongly expressed in the medial layer of aortic ring.  
(F) The pulmonary artery ring was processed with Kir6.1 antibody.  The brown granules were observed in pulmonary artery smooth muscle cells and 
endothelial cells.  SUR2B, a KATP channel subunit.  Kir6.1, a KATP channel subunit.
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nary artery rings.  The results showed that protein expression 
of the KATP channel subunit SUR2B was higher in aortic than 
pulmonary artery rings.  Furthermore, the mRNA expression 
of SUR2B was higher in aortic rings than in pulmonary artery 
rings.  These findings suggested that the relatively higher 
density of KATP channels in aortic rings was partly responsible 
for the pronounced vasorelaxation observed in isolated aortic 
rings compared to those observed in pulmonary artery rings 
at specific concentrations.  The identification of more profound 
mechanisms involved in the H2S-induced vasorelaxation of 
aortic and pulmonary artery rings requires further investiga-
tion.  
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