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Animals carry stem cells throughout their entire life, from embryogenesis to senescence. Their function during development and
adulthood consists basically of forming and sustaining functional tissues while maintaining a small self-renewing population. They
reside in a complex three-dimensional environment consisting of other nearby cells extracellular matrix components, endogenous or
exogenous soluble factors, and physical, structural, or mechanical properties of the tissues they inhabit. Can we artificially recreate
tissue development such that stem cells can both self-renew and be instructed to mature properly? The main factors required to
regulate the maintenance and differentiation of some types of stem cells are known. In addition, new bioengineered synthetic
materials that mimic extracellular matrix components can be used as initial scaffolding for building stem cell microenvironments.

INTRODUCTION

Embryonic and adult stem cells share common char-
acteristics but differ in certain intrinsic properties. Both
have the capacity to differentiate into at least one func-
tional cell type which defines them as uni-, multi-, or
pluripotential. Instead, they differ in intrinsic cell division
kinetics. For instance, during early embryonic develop-
ment, the cellular environment constantly changes, and
the maintenance of pluripotentiality is short and transi-
tory. Embryonic stem cells possess high expansive capac-
ity in order to increase rapidly the amount of pluripotent
cells able to generate all different tissues of the embryo.
On the other hand, adult stem cell behavior and environ-
ment are paradoxically opposite. Adult stem cells stay as
unchanged as possible in adult tissue niches while produc-
ing progeny at lower dividing capacity. In order to achieve
these two distinct mechanisms of cell maintenance and
function, tissues regulate intrinsic and extrinsic factors,
creating niches. Here, I review some of the main com-
ponents present in embryonic and two adult stem cells,
bone marrow and the skin microenvironments as well as
propose the use of new synthetic scaffolds to artificially
recreate stem cell niches in vitro.

STEM CELLS AND NEW BIOCOMPATIBLE MATERIALS

How can we recreate in vitro niches for embryonic
and adult stem cells? Due to knowledge of their natural
environments, we can isolate them and maintain them as
undifferentiated as possible. Although there is a consider-
able amount of knowledge of the main factors required for
stem cell maintenance and differentiation in vitro, many
of the pieces are still missing. If we want to use stem cells

to obtain highly specialized and functional bioengineered
tissues, we need to work with developmental paradigms
where we use artificial materials that mimic stem cell
compartments. If stem cells self-renew in such compart-
ments, we have much better chances in instructing them
for proper differentiation. How can we prepare three-
dimensional environments that will provide an initial
transient scaffold for stem cell homing in vitro? The main
initial components we need are biocompatible, defined,
and synthetic three-dimensional scaffold materials such as
bioceramics, microfiber scale polymers, or nanofiber hy-
drogels. These materials already exist: bioceramics such as
hydroxyapatite (HA) [1]; the polylactic and polyglycolic
acids (PLA and PGA) [2]; and self-assembling peptide hy-
drogels [3]. Why are micro- or nanoscale fibers impor-
tant? They provide the stem cells with an initial three-
dimensional (3D) scaffold. In the first case, HA has suf-
ficient rigidity to be used as artificial bone matrix. PLA
or PGA polymers provide less rigid structures of medium
mechanical strength with 50-100 ym pore size to which
cells adhere and grow on a pseudo 3D environment be-
cause their pore dimensions are in the same order of mag-
nitude of an average cell size. On the other hand, peptide
hydrogels have poor mechanical strength but their pore
size is in between 50—100nm (1,000 times smaller), in
which cells experience a truly 3D environment. They are
free to grow, migrate, contact other cells, change in shape,
and expose membrane receptors in a proper way. The hy-
drogels are permeable to gases, metabolites, and macro-
molecules. Like the natural extracellular matrix, these hy-
drogels embed cells but do not entrap them. The advan-
tage of having defined and artificial materials is immense.
It provides an ideal opportunity to control conditions for
stem cell maintenance, instruction, and differentiation.
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The peptide hydrogel provides an additional advantage.
It mimics the extracellular matrix (ECM) with very low
signaling capacity suggesting that membrane receptor lig-
ands (ie, small molecules, growth factors, cytokines, ex-
tracellular matrix components or their protein domains)
can be easily added to specifically decorate the environ-
ment as desired. The process can be easily industrialized
since the synthesis is controllable (the hydrogel consists
of short peptides, 12—16 residues) and can easily be scaled
up. The advantage of HA, CPC, PLA, and PGA lies in their
mechanical resistance. Eventually, materials can be used
together where physical or mechanical factors can be con-
sidered instructive for stem cell differentiation.

EARLY DEVELOPMENT: A CHANGING
ENVIRONMENT

The inner cell mass (ICM) and the origin
of embryonic stem cells

In the mouse, cell division or cleavage starts 18 hours
after fertilization producing an eight-cell embryo stage in
which the cells are identical. During this stage, the embryo
suffers from compaction so that all the cells adhere to
each other. At the 32-cell stage, the first cell differentiation
program is initiated; the cells on the periphery form the
trophectoderm cell layer (TE), an epithelial monolayer of
cells enclosing an internal group of cells, or the inner cell
mass (ICM) (see Figure 1a). The external membrane of
the TE contains a large amount of glycoproteins that play
an important role in implantation and later on partici-
pate in the formation of the placenta. The ICM is the first
population of embryonic stem cells (ESCs), but their ex-
istence is transitory since they will rapidly differentiate to
form the tissues of the embryo and extraembryonic mem-
branes, such as the allantois and the amnion. Embryonic
stem cells isolated from the ICM have pluripotent capac-
ity. After either transplantation or maintenance in certain
culture conditions in vitro, they can give rise to derivative
cells of each of the three primary germ layers—ectoderm,
mesoderm, and endoderm—but not to an entire organ-
ism. In addition, an intrinsic characteristic of ESCs is their
capacity for symmetric self-renewal and expansion. When
isolated and cultured in proper conditions, they can be ex-
panded to about 10'° undifferentiated cells.

Cell adhesion and the extracellular matrix

Cell adhesion plays an important role in keeping
the ICM intact and is mediated mainly by cadherins
and integrins. E-cadherin cell adhesion is regulated post-
translationally via protein kinase C and other signal-
ing molecules. It coordinates cellular allocation and spa-
tial organization of the ICM in the blastocyst [4]. B1-
integrins are required for normal morphogenesis and
survival of the ICM. The interaction between the [S1-
integrins and extracellular matrix components occurs via
binding to laminin that is secreted by endodermal cells
of the ICM [5]. In addition, proteoglycans, including

embryoglycans composed of poly-N-acetyllactosamines,
with molecular weight over 100 kd, are present on the sur-
face of the compacted cells and play an important role in
maintaining cell adhesion [6]. Embryoglycans carry a se-
ries of developmentally regulated oligosaccharide struc-
tures expressed in the embryonic ectoderm of early em-
bryos, embryonic stem cells, and embryonic carcinoma
cells [7]. The trisaccharide SSEA-1 (stage-specific embry-
onic antigen-1), with the structure Gal(1 — 4)[Fuc(al —
3)]GlcNac, mediates cell adhesion in pre-implanted em-
bryos [8]. Moreover, the embryoglycan-carrying SSEA-
1 epitope might serve as a regulator in the signal trans-
duction pathway of fibroblast growth factor-2 (FGF-2)
and the high-affinity transmembrane receptor fibroblast
growth factor-1 (FGFR-1) [9]. SSEA-1 acts as a recogni-
tion molecule for FGF-2, playing a role in ligand-receptor
dimerization and regulating the mitotic effect of FGF-2 in
embryonic stem cells [9].

Oct-4 and LIF: prerequisites for ESCs pluripotentiality

The transcription factor Oct-4 is essential for stem
cells originated from ICM because it regulates the
expression of downstream genes involved in maintain-
ing ICM pluripotential capacity such as FGF-4. Oct-4 is
expressed in all cells during the cleavage stage and be-
comes restricted to the ICM at the blastula stage [10]. In
addition, the leukemia inhibitory factor (LIF) also con-
trols the self-renewing capacity and undifferentiated state
of ESCs in culture [11]. ESCs can be maintained indefi-
nitely in culture with pluripotential capacity in the pres-
ence of LIF. LIF is expressed in the TE and secreted into
the ICM. LIF operates through heterodimerization of two
different classes of cytokine receptors that are expressed
in ICM cells, the low-affinity LIF receptor (LIF-R), and
the IL-6 signal transducer gp130 [12]. After LIF-induced
dimerization, several tyrosine residues in the cytoplasmic
domain of gp130 are phosphorylated by JAK kinases. The
phosphorylated domain of gp130 interacts with the SH2
domain of the transcription factor STAT3, and, as a con-
sequence, STAT3 is activated. The activation of STAT3 is
sufficient for ESC self-renewal and maintenance in vitro
[13]. Nevertheless, in vivo there is no requirement for
LIF, gp130, or STAT3, indicating that the expansion of
the epiblast is also under the control of unknown par-
allel signaling pathways which are not well known. This
multilateral strategy demonstrates that the developmental
program relies on alternative complementary pathways.

ADULTHOOD: THE CHALLENGE FOR MAINTENANCE

Fighting the changes

During animal development, cells differentiate and
give rise to all tissues of the organism. Adult tissues main-
tain regenerative capacity based on certain minimal pop-
ulations of stem cells that share similar properties with
embryonic stem cells: multipotency and self-renewing ca-
pacity. For instance, adult tissues regulate cell mass and
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FIGURE 1. Schematic representation of the main components present in the blastocyst and bone marrow microenvironment. (a)
Preimplanted embryo (blastocyst) composed by the inner cell mass (ICM) and the trophectoderm cell layer (TE). Abbreviations:
FGF2/FGF, fibroblast growth factor 2 and 1; FGFR-1, fibroblast growth factor receptor-1; LIF, leukemia inhibitory factor; LIFR,
leukemia inhibitory factor receptor; JAK, JAK kinase; STAT, transcription factor STAT; STATa, transcription factor STAT activated.
(b) Adult bone marrow composed by HSCs, hematopoietic stem cells; MSCs, mesenchymal stem cells; and other cellular components
such as adipocytes, stromal cells, hematopoietic lineage, macrophages, dendritic cells, osteoblasts, and adipoblasts. In addition, it
is composed also by extracellular matrix proteins such as types I and II collagen, tenascin, laminin, and the proteoglycan heparan
sulphate. Abbreviations: SDF-1, stroma-derived factor-1; SCE, stem cell factor; CAM, cell adhesion molecule.

shape by a mechanism involving cell expansion based, in
part, on stem cell self-renewal through asymmetric cell di-
vision. This type of cell division produces two distinct cell
daughters: a committed differentiated cell and another
one identical to the original stem cell. In addition, adult
tissues, unlike those in the early embryo, keep the mi-
croenvironment around the stem cells unchanged as long
as possible. Adult stem cells divide slowly in tissues, and in
general, the actively dividing cells are the “transitory cells”
that are already committed to a tissue type. However, in
certain tissue injuries, such as skin wounds, it is clear
that the surrounding progenitor cells or transitory cells

around the damaged tissue rapidly expand by changing
their mitotic activity during healing. Intrinsic regulators,
local chemical signals, and environmental factors govern
this dramatic change in cell division and differentiation.

The bone marrow microenvironment

In the bone marrow, blood cells are constantly pro-
duced from hematopoietic stem cells (HSCs) by a mech-
anism of asymmetric cell divisions that generate a self-
renewing HSC and a progenitor cell. These progeni-
tors ultimately generate all the cells in the hematopoi-
etic lineage: red and white cells, eosinophils, mass cells,
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monocytes, neutrophils, T and B lymphocytes, and oth-
ers [14] (see Figure 1b). But where do HSCs originate
from? During embryogenesis, HSCs develop in the dor-
sal aorta, the yolk sack, and the lateral plate mesenchyme.
This population of HSCs then migrates to the primitive
liver, which becomes the hematopoietic organ of the fe-
tus. Later, before birth, HSCs migrate to the bone mar-
row and stay there indefinitely. How do HSCs both regu-
late their progeny and maintain themselves? Part of the
secret is based on stroma that is composed of many
cells (mainly macrophages, fibroblasts, and adipocytes),
and on an intrinsic property of stem cells self-renewal.
Stromal cells are in intimate contact with HSCs, work-
ing as housekeeping cells by producing and maintaining
the bone marrow microenvironment. These cells appar-
ently interact physically with HSCs by gap junctions, in-
tercellular channels that allow cytoplasmic exchange of
small molecules between stromal cells and HSCs [15].
In addition, stromal cells create a three-dimensional en-
vironment by secreting ECM components, such as type
I-IV collagens, tenascin, laminin, and heparan sulfate
(HS) [16, 17, 18]. Stromal cells are positive for vi-
mentin, muscle actin, CD10, and Stro-1 and negative
for CD45. HSC adhesion to stroma involves a variety of
membrane recognition molecules, such as a4f1 integrins
which bind to fibronectin; the membrane receptor CD44
which interacts with the glucosaminoglycan hyaluronic
acid (HA) [16]; and proteoglycan receptors acting in con-
cert with cell adhesion molecules (CAMs), which recog-
nize heparan sulfate [17]. The large number of CAMs ex-
pressed by the HSCs includes members of the sialomucin
family such as CD34, members of the immonoglobu-
lin family such as CD31 and CD50, and ligands for se-
lectines. This last group belongs to a class of membrane
receptors that especially recognize carbohydrate struc-
tures [18]. Integrin-mediated interactions of HSCs with
ECM have multiple functions including regulation of
proliferation and survival in the bone marrow and ad-
hesion. In addition, stromal cells produce a cytokine,
stroma-derived factor-1 (SDF-1), which is a chemoat-
tractant for CD34" cells. CD34" hematopoietic progen-
itors express the SDF-1 receptor CXCR4, which stimu-
lates transendothelial migration of these cells in presence
of SDF-1 [19]. The soluble membrane-associated stem
cell factor (SCF) participates in stem cell maintenance
and adhesion by interacting with the c-kit receptor on
the HSC membrane. Other stromal factors include FGF-
1 and FGF-2 which contribute (in addition to SDF-1)
to HSC survival, homing, homeostasis, and proliferation
[20].

The bone marrow microenvironment is even more
complex. It contains not only HSCs and stroma but also
another stem cell type, the mesenchymal stem cell (MSC);
adherent macrophages; antigen-presenting cells, or den-
dritic cells; endothelial cells; and mesenchymal origin
cells such as osteoblasts and adipoblasts. The MSCs self-
perpetuate as undifferentiated cells and also undergo dif-
ferentiation to produce all the mesenchymal tissues inside

and outside the bone marrow, including their own mar-
row stroma, bone, cartilage, tendon, fat, and muscle [21].
The MSCs have some characteristic cell surface markers,
such as cytokine receptors (IL-1R, IL-3R, IL-4R, IL-6R,
IL-7R), extracellular matrix receptors (ICAM-I, ICAM-
2, VCAM-1, ALCAM), hyaluronate receptors, integrins
(al, a2, a3, aA, aV, 51, 32, 33, f4), growth factor re-
ceptors (BFGFR, PDGFR), and other receptors (Thy-1,
IFNyR, TGEBR, TNFR) [22]. This basically indicates the
complexity of the cellular and molecular interactions in
which HSCs and MSCs are engaged. Interestingly, from
the structural point of view, the bone marrow can be con-
sidered as a soft tissue surrounded by hard tissue residing
in the internal part of the large bones. In other words, it is
not exposed to strong mechanical loading in the way that
cartilage, tendon, and muscle are. This could be one im-
portant factor in maintaining MSCs undifferentiated, and
the exposure to mechanical forces in combination with
specific microenvironment would dictate the differentia-
tion into cartilage, tendon, or muscle tissues after MSCs
colonize other tissues.

Skin and epidermal stem cells

The skin is of ectodermal origin, and is constantly be-
ing renewed at a high rate. It is organized in four main
layers. The innermost layer, a thin layer of cells called
the basal layer, is covered with a thick layer of cells, the
spinous layer. Above these layers is the granular layer,
which is covered with dead cells, or stratum corneum (our
external skin). The basal layer undergoes active mitosis,
constantly producing cells that migrate to the upper lay-
ers and terminally differentiate. The skin is a dynamic
flow of cells from the inner basal layer to the surface. The
epidermal stem cells, or high proliferative capacity ker-
atinocytes, reside in the basal layer. Interestingly, the ad-
herent properties of the epidermal stem cells and the high
content of the extracellular matrix are what keep these
cells attached to their microenvironment. They express
surface integrins that adhere to collagen type IV (a2f51
receptor) and to fibronectin (581 receptor), as well as
low levels of the intercellular junction protein, E-cadherin
[23]. This suggests that they interact strongly with the ex-
tracellular matrix and poorly with each other. In addition,
epidermal stem cells contain a high level of f-catenin,
suggesting that Wnt/Frizzled signaling is involved in the
regulation of cell proliferation/differentiation of epider-
mal stem cells. Moreover, 5-catenin has been shown to
interact with E-cadherin, thus promoting cell adhesion.
An excess of -catenin will interact with other proteins
such as Tcf, Groucho, SMAD4, CtBP, and CBP to form
a transcription complex that interacts with DNA, regu-
lating transcription of target genes such as CyclinD1 (cell
cycle commitment) and ¢-MYC (exit from the stem cell
compartment) [24, 25]. Exit of the stem cell compart-
ment is produced by a decrease in the levels of integrins,
thus reducing adhesion to the ECM. As a consequence,
epidermal stem cells enter cell cycle arrest and terminal
differentiation.
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CONCLUSIONS

In summary, some examples of essential biomaterials
and stem cell niches have been described. In this final part,
our intention is to illustrate to the readers to some exam-
ples of the combined use of two emerging disciplines, ma-
terial science and stem cell technology. For instance, with
the potential of building better stem cell environments,
can we find conditions in which ESCs can be instructed in
vitro to become an adult stem cell by controlling its mi-
croenvironment? By recreating developmental programs
in designed 3D environments, ECSs can experience a
rational sequence of factors (growth factors, extracellular
matrix components, mechanic stimulus) required to
mimic embryonic development. In a similar way, HSCs
can be seeded in hydrogels loaded with purified extracel-
lular matrix components mimicking bone marrow. The
maintenance and expansion capacity of long-term HSCs
can be challenged into these new compartments as well
as their capacity to generate blood components. It will
be extremely important to artificially regenerate blood or
some of their main components in vitro. Can mechanical
inputs be considered as a part of stem cell instructive
factors? For instance, tubes of PGA mimicking arteries
and veins can be built, and their microscale pores can be
filled with hydrogel, clonally derived stem cells, microen-
vironment decorations, and flow frequencies applied.
This will provide a similar tissue environment present
during vertebrate circulatory system development. Simi-
larly, for bone and cartilage, mesenchymal stem cells in
the right microenvironment can be subjected to mechan-
ical loading with a program that can recapitulate limb
movement and mechanical strength during development.
Finally, the skin area can also be explored in more detail.
A basal layer-like structure can be easily obtained simply
by applying collagens, laminins, and fibronectins onto
a porous membrane where keratinocytes will attach, ac-
tively divide, and migrate to an upper layer of specifically
decorated hydrogel. The flow of cells from the inner to
the upper layers can be reproduced as in normal tissues
with the hope to obtain better artificial skin. The use of
new designed biocompatible material in combination
with clonally derived stem cells is an emerging discipline
with unlimited potential for future reparative medicine.
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