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Abstract

In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic

channel. We use Mixture Theory to treat this problem as a two-component system: One

component is the red blood cells (RBCs) modeled as a generalized Reiner–Rivlin type fluid, which

considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity.

The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based

on OpenFOAM® was developed and employed to simulate a specific problem, namely blood flow

in a two dimensional micro-channel, is studied. Finally to better understand this two-component

flow system and the effects of the different parameters, the equations are made dimensionless and

a parametric study is performed.
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1. Introduction

Blood is a unique multi-component fluid whose composition is responsible for important

rheological properties that are responsible for its vital physiological functions. Its primary

constituents are flexible, discoid red blood cells (RBCs) (approximately 45% volume

fraction) suspended within essentially Newtonian plasma (Robertson, Sequeira, &

Kameneva, 2008). In the context of blood-wetted medical devices, the trafficking of RBCs

within the plasma greatly contributes to both safety and efficacy. For example in

oxygenators and artificial lungs, it is desirable for RBCs which are responsible for transport

of oxygen and carbon dioxide, to efficiently interact with the artificial fibers that deliver and

remove these gasses. In virtually all blood-wetted devices, it is usually undesirable for the

blood to coagulate on the artificial surfaces. This phenomenon, known as thrombosis, is

mediated by the platelets, a dilute constituent of blood which is in turn influenced by

collisions with the RBCs. Therefore at the microscopic level, the distribution of RBCs is
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responsible for the distribution of platelets (Aarts, Steendijk, Sixma, & Heethaar (1986)).

Accordingly the design of improved cardiovascular devices requires an accurate model of

these phenomena. Conversely, the inadequacies of current models stifle our ability to design

these devices with any confidence (Thompson, Loebe, & Noon, 2003). As a result,

contemporary designs are based primarily on empiricism, and experimental trial-and-error.

It is known that in large vessels (whole) blood behaves as a Navier–Stokes (Newtonian)

fluid (Fåhraeus, 1929; Fåhræus & Lindqvist, 1931; Fung, 1993, Chapter 3); however, in a

vessel whose characteristic dimension is in the range of tens to hundreds of blood cells (e.g.,

for a diameter in the range of 20–500 microns) blood behaves as a non-Newtonian fluid,

exhibiting shear-thinning, stress relaxation (Bagchi, 2007) and phase separation (Goldsmith,

1971). In larger vessels blood also exhibits shear thinning, particularly for shear rates below

100 s−1. These non-Newtonian properties of blood are mainly attributed to the behavior of

the RBCs: the aggregation and disaggregation of the RBCs as a function of shear rate; the

deformability of the RBCs; and the alignment of the RBCs in response to extensional flow.

Because of the fibrinogen and large globulins, RBCs aggregate and form rod-shaped stacks

called rouleaux at low shear rate [see Popel and Johnson (2005) and Bäumler, Neu, Donath,

and Kiesewetter (1999)]. This aggregation of the RBCs, which increases the blood viscosity

is however reversed when the shear rate increases, causing their disaggregation. The volume

fraction of RBCs (known as hematocrit) strongly influences all of the aforementioned

phenomena. Increased packing of RBCs affects their collision frequency, and hence their

ability to aggregate and to migrate within the flow field. Accordingly, the viscosity of the

blood increases dramatically as the hematocrit increases (Chien, Usami, Taylor, Lundberg,

& Gregersen, 1966, 1971; Pries, Neuhaus, & Gaehtgens, 1992). Likewise, the property of

shear-thinning viscosity becomes weaker and eventually disappears as the hematocrit

decreases (Brooks, Goodwin, & Seaman, 1970). The deformability of RBCs is also an

important property which affects viscosity and cell trafficking. In capillaries, with sizes

equivalent or smaller than that of RBCs, the deformability of RBCs allow them to fold and

flex as they transport gasses through the vessel walls. In larger vessels or passages, the

deformability of the RBCs allow them to become more streamlined, and aligned at high

shear rates – thereby contributing to shear thinning (Chien, 1970). It should be

acknowledged that, although the RBCs dominates the rheological properties of blood, other

factors such as the plasma viscosity, white blood cells, etc. also play a role (Kameneva,

Garrett, Watach, & Borovetz, 1998; Middleman, 1972; Rourke & Ernstene, 1930).

In the past several decades, investigations of blood flow in micro-scale channels have

revealed several important phenomena due to the complex rheological properties of blood.

In vessel of diameter ranging from approximately 0.05 to 1.5 mm, blood exhibits a thin layer

adjacent to the wall that is depleted of RBCs (Marhefka et al., 2009). This phenomenon is

known as the Fahraeus–Lindqvist effect (Fung, 1993). This depletion of RBCs near the wall

causes the hematocrit of branch vessels to be depleted – a phenomenon known as plasma-

skimming (Carr & Wickham, 1990; Krogh, 1921; Marhefka et al., 2009; Skalak, Ozkaya, &

Skalak, 1989). Several early experiments related to blood cell margination were performed

in tubes, such as Goldsmith’s seminal experiment in which he flash froze the flow to

observe the concentration of cells to the center-line (Goldsmith, 1968), a great number of
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modern experiments are performed in microchannels of rectangular cross section. The

reason for this is twofold: microchannels can be much more easily formed using

photolithography, and secondly, parallel walls are much more amenable to microscopic

measurements. The technology for visualizing flow in non-parallel (e.g. circular) cross

sections is still in its infancy, and include micro PIV (Sugii & Okuda, 2005) and confocal

PIV methods (Lima & Wada, 2006; Patrick, Chen, Frakes, Dur, & Pekkan, 2011).

Furthermore, micro-channels have also been used in a variety of devices such as film

oxygenators and recently, dialysis-like cell separators such as the one being developed by

our group for treatment of malaria-infected blood. [see Kim, Massoudi, Antaki, and Gandini

(2012)]. In summary, it is evident that blood flow at micro-scale exhibits more complex

behavior and acts as a multi-component material, which cannot be described by a single

phase model.

Motivated by the observation of these phenomena, various multiphase models for blood

have been developed. The Immersed Boundary Method (IBM) combined with the Lattice

Boltzman Method (LBM) has become a popular method for modeling deformation, cluster

formation and collisions of RBCs [see Dupin, Halliday, Care, Alboul, and Munn (2007),

Clausen, Reasor, and Aidun (2010) and Zhang, Johnson, and Popel (2009)]. An alternative

method consists of the so-called two-fluid or Eulerian–Eulerian two phase model (Jung,

Hassanein, & Lyczkowski, 2006). In tandem, over the past four decades, multiconstituent

models have been developed for a variety of non-biologic fluids. Two methods in particular

are based on first principles of continuum mechanics: the Mixture Theory (or the theory of

interacting continua) [see Rajagopal and Tao (1995)] and the Averaging Method [see Ishii

(1975)]. In this paper the Mixture Theory is applied as a basis for deriving a two-phase

model for blood (Massoudi, Kim, & Antaki, 2012).

The Mixture Theory was first presented by Truesdell in 1957 (Truesdell, 1957) as a means

of generalizing the equations and principles of the mechanics of a single continuum to

include any number of superimposed continua. In a sense, it is a homogenization process in

which each component is regarded as a single continuumand at each instant of time, every

point in space is considered to be occupied by a particle belonging to each component of the

mixture (Truesdell, 1984). In recent years it has been applied to a variety of applications

such as fluid–solid particles, lubrication with binary-mixtures of bubbly oil, viscoelastic

porous mixtures, swelling porous media with microstructure, reacting immiscible mixtures,

polymeric solutions, growth and remodeling of soft tissues, ionized fluid mixtures, etc.,

(Massoudi, 2008). For review articles on this subject, see the papers by Atkin and Craine

(1976a, 1976b) and Bowen (1976). Mixture Theory has also been used in a variety of

biomechanics applications [see for example, Ateshian, Likhitpanichkul, and Hung (2006),

Garikipati, Arruda, Grosh, Narayanan, and Calve (2004), Humphrey and Rajagopal (2002),

Klisch and Lotz (2000), Lemon, King, Byrne, Jensen, and Shakesheff (2006) and Tao,

Humphrey, and Rajagopal (2001)]. Because of its many desirable properties, Mixture

Theory has been adopted for this study.

The paper is organized as follows. The kinematical variables and governing equations are

introduced in Section 2 while the related constitutive equations are presented in Section 3. In

Section 4, the effect of the various dimensionless parameters of our model is studied.
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2. Governing equations

Let X1 and X2 denote the position of the bodies in the reference configuration (i.e., prior to

mixing) belonging respectively to the plasma, treated as a fluid constituent, and the RBCs,

treated as a solid. The motion of the two components can be represented as [see Johnson,

Massoudi, and Rajagopal (1991)]

(1)

while the kinematical quantities associated with these motions take the expressions

(2)

(3)

where v is the velocity field, D is the symmetric part of velocity gradient, and  and 

denote differentiation with respect to time holding X1 and X2 fixed, respectively. The bulk

density field, ρ1 and ρ2, for these two components are

(4)

where ρ10 and ρ20 are the pure density of plasma, and the RBCs, in the reference

configuration; ϕ is the volume fraction of RBCs, the hematocrit, where 0 ≤ ϕ < ϕmax < 1.

The function ϕ is represented as a continuous function of position and time, which takes a

value between one and zero at any position and at anytime, with the extreme values of 1 and

0 depending upon whether one is pointing to a particle (RBCs) or to the liquid (plasma) at

that position. That is, the real volume distribution content has been averaged, in some sense,

over the neighborhood of any given position. It should be mentioned that in practice ϕ is

never equal to one; its maximum value, generally designated as the maximum packing

fraction, depends on the shape, size, method of packing, etc.

In the absence of thermo-chemical and electromagnetic effects, the governing equations

consist of the conservation of mass, linear momentum and angular momentum. The

equations of conservation of mass in the Eulerian form are [see Atkin and Craine (1976a,

1976b)],

(5a)

(5b)

Wu et al. Page 4

Int J Eng Sci. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



where  is the derivative with respect to time and div is the divergence operator, while the

equations of balance of the linear momentum are given by,

(6a)

(6b)

where in general for any scalar β, , α = 1, 2, and (for any vector w),

, T1 and T2 stand for the Cauchy stress tensors, fI represents the

interaction forces (exchange of momentum) between the components, and b1 and b2 refer to

the body force. T1, T2 and fI will be given by the constitutive equations. The balance of the

angular momentum implies that, in the absence of couple stresses, the total Cauchy stress

tensor is symmetric. Once the individual (partial) stress tensors are derived (or proposed), a

mixture stress tensor can be defined for blood as Tm = T1 + T2 (Green & Naghdi, 1967,

1968) where T1 = (1 − ϕ) T10 and T2 = ϕT20 so that the mixture stress tensor reduces to that

of the plasma as ϕ → 0 and to that of the RBCs as ε → 0 [where ε = (1 − ϕ)]. T2 may also

be written as , where  may be thought of as representing the stress tensor in the

reference configuration of the RBCs. Finally, for a complete study of a thermo-mechanical

problem, not only in Mixture Theory, but in continuum mechanics in general, the Second

Law of Thermodynamics has to be considered. In other words, in addition to other principles

in continuum mechanics such as material symmetry, frame indifference, etc., the Second

Law imposes important restrictions on the type of motion and/or the constitutive parameters

[For a discussion of important concepts in constitutive equations of mechanics, we refer the

reader to the books by Liu (2002) and Batra (2006)]. Since, there is no general agreement on

the functional form of the constitutive relation and since the Helmholtz free energy is not

known, a complete thermodynamical treatment of the model used in our studies is lacking.
1In the next section, we briefly discuss the constitutive models for both the plasma and the

RBCs.

3. Constitutive equations

For closure of the governing equations of motion, Eqs. (5) and (6), we can see that

constitutive equations are needed for the stress tensors of the plasma and the RBCs as well

as the interaction forces. A complete constitutive relation for the stress tensor of the (whole)

blood, not only must capture and describe the rheological characteristics of its different

components, but also must include the biochemistry and the chemical reactions occurring.

To date no such comprehensive and universal constitutive relation exists. As mentioned by

1In recent years, Rajagopal and colleagues [see for example, Rajagopal and Srinivasa (2000, 2001)] have devised a thermodynamic
framework, the Multiple Natural Configuration Theory, by appealing to the maximization of the rate of entropy production to obtain a
class of constitutive relations for many different types of materials. Unlike the traditional thermodynamic approach whereby a form
for the stress is assumed (or derived) and restriction on the material parameters are obtained by invoking the Clausius–Duhem
inequality, in their thermodynamic framework, they assume specific forms for the Helmholtz potential and the rate of dissipation—
reflecting on how the energy is stored in the body and the way in which the body dissipates it.
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Anand, Rajagopal, and Rajagopal (2005): “However, the numerous biochemical reactions

that take place leading to the formation and lysis of clots, and the exact influence of

hemodynamic factors in these reactions are incompletely understood.” In fact, the majority,

if not all, of the papers published on blood characteristics either deal with the biochemistry

of clot formation and other biochemical issues, ignoring completely the hemodynamic [see

for example Kuharsky and Fogelson (2001)], or deal exclusively with hemodynamic or

homeostasis and pay no attention to the biochemical reactions [see Sorensen, Burgreen,

Wagner, and Antaki (1999)]. Anand and Rajagopal (2002) developed a model for blood that

is capable of incorporating platelet activation. More recently, Rajagopal and colleagues

(Anand, Rajagopal, & Rajagopal (2006, 2008)) have provided a framework whereby some

of the biochemical aspects of blood along with certain rheological (viscoelastic) properties

of blood are included in their formulation. We assume that blood is a two-component

mixture, composed of the red blood cells (RBCs) suspended in a (platelet rich) plasma.

3.1. Plasma

We assume that the plasma behaves as a linear viscous fluid [see Massoudi and Antaki

(2008)]

(7)

where p1 is the plasma pressure, μ1 and λ1 are the first and second coefficients of viscosity

of the plasma, ‘tr’ is the trace operator, and I is the identity tensor. It is necessary to make

sure that when the volume fraction of the RBCs equals ϕmax, the effect of plasma should

disappear from the equations. To ensure this, we assume,

(8)

where p is the pressure of the mixture, and λ10 and μ10 are the first and second (constant)

coefficients of viscosity of the pure plasma.

3.2. RBCs

We model the RBCs as a generalized Reiner–Rivlin model proposed by Massoudi (2011),

which exhibits a shear dependent viscosity and includes the effect of porosity,

(9)

where β1,β2,β3 and β4, depend on the hematocrit ϕ; in addition, β3, is also assumed to

depend on the symmetric part of the velocity gradient, implying a shear rate dependent

viscosity. Furthermore, based on the basic principle of Mixture Theory that when the

hematocrit is equal to 0, the effect of the RBCs should disappear, the expressions for

β1,β2,β3 and β4 as proposed by Massoudi and Antaki (2008) are,
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(10)

where Π is related to the invariants of D2; β20, β30 and β40 are material parameters which, in

general, need to be measured experimentally. In the present study, the shear-thinning effect

is incorporated by applying a shear dependent viscosity model for the RBCs, as suggested

by Yeleswarapu (1994),

(11)

where μ0 and μ∞ are the viscosities when the shear rate approaches zero and infinity,

respectively, and k is the shear thinning parameter. It is known that in a vessel whose

characteristic dimension is about the same size as the characteristic size of blood cells, blood

behaves as a non-Newtonian fluid, exhibiting shear-thinning and stress relaxation. Thurston

(1972, 1973) has pointed out the viscoelastic behavior of blood while stating that the stress

relaxation is more significant for cases where the shear rate is low. It has also been reported

that at low shear rates, blood seems to have a high apparent viscosity (due to RBC

aggregation) while at high shear rates the opposite behavior is observed (due to RBC dis-

aggregation) [see Anand and Rajagopal (2004) and Anand et al. (2005, 2006)]. A model

which has been able to capture the shear-thinning behavior of blood over a wide range of

shear rates is the one proposed by Yeleswarapu (1994) and Yeleswarapu, Kamaneva,

Rajagopal, and Antaki (1998) which is a generalization of a three constant Oldroyd-B fluid.

Thus, in a sense the model we are using here for the RBCs, is a viscoelastic shear-thinning

fluid model where the viscosity is also a function of volume fraction.

3.3. Interaction forces

For the interaction forces, we use a simplified form of the constitutive equation proposed by

Johnson, Massoudi, and Rajagopal (1990) and Massoudi (2003),

(12)

where the first term represents the force due to the density gradient (Muller, 1968); the

second term is related to the (Stokes) drag force; and the third corresponds to the shear lift

(or Saffman’s lift (Saffman, 1965, 1968)) force. Furthermore, A1, A2 and A3 are related to

material properties, F(ϕ) is called the hindrance function which comes from the

generalization of the interaction force from a single particle (RBC) to an assembly of

particles. It can be obtained from the empirical correlations of sedimentation of particles

(see Johnson et al. (1990) and Drew (1976)),
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(13)

where a is the radius of the particles (RBCs). Various forms of the hindrance function are

available (see for example, Johnson et al. (1990), Batchelor (1972), Tam (1969) and Rourke

& Ernstene (1930)),

(14)

In this paper we use the relationship suggested by Drew (Batchelor).

4. Parametric study: flow of blood in a rectangular channel

In this section, in order to gain further insight into the nature and influence of the various

terms in the two phase model we perform a parametric study. To achieve numerical stability,

making it possible to select a wider range of parameters, we choose a special case of the

function F (ϕ) above suggested by Bachelor (Drew). Moreover in order to save

computational time, we reduce the geometry to 2-D, by assuming an infinitely deep channel

(z direction as shown in Fig. 1). Hexahedral meshes of the micro-channel are generated by

OpenFOAM® (blockMesh) with 50 and 40 elements in x and y directions, respectively, and

with the meshes refined near the walls. The velocity and the volume fraction fields are:

(15)

In a recent study, Wu, Aubry, and Massoudi (2013a) studied the flow of blood in a micro-

channel. They used this particular geometry, since Patrick et al. (2011) had focused on a

study where they measured the near-wall RBCs in a rectangular microchannel. Wu, Aubry,

and Massoudi (2013b) were able to show that their numerical results, using the data

available in literature, produced very good agreement with the experimental results of

Patrick et al. (2011). In the current study, we will perform a parametric study using the

dimensionless forms of the equations. We can see that the stress tensors and the interaction

forces have many material parameters which need to be modeled. In the absence of any or

limited experimental data, we have assumed very specific functions for some of these

coefficients in the stress tensors and we have proposed some new ones for the interaction

forces. Clearly, these choices would restrict the solution to the problem and clearly

alternative choices are possible and they in turn may provide different answers. In our

selection of the material coefficients, we have been guided by our previous studies in

granular materials and blood flow.
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4.1. Dimensionless governing equations

Substituting Eqs. (7), (9) and (12) into Eqs. (6a) and (6b), we obtain the two dimensionless

momentum equations (here we have assumed that both phases are incompressible) which

yield for the plasma phase,

(16)

and for the RBCs phase,

(17)

where

(18)

where H is a characteristic length, e.g., the distance between the two channel plates (y

direction in Fig. 1), u0 is a characteristic velocity, e.g., the inlet velocity, ρ0 is a

characteristic density, e.g., the plasma density, and x is the position vector. Moreover, the

asterisks are dropped for simplicity. The following dimensionless numbers are then

obtained,

(19)

where Re is the Reynolds number of plasma, R4 is related to the normal stress coefficient, Fr

is the Froude number, K is a parameter related to the shear-thinning of the RBCs, B31 and

B32 are related to the viscous effects of the RBCs (similar to the Reynolds number), C1 is

related to the coefficient of the force due to density gradients, C2 is related to the drag

coefficient, and C3 is related to the lift coefficient.

In all cases in this study, we assume that a uniform volume fraction of the RBCs at the inlet

equal to 0.45 and the inlet velocity of both RBCs and plasma is 1. The full set of boundary

conditions2 is summarized in Table 1. [See also Kim (2012).] Based on the mathematical

model discussed above, using OpenFOAM®, a two-component CFD solver was been
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developed. For a detailed description of the algorithm see Kim (2012) and Rusche (2002).

We also assume that the first term in the interaction force, i.e. A1, and the normal stress

effect term, β40, are zero; the effect of the body force, i.e. the gravity, is assumed to be

negligible; thus we only consider the effect of the dimensionless parameters, Re, K, B31, B31,

C2 and C3 hereafter.

4.2. Numerical results

Figs. 2(a)–(c) show the velocity distributions in the x direction [v2x] and y direction [v2y]

[see Eq. (15)] and the volume fraction of RBCs. Due to the large value of the drag force

term, C2, chosen in this case, the velocity profiles of the plasma and the RBCs coincide.

From the observed development of velocity, we see that the flow becomes fully developed at

approximately position x*= 3 (i.e. x = 3H). Fig. 2b shows the corresponding y-velocity

distribution of the RBCs at various downstream (x*) locations. We observe that in the lower

half of the channel the velocity is positive while in the upper half the velocity is negative,

indicating that the RBCs migrate from the wall to the center of the channel. It also can be

seen that near the inlet of the channel, influenced by the inlet boundary condition, the y

velocity component is initially small and gradually increases due to the lift force, C3,

achieving a maximum value at approximately x* = 0.3 and then returning to zero as the RBC

distribution reaches equilibrium. The resulting volume fraction of the RBCs are provided in

Fig. 2c, in which the development of a depletion layer is clearly visible.

In the remainder of this section, we perform a parametric study, exploring the effect of

various dimensionless parameters on the flow. All the numerical results shown in Figs. 3–8

are obtained for the case of the fully developed flow.

4.2.1. Effect of Re—Fig. 3a shows the volume fraction distribution of the RBCs for

different values of the Reynolds number Re. It can be seen that an increase of the Reynolds

number accentuates the depletion phenomenon near the wall, which is consistent

experimental observations of Lih (1969). Figs. 3(b) and(c) show the effect of the Reynolds

number on the streamwise (x) velocity distribution of the plasma and the RBCs. Comparing

2A fundamental difficulty in using Mixture Theory has to do with the boundary conditions and how to split the (total) traction vector,
related to the (total) stress tensor, or the (total) velocity vector. In an important paper, Rajagopal, Wineman, and Gandhi (1986)
developed a novel scheme to split the total stress for a class of problems, related to diffusion of fluids through non-linear elastic
materials such as rubber, in which the boundary of the mixture is assumed to be in a state of saturation. As a result of a
thermodynamic restriction, namely the variation of the Gibbs free energy of dilution being zero, a relationship between the total stress
tensor, the stretch tensor and the volume fraction of the solid component is obtained. This saturation condition is explained by
Rajagopal and Tao (1995, p. 31), as: “…a state in which a small element of the solid adjacent to the fluid is in a state in which it
cannot absorb any more fluid, that is whatever fluid enters the elemental volume along the boundary has to exit through the elemental
volume so that there is no accumulation of the fluid.” Interestingly it has been shown that under certain conditions the solution is
insensitive to the boundary condition [see Prasad and Rajgopal (2006)]. In the two component fluid-particles system that is advocated
in our paper, it is not the tractions which are of interest but the velocities [see Massoudi (2010)]. For free surface flows, on the other
hand, the splitting of the traction vector remains the main difficulty [see Ravindran, Anand, and Massoudi (2004)]. It should be
remarked that in general, sometimes the additional boundary conditions can be provided from experimental data, and sometimes they
can be based on other theories, such as kinetic theories, or physical insights. In certain cases, due to the higher order gradients of
volume fraction, it is necessary to provide additional boundary conditions for solving practical and simple boundary value problems
[see Massoudi (2007) for a discussion of boundary conditions]. For some practical applications, symmetry conditions can be used; in
certain cases the values of the unknowns or their derivatives have to be specified as surface conditions at the walls or at the free
surface. In some situations slip may occur at the wall, and therefore the classical assumption of adherence boundary condition at the
wall no longer applies. In such cases, perhaps a generalization of Navier’s hypothesis can be used. In fact, based on this, Massoudi and
Phuoc (2000) proposed that for granular materials the slip velocity is proportional to the stress vector at the wall, i.e. us = g [(Tsn)x,
(Ts n)y], where Ts is the stress tensor for the granular component, n is the unit normal vector and g in general could be a function of
surface roughness, volume fraction (density), shear rate, etc.
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these two figures we deduce that the velocity difference between the two phases is rather

small. This could be attributed to the large value of the drag force term, C2. These two

figures also illustrate the effect of increasing values of the Reynolds number, for example

through a decrease of the plasma viscosity, on the bluntness of the velocity profile.

4.2.2. Effect of K, B31 and B32—Fig. 4a shows the volume fraction distribution of the

RBCs as a function of the RBCs shear thinning parameter K. It can be seen that as K

increases, the value of the volume fraction around the center line becomes larger. That might

be related to the fact that for larger values of K a more parabolic velocity profile is obtained,

implying a region of larger velocity gradient, see Figs. 4(b) and (c). Eq. (12) corroborates

that the lift force, which causes the RBCs to migrate from the wall to the center line of the

channel is positive and proportional to the plasma velocity gradient.

From Figs. 5(b) and (c), we can see that as the parameter B31 decreases, the velocity profile

loses its bluntness and becomes more parabolic. When K is very large, the viscosity of the

RBCs is influenced more by B31 rather than by B32, and when B31 is small, for example

takes the value of 0.05, the viscosity of RBCs has the same order of the magnitude as the

plasma viscosity in most parts of the flow ( ). This implies that when B31 is small the

plasma influences the flow of the blood significantly. As B31 increases, the velocity profiles

deform to adopt a blunt shape. Fig. 5a shows the effect of B31 on the volume fraction

distribution of the RBCs. It can be seen that when B31 has a small value, for example 0.05,

indicating that the plasma viscosity is comparable to the viscosity of the RBCs, the volume

fraction distribution is more uniform; however as B31 increases, the distribution becomes

less uniform. Fig. 6a shows the volume fraction distribution as a function of B32 and

demonstrates its negligible influence over the range of the values (2–50) studied here.

Accordingly, Figs. 6(a) and (c) demonstrate negligible influence of B32 on the velocity

fields.

4.2.3. Effect of C2 and C3—Figs. 7(a)–(c) displays the effect of parameter C2 on the

volume fraction distribution and velocity profiles. With increasing C2 by an order of

magnitude from 10 to 100, it is seen that the volume fraction becomes dramatically blunter,

and the velocity profiles less blunt. However additional increase of C2, by 3 orders of

magnitude does not have as much influence on the volume fraction or velocity fields. A

slight decrease in velocity difference between the two components is also observed for

increasing C2, which leads to a smaller lift force, the main term causing the non-uniform

distribution of the volume fraction of the RBCs, [see Eq. (12)]. The shape of the velocity

field is inevitably related to the volume fraction: the more uniform the distribution of RBCs,

the more uniform the viscosity distribution, [see Eq. (10)], and hence more parabolic the

velocity field.

Fig. 8a shows that as C3 becomes larger more RBCs concentrate near the channel center line

and the region of low volume fraction of the RBCs expands. This is understandable

inasmuch as C3 corresponding to a larger lift force causing the RBCs to migrate away from

the wall to the center line of the channel. From Figs. 8(a) and(c), we observe that as C3

increases, near the center line of the channel the velocity of the plasma decreases while the

velocity of the RBCs increases, that is, there is a smaller velocity difference between the two
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components. This may be related to the higher values of the volume fraction near the center

line which is caused by larger values of C3. Indeed, a higher volume fraction of the RBCs

leads to a higher drag force [see the Batchelor drag function in Eq. (14)] which, in turn,

leads to a smaller velocity difference.

5. Conclusions

In this paper, a two-component flow of blood was formulated. The mathematical model was

based on the framework of the Mixture Theory. A numerical solver was developed using

OpenFOAM®, and used to study a specific problem, namely the flow of blood in a micro-

channel. A parametric study was performed, providing further insight into the model by

giving additional information on the influence of the material properties. For example,

varying the parameters B31 and B32 [see Eq. (11)] led to a wide range of shear dependent

properties. Furthermore, by varying C2 and C3 (see Eq. (19), where C2 is related to the drag

coefficient, and C3 is related to the lift coefficient) it was found that the interaction force has

a strong influence on the RBCs. For certain value of C2 and C3, it was possible to show the

RBCs depletion near the wall or plasma skimming (see Fig. 8a). We also notice that the

parameters chosen in Fig. 8a might not be relevant to a physical problem, such as the flow of

blood in a micro-channel. In order to overcome this, more accurate forms of the coefficients

for the interaction forces are needed. Finally, it goes without saying that the model

developed here is only appropriate for a healthy human, and it does not capture any blood

disorder. To include the formation and growth of clots, and lysis of blood cells in blood, in

general, the reaction–convection–diffusion equations are to be solved in conjunction with

the balance laws for mass, linear and angular momentum, and energy (for each component).

Although we have ignored the biochemical effects of blood in this paper, in principle, the

theory is amenable to extension [see Anand et al. (2005)].
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Fig. 1.
Schematic of the rectangular micro-channel, with infinite depth (z direction).
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Figure 2.
Fig. 2a. The streamwise (x) velocity distribution of RBCs at various streamwise locations, for the parameter values Re = 100, K

= 1000, B31 = 0.5, B32 = 20, C2 = 10,000, C3 = 3.

Fig. 2b. The y-velocity distribution of RBCs at various streamwise locations, for the parameter values Re = 100, K = 1000, B31

= 0.5, B32 = 20, C2 = 10,000, C3 = 3.

Fig. 2c. The volume fraction distribution of RBCs at various streamwise locations, for the parameter values Re = 100, K = 1000,

B31 = 0.5, B32 = 20, C2 = 10,000, C3 = 3.
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Figure 3.
Fig. 3a. The effect of the Reynolds number Re on the volume fraction of RBCs, for the parameter values K = 1000, B31 = 0.5,

B32 = 20, C2 = 10, C3 = 3.

Fig. 3b. The effect of the Reynolds number Re on the streamwise (x) velocity of the plasma, for the parameter values K = 1000,

B31 = 0.5, B32 = 20, C2 = 10, C3 = 3.

Fig. 3c. The effect of the Reynolds number Re on the streamwise (x) velocity of RBCs, for the parameter values K = 1000, B31 =

0.5, B32 = 20, C2 = 10, C3 = 3.
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Figure 4.
Fig. 4a. The effect of the RBCs shear thinning parameter K on the volume fraction of RBCs, for the parameter values Re = 100,

B31 = 0.5, B32 = 20, C2 = 10, C3 = 3.

Fig. 4b. The effect of the RBCs shear thinning parameter K on the streamwise (x) velocity of plasma, for the parameter values

Re = 100, B31 = 0.5, B32 = 20, C2 = 10, C3 = 3.

Fig. 4c. The effect of the RBCs shear thinning parameter K on the streamwise (x) velocity of RBCs, for the parameter values Re

= 100, B31 = 0.5, B32 = 20, C2 = 10, C3 = 3.
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Figure 5.
Fig. 5a. The effect of the parameter B31 on the volume fraction of RBCs, for the parameter values Re = 100, K = 1000, B32 = 20,

C2 = 10, C3 = 3.

Fig. 5b. The effect of the parameter B31 on the streamwise (x) velocity of plasma, when Re = 100, K = 1000, B32 = 20, C2 = 10,

C3 = 3.

Fig. 5c. The effect of the parameter B31 on the streamwise (x) velocity of RBCs, for the parameter values Re = 100, K = 1000,

B32 = 20, C2 = 10, C3 = 3.
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Figure 6.
Fig. 6a. The effect of the parameter B32 on the volume fraction of RBCs, for parameter values Re = 100, K = 1000, B31 = 0.5, C2

= 10, C3 = 3.

Fig. 6b. The effect of the parameter B32 on the streamwise (x) velocity of plasma, for parameter values Re = 100, K = 1000, B31

= 0.5, C2 = 10, C3 = 3.

Fig. 6c. The effect of the parameter B32 on the streamwise (x) velocity of the RBCs, when Re = 100, K = 1000, B31 = 0.5, C2 =

10, C3 = 3.
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Figure 7.
Fig. 7a. The effect of the parameter C2 on the volume fraction of RBCs, for parameter values Re = 100, K = 1000, B31 = 0.5, B32

= 20, C3 = 3.

Fig. 7b. The effect of the parameter C2 on the streamwise (x) velocity of plasma, for the parameter values Re = 100, K = 1000,

B31 = 0.5, B32 = 20, C3 = 3.

Fig. 7c. The effect of the parameter C2 on the streamwise (x) velocity of RBCs, for the parameter values Re = 100, K = 1000,

B31 = 0.5, B32 = 20, C3 = 3.
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Figure 8.
Fig. 8a. The effect of the parameter C3 on the volume fraction of the RBCs, for the parameter values Re = 100, K = 1000, B31 =

0.5, B32 = 20, C2 = 0.1.

Fig. 8b. The effect of the parameter C3 on the streamwise (x) velocity of the plasma, for the parameter values Re = 100, K =

1000, B31 = 0.5, B32 = 20, C2 = 0.1.

Fig. 8c. The effect of the parameter C3 on the streamwise (x) velocity of the RBCs, for the parameter values Re = 100, K =

1000, B31 = 0.5, B32 = 20, C2 = 0.1.
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Table 1

Boundary conditions.

Boundary Pressure Velocity Volume fraction

Inlet Zero gradient Uniform value Uniform value

Outlet Uniform value (0) Zero Gradient Zero gradient

Wall Zero gradient Uniform value (0) Zero gradient
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