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Background: Interacting proteins modulate the activity of NF-�B/RelA transcription factor and expression of its targets.
Results: By analyzing gene expression, protein binding, and DNA binding, we inferred and characterized 8349 such
modulations.
Conclusion: Different modulator groups affect separate pathways.
Significance:We provide new insight into the activity of NF-�B/RelA. Our inference model can be applied to other processes
and pathways.

Modulators (Ms) are proteins that modify the activity of tran-
scription factors (TFs) and influence expression of their target
genes (TGs). To discover modulators of NF-�B/RelA, we first
identified 365 NF-�B/RelA-binding proteins using liquid chro-
matography-tandemmass spectrometry (LC-MS/MS).We used
a probabilistic model to infer 8349 (M, NF-�B/RelA, TG) trip-
lets and their modes of modulatory action from our combined
LC-MS/MS and ChIP-Seq (ChIP followed by next generation
sequencing) data, published RelA modulators and TGs, and a
compendium of gene expression profiles. Hierarchical cluster-
ing of the derived modulatory network revealed functional sub-
networks and suggested new pathways modulating RelA tran-
scriptional activity. Themodulators with the highest number of
TGs and most non-random distribution of action modes (mea-
sured by Shannon entropy) are consistent with published
reports. Our results provide a repertoire of testable hypotheses
for experimental validation. One of the NF-�B/RelA modula-
torswe identified is STAT1. The inferred (STAT1,NF-�B/RelA,
TG) triplets were validated by LC-selected reaction monitor-
ing-MS and the results of STAT1 deletion in human fibrosar-
coma cells. Overall, we have identified 562 NF-�B/RelAmod-
ulators, which are potential drug targets, and clarified
mechanisms of achieving NF-�B/RelA multiple functions
through modulators. Our approach can be readily applied to
other TFs.

NF-�B is a key human transcription factor for stress-associ-
ated processes. It is involved in many cellular processes includ-

ing innate immunity (1), inflammation (2), stress response (3),
regulation of apoptosis (4), and regulation of proliferation and
differentiation (5). Dysregulation of NF-�B activity is linked to
inflammatory disorders (6), autoimmune diseases (7), meta-
bolic diseases (8), and cancers (9). Such multiple NF-�B func-
tions are achieved throughmodulation (10, 11) and cooperative
binding with other transcription factors (12). RelA (p65) is one
of five components of the NF-�B transcription factor complex
inmammals (10). Because of the importance and complexity of
the cellular processes regulated by NF-�B pathways, elucidat-
ing and characterizing modulators of NF-�B will provide
important insights into the role of modulation in fine-tuning
transcriptional regulations and conferring specificity as well as
identify potentially promising drug targets.
Gene expression profiles measured under various conditions

provide important information on the regulatory relations
between genes. Gene regulatory networks have been con-
structed using reverse engineering methods based on corre-
lation of gene expression profiles (13). These methods
include conditional information (13, 14), correlation coeffi-
cient, machine learning (15), and statistical models (16).
Recently, heterogeneous data integration of promoter
sequence and gene expression profiles has also been used to
infer gene regulation patterns (17, 18).
Modulators (Ms)2 are proteins that modify the activity of a

transcription factor (TF). Modulators often act by binding
directly to the TFs to affect the expression of a target gene. The
outcome of modulation can be classified into the six possible
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action modes: inhibition attenuation, inhibition enhancement,
inhibition inversion, activation inversion, activation enhance-
ment, and activation attenuation (19). Including analysis of the
modulators facilitates elucidation of a biologically realistic reg-
ulatory network. Therefore, instead of pairs (TF, TG) that lead
to traditional regulatory networks, triplets (M, TF, TG) and the
more complex regulatory and modulatory networks inferred
based on significant triplets should be considered.
Several computational methods for inferring (M, TF, TG)

triplets from gene expression profiles have been developed in
recent years including three-way mutual information (20),
MINDy (21), GEM (19), MIMOSA (22), and MONSTER (23).
MINDy uses the difference between conditional mutual infor-
mation at low and high modulator expression and has been
applied to identify genome-wide modulators of MYC. How-
ever, it has a major limitation in that it cannot identify mod-
ulators with more than one mode of activity (activator or
repressor). MIMOSA applies a mixture model and maxi-
mum expectation method to predict modulators of signal
transducers and activators of transcription 1 (STAT1). The
method is computationally intensive and cannot differentiate
between modulators and targets of the TF. Finally, MONSTER
only considers kinases as potential modulator candidates. Nei-
ther MIMOSA nor MONSTER has been experimentally vali-
dated. GEM (19) aims to identify modulators of the androgen
receptor by constructing a non-linear model of the three-way
interaction between the activity levels of the two “inputs” (TF
and M) and the “output” (TG).
In this work, we predicted modulators and the correspond-

ing TGs of the NF-�B/RelA transcription factor based on the
approach described previously (19). As input for modulatory
triplet inference, we used de novo identified RelA-binding pro-
teins and its target genes identified, respectively, by affinity
tandem mass spectrometry (LC-MS/MS) and chromatin
immunoprecipitation followed by next generation sequenc-
ing (ChIP-Seq). The new data were supplemented with pub-
lished data on binding proteins and target genes of the
NF-�B/RelA pathway.

EXPERIMENTAL PROCEDURES

Probabilistic Models for Triplet Prediction

The probabilistic model is similar to Babur et al. (19). The
expected expression of the target gene TG, E(TG), in continu-
ous value is modeled as follows.

E�TG� � Hc � Hf �F� � Hm�M� � G�M, F� (Eq. 1)

Here, F,M, and TG are the transcription factor, its modulator,
and the affected target gene, respectively.Hc is the basal expres-
sion level of the TG,Hf andHm represent the effect of F andM
alone on TG, respectively.G represents the effect of interaction
betweenM and F on TG and varies for different genes. Its mag-
nitude may be interpreted as the modulation effect. Our task
was to find genes with G significantly different from zero.
Accordingly, we approximated the probability that TG is highly
expressed, p(TG � 1), as follows.

P�TG � 1� � �c � �f F � �mM � �M � F (Eq. 2)

where �c represents the basal expression of TG, �f is the effect
of F only (whenM is low), �m is the effect ofM only (at low F),
and � is the interaction effect of F andM when both are highly
expressed. F,M, and TG are equal to 1 if the ranked expression
of the corresponding gene is in the upper tertile. Conversely, if
it is in the lower tertile, F,M, and TG are set to zero. If � is not
statistically significantly different from zero, the data do not
have enough evidence to support the hypothesis thatMmodu-
lates the effect of F on the target TG.
To estimate�c,�f,�m, and �, we first calculated p(TG� 1�M,

F), the proportions of TG � 1 with different combination of
states ofM and F. Specifically, p(TG � 1�M � 1, F � 1) where
TG � 1 with M � 1 and F � 1 serves as the observed case,
whereas p(TG � 1�M � 1, F � 0), p(TG � 1�M � 0, F � 1), and
p(TG� 1�M� 0, F� 0) are the respective control cases with low
M, F, or both. �, �, and � were then estimated by Equation 3.

�̂c � p�TG � 1�M � 0, F � 0� (Eq. 3)

Here, �̂c corresponds to the proportion of TG � 1 to TG � 1
plus TG � 0 when expression of bothM and F is low.

�̂f � p�TG � 1�M � 0, F � 1� � p�TG � 1�M � 0, F � 0�

(Eq. 4)

�̂m � p�TG � 1�M � 1, F � 0� � p�TG � 1�M � 0, F � 0�

(Eq. 5)

�̂f � p�TG � 1�M � 1, F � 1� � p�TG � 1�M � 1, F � 0�

(Eq. 6)

�̂m � p�TG � 1�M � 1, F � 1� � p�TG � 1�M � 0, F � 1�

(Eq. 7)

�̂ � �̂m � �̂m � �̂f � �̂f � p�TG � 1�M � 1, F � 1�

� p�TG � 1�M � 0, F � 1� � p�TG � 1�M � 1, F � 0�

� p�TG � 1�M � 0, F � 0� (Eq. 8)

Estimation of the above parameters can be found in Babur et al.
(19).
Assuming that M influences TG via M, M must act on TG

when F is highly expressed; i.e. �̂ and �̂m must be non-zero,
whereas �̂m is greater in absolute value or has a different sign
than �̂m.

H1, �̂ � 0; H2, �̂m � 0; H3,
�̂m

�̂m

	 1 (Eq. 9)

The estimation of the variance and p value for rejecting the
above three null hypotheses H1, H2, and H3 can be found in
Babur et al. (19). The predicted triplets are ordered according to
the p values of �̂ and �̂m; the smaller the p value, the higher the
significance of the predicted triplet. The requirement for a sig-
nificant �̂ is crucial for detecting the interaction effect as
opposed to a combination of independent actions of M and F
separately.
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Classification of the Triplet Action

Unmodulated TF activity was classified into three categories
according to �̂f: activation if positive, inhibition if negative, and
inactive if zero. By comparing �̂and �̂, modulators are also clas-
sified into three categories of action: enhance, attenuate, or
invert the activity of the TF. Specifically, if �̂f is non-negative
and the �̂f value is greater than �̂f, the actionmode is activation
enhancement. If �̂f is positive and �̂f is less than �̂f and non-
negative, it signifies activation attenuation, and if �̂f is positive
and �̂f is negative, it signifies activation inversion. If �̂f is non-
positive and the �̂f value is smaller than �̂f, the action mode is
inhibition enhancement. If �̂f is negative and �̂f is greater than �̂
and non-positive, the action mode is inhibition attenuation,
and if �̂f is negative and �̂f is positive, the action mode is inhi-
bition inversion (see Table 1).

A Pass Strategy Based on Shannon Entropy Filter

We further filtered the predictedmodulators by the Shannon
entropy of the distribution across the six action modes by each
modulator respectively predicted from binding data. Modula-
tors with Shannon entropy significantly smaller than expected
from random distribution were classified as specific. The null
distribution of the Shannon entropy depends on the number of
targets and is obtained by generating the six actionmodes given
the number of TGs in a simulation repeated 10,000 times. The
modulators were ranked according to the largest number of
TGs. The calculation of the Shannon entropy of the action
mode distribution for each modulator is as follows.

H � ��i � 1
6 pi log pi for pi �

pi�i � 1
6 pi

(Eq. 10)

where pi is the proportion of the number of targets in each
actionmode i, andH is the entropy of actionmode distribution
for each modulator.

Hierarchical Clustering of M-TG Networks

To identify the modules of the network composed by RelA
modulators and their affected target genes, we applied hierar-
chical clustering (24) to matrices of modulator-target interac-
tions. Hierarchical clustering has been chosen to reflect the
coincidence between the modular structure of the modulation
network and themultiple levels of functional annotations of the
genes involved (see also “Results”). The matrix entries corre-
spond to the value of �̂, which represents the effect ofM when
F is highly expressed, and �̂m, the interaction effect ofM and F
when both are highly expressed. Here we used theMatlab clus-

tergram function with default parameters and parsed the
M-TGnetwork into a hierarchy of groups according to the sim-
ilarity of the value of �̂ (the effect of M-F interaction) and the
value of �̂m (the effect of M when F is high) that measures the
common neighbors of M and T, respectively. The hierarchical
clustering is agglomerative because we proceeded through the
algorithm by adding links to the network. We applied the clus-
tering procedure to triplets satisfying (�log10 p value of �̂) � 4
and (�log10 p value of �̂m) � 4. To obtain the clustering pre-
sented in Fig. 4, we only used the modulators and TGs involved
in significant predicted interactions and not involved in feed-
back loops. Specifically, we only used the 861 TGs for which
there was at least one triplet satisfying the p value thresholds.
The modulators have been selected analogously with at least
one significant triplet, giving 493 candidate modulators of
RelA.

Gene Expression Profiles

We used gene expression profiles of 2158 tumor samples
published by the Expression Project for Oncology (expO) to
characterize each gene. expO is based on theGeneChipHuman
GenomeU133 Plus 2.0 array platform. The variety of the tumor
samples guarantees enough perturbation for studying three-
point (M, NF-�B/RelA, TG) interaction.
Because gene expression is noisy as reported (25), unsuper-

vised discretizationmethods were usually used to discretize the
gene expression profiles in gene regulatory network construc-
tion including equal width discretization, equal frequency dis-
cretization, K-means, column K-means discretization, and
bidirectional K-means discretization. We discretized the
expression values by rank ordering across genes and dividing
the ranked 2158 expression values of each gene across experi-
ments into three bins, labeled as “1” (upper 719 experiments
where the gene ranked highest), “0” (lower 719 experiments
where the gene ranked lowest), and “middle” (720 remaining
experiments). Based on the areas under receiver-operator curve
and precision-recall curve in predicting RelA modulators (see
Fig. 1), we found that varying the bin size only weakly affected
the prediction of RelA triplets. Thus, we used tertiles as bins.
Unless specified otherwise, we predicted triplets fromprobe set
profiles with the above discretization. For some of the genes,
multiple probe sets are available on the U133 Plus 2.0 microar-
ray. Because the individual probe sets may correspond to dif-
ferent isoforms of the gene and thus be responsible for different
functions, we treated each probe set of modulators and target
genes separately in the prediction algorithm. Also, there are

TABLE 1
Interpretation of the categories of modulation and the constraints that the categories satisfy
“�” and “�,” significantly positive and negative values, respectively; “0/�,” not significantly different from zero or significantly negative values; “0/�,” not significantly
different from zero or significantly positive values; “�/�” and “�/�,” non-zero values. Moreover, the classification is for triplets where the null hypotheses in Equation 10
were also rejected.

Modulation classification Explanation �̂ �̂f �̂f �̂m �̂f � �̂m

Inhibition attenuation TF, alone, inhibits TG; M attenuates TF activity � � 0/� �/� 0/�
Inhibition enhancement Modulated TF inhibits TG � 0/� � � �
Inhibition inversion TF, alone, inhibits TG; M inverts TF activity � � � � �
Activation inversion TF, alone, activates TG; M inverts TF activity � � � � �
Activation enhancement Modulated TF activates TG � 0/� � � �
Activation attenuation TF, alone, activates TG; M attenuates TF activity � � 0/� �/� 0/�
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three probe sets corresponding to RelA on the array platform:
201783_s_at, 209878_s_at, and 230202_at. We considered the
first two individually and ignored the third one, 230202_at,
because of its low expression in the expO experiments.

Collection of Binding Proteins and Target Genes
of RelA from Literature

We have obtained the list of RelA-binding proteins from the
Protein Interactions and Network Analysis (PIANA) database.
287 of those 297 proteins (supplemental Data File S1, Sheet 1)
have probe sets available in the expOdatabase.Here, we refer to
these previously reported binding proteins as “existing” as
opposed to the newly identified proteins that bind toRelA. Sim-
ilarly, the existing RelA targets (TGs) were collected.3 424 TGs
(supplemental Data File S2, Sheet 2) have been obtained with
available probe sets and expression values in the expOdatabase.
These existing binding proteins and TGs combined with the

newly detected proteins serve as our primary set of candidate
genes involved in the modulatory network of RelA-regulated
transcription. The functional annotations of the modulators
and TGs were characterized using BiNGO software (26) in
Cytoscape (27).

Identification of RelA-binding Protein by Affinity
Tandem Mass Spectrometry

Materials—All reagents were American Chemical Society
grade or higher. All solvents used including water, methanol,
and acetonitrile (ACN) were LC/MS grade. Sequence grade
modified trypsin was purchased from Promega (Madison,WI).
Recombinant TNF� was from PeproTech (Rocky Hill, NJ). The
antibody used was rabbit anti-NF-�B/RelA (sc-372) antibody
from Santa Cruz Biotechnology (Santa Cruz, CA).
Cell Culture—Human A549 pulmonary epithelial cells

(American Type Culture Collection (ATCC)) were grown in
F12K medium (Invitrogen) with 10% fetal bovine serum, 100
units/ml penicillin, and 100 
g/ml streptomycin at 37 °C in a
5% CO2 incubator as described previously (28).
Co-immunoprecipitation—4–6� 106A549 cellswere trans-

fected by electroporation in suspension with 10 mg/ml
poly(I:C) (Sigma) according to the manufacturer’s recommen-
dation (Amaxa). After 4 h, cells were washed twice with phos-
phate-buffered saline (PBS; 137 mM NaCl, 10 mM phosphate,
2.7 mMKCl, pH 7.4), and nuclei were prepared by lysis in hypo-
tonic buffer (29). Protein-chromatin cross-linking was per-
formedusing an optimized two-step protocolwith disuccinimi-
dyl glutarate (Pierce) followedby formaldehyde (30). The nuclei
were lysed in Lysis Buffer (1% SDS, 50mMTris, pH 8.0, protease
inhibitor mixture).
Equal amounts of cross-linked protein were immunoprecipi-

tated overnight at 4 °C with 4 
g of rabbit anti-RelA antibody
diluted 1:4 in ChIP dilution buffer (50 mM Tris-HCl, pH 7.5, 1
mM EGTA, 1mM EDTA, 1%Triton X-100, 0.27 M sucrose, 0.1%
(v/v) �-mercaptoethanol, 1 mM sodium orthovanadate, 50 mM

sodium fluoride, 5 mM sodium pyrophosphate, Complete pro-
teinase inhibitor mixture, 1 mM phenylmethylsulfonyl fluo-
ride). Immunoprecipitates were then collected with 40 
l of
protein A magnetic beads (Dynal Inc.) that were preblocked in
200
l of acetylated casein (0.2mg/ml) at room temperature for
2 h (31). Nonspecific IgGwas used as a negative control. Immu-
noprecipitates were washed five times in PBS.
On-bead Tryptic Digestion—The beads were resuspended in

30
l of 50mMammoniumhydrogen carbonate, pH7.8. 20
l of
0.1 
g/
l trypsin was added. The samples were mixed and
trypsinized by gentle shaking overnight at 37 °C. After diges-
tion, the supernatant was collected. The beads were washed
with 50 
l of 50% ACN three times, and the supernatant was
pooled and dried (4).
In-gel Tryptic Digestion—The protein mixtures obtained

from immunoprecipitation of anti-RelA antibody and nonspe-
cific IgGwere separated by SDS-PAGE. The proteinswere visu-
alized by SYPRO� Ruby staining. The protein bands were cut
from the gel and subjected to in-gel trypsin digestion as
described previously (5). Briefly, the gel slice was cut into small
particles (�1 mm3) using a scalpel. The resulting gel particles
were destained in 1 ml of water/methanol solution (50:50, v/v)3 T. Gilmore, personal communication.

FIGURE 1. Receiver-operator curve and precision-recall curve in predict-
ing RelA modulators. A, area under the receiver-operator curve (ROC) of
modulator prediction by varying the thresholds of bins (see “Experimental
Procedures”) with four types of proteins as benchmark positives: new binding
proteins (newly identified binding proteins of RelA in this study), existing
binding proteins (binding proteins collected from the PIANA database and
other sources), overlap of two new sets (overlapping binding proteins of RelA
from our two LC-MS/MS experiments), and all binding proteins (combined
binding proteins of RelA of newly identified binding proteins in this study and
those collected from the database). B, area under the precision-recall curve of
modulator prediction by varying the thresholds of bins (see “Experimental
Procedures”) with all binding proteins.
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containing 25mMNH4HCO3, pH 8.0 three times with the solu-
tion changed every 10 min. The destained gel was washed in 1
ml of an acetic solution (acetic acid/methanol/water, 10:40:50,
v/v/v) for 3 h with the solution changed every 1 h. The resulting
gel was soaked in 1 ml of water twice with the solvent changed
every 20 min. The gel was then transferred to a 0.5-ml micro-
centrifuge tube and dehydrated by soaking the gel in 100%ACN
until it became opaque white. The solution was removed, and
the gel was dried in a SpeedVac for 20–30 min. The dried gel
was rehydrated with an adequate amount of trypsin digestion
solution (10 ng of trypsin/
l in 50mMNH4HCO3, pH 8.0). The
digestion was carried out at 37 °C overnight. To extract the
tryptic digest, the gel was soaked in 40 
l of extraction solution
(ACN/TFA/water, 50:5:45, v/v/v) for 60min with a Vortex, and
the extraction solution was carefully removed with a gel-load-
ing pipette tip. Extractionwas repeated once. The extracts were
pooled and dried with a SpeedVac.
LC-MS/MS—HPLC/MS/MS analyses were performed in an

LTQ Velos Orbitrap mass spectrometer (Thermo Scientific,
San Jose, CA) coupled on line to a nano-HPLC system (Agilent
1100 Nano Pump, Agilent Technologies, San Jose, CA) and
nanospray source. Three microliters of the peptide solution in
buffer A (5% acetonitrile, 94.9% water, 0.1% acetic acid; v/v/v)
was manually injected and separated in a nano-HPLC C18 col-
umn (100-mm length � 75-
m inner diameter, 5-
m particle
size, 100-Å pore diameter). The peptides were eluted from the
column with a linear gradient of 5–70% buffer B (99.9% aceto-
nitrile, 0.1% acetic acid; v/v/v) in buffer A over 45 min. The
eluted peptideswere electrosprayed directly into themass spec-
trometer. The MS/MS spectra were acquired in a data-depen-
dent mode. The full MS scan was performed in the Orbitrap
with a mass resolution of 60,000. The six strongest ions in each
MS spectrumwere automatically selected for collision-induced
dissociation and analyzed by the LTQ Velos.
Protein Identification and Spectral Counting—The resulting

spectra were used to identify protein candidates in the target-
decoy Swiss-Prot human protein database (downloaded on
August 25, 2011) with the Proteome Discoverer 1.1 search
engine (Thermo Scientific). The cutoff of the false discovery
rate of peptide identifications was 1%. The normalized spectral
abundance factor (NSAF) value for each protein was calculated
as described (6).

(NSAF)k �

�SpC

L �
k

�i � 1
N �SpC

L �
i

(Eq. 11)

in which the total number of tandem MS spectra matching
peptides fromprotein k (SpC)was divided by the protein length
(L) and then divided by the sum of SpC/L for all uniquely iden-
tified proteins in the data set.
LC-Selected Reaction Monitoring (SRM)-MS—The LC-SRM-

MS analysis was performed with a TSQ Vantage triple quadru-
pole mass spectrometer equipped with a nanospray source
(Thermo Scientific). The on-line desalting and chromatogra-
phy were performed using an Eksigent NanoLC-2D HPLC sys-

tem (AB SCIEX,Dublin, CA). An aliquot of 10
l of each tryptic
digestwas injected on aC18 peptide trap (AgilentTechnologies)
and desalted with 0.1% formic acid at a flow rate of 2 
l/min for
45 min. Peptides were eluted from the trap and separated on a
reversed phase nano-HPLC column (PicoFritTM; 75 
m � 10
cm; tip inner diameter, 15 
m) packed in house using Zorbax
SB-C18 (5-
m-diameter particles; Agilent Technologies). Sep-
arations were performed using a flow rate of 500 nl/min with a
20-min linear gradient from 2 to 40% mobile phase B (0.1%
formic acid, 90% ACN) in mobile phase A (0.1% formic acid)
followed by a 0.1-min gradient from 40 to 90% mobile phase B
and 5 min at 90% mobile phase B. The TSQ Vantage was oper-
ated in high resolution SRM mode with Q1 and Q3 set to 0.2-
and 0.7-Da full-width half-maximum. All acquisition methods
used the following parameters: 1800 V ion spray voltage, a
275 °C ion transferring tube temperature, a collision-activated
dissociation pressure at 1.5 millitorrs, and the S-lens voltage
used the values in the S-lens table generated duringMS calibra-
tion (4).

Identification of RelA Target Genes by ChIP-Seq

We prepared the list of candidate target genes of RelA based
on the result of our previous ChIP-Seq experiment (32). To
identify DNA sequences binding to RelA, covalent cross-link-
ing, segmentation of DNA, and anti-RelA antibody precipita-
tion was performed in A549 cells. ChIP-Seq data of RelA were
obtained by Illumina sequencing, resulting in two fastq files,
one for the TNF treatment at 0 min (TNF-0) and one for the
TNF treatment at 30 min (TNF-30). As reported (32), our in-
house Instant Sequencing softwarewas used to trim the reads at
the location where one base was called with a confidence inter-
val greater than 99% (corresponding to a phred score	20 and p
value of 0.01) (33), and only reads that were at least 35 bp long
were preserved in the corresponding fasta file. The TNF-0 and
TNF-30 samples contained 17,862,626 and 12,624,879 quality
filtered reads, respectively.We used Bowtie v0.12 software (34)
to map the filtered reads to the human genome assembly
GRCh37/hg19.We rejected reads that hadmismatches or were
non-uniquely mappable, leaving 77% of reads in the TNF-0
sample and 81% for the TNF-30 sample. ChIP-Seq binding
peaks were called using MACS v0.14 (35) with parameters for
calling peaks in human data with the TNF-0 sample as the con-
trol and the TNF-30 sample as the treatment. In total, 20,733
peaks were called.
After parsing by Instant Sequencing, we selected the best

4195 peaks with a MACS significance score of at least 200. For
gene assignment, Instant Sequencing was then used to find
transcription start sites of known human genes proximal to
ChIP-Seq peaks using annotations from the GENCODE v12
database (36, 37). Peaks whose summits were within a distance
of 3 kb upstream or downstream of a known transcription start
site of a gene were identified. For each ChIP-Seq peak, a list of
transcription start sites was ranked by the increasing order of
their distance from the summit of a ChIP-Seq peak. Next, the
gene with its transcription start site closest to the summit of a
peakwas found and reported alongwith theMACS significance
score of that peak. When multiple peaks were proximal to the
same gene, the MACS significance scores for each peak were
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added together, and thesumwasreportedasa single score for that
gene. Finally, a list of proximal genes ordered by their combined
significance scores (supplemental Data File S2, Sheet 1) was gen-
erated for finding enriched gene ontology (GO) functions.

Enrichment Analysis of Predicted TGs Composing the
Predicted Triplets

Enrichment of the predicted TGs in newly identified and
existing TGs was assessed by hypergeometric cumulative dis-
tribution function (CDF) using the hygecdf function inMatlab.
The function computes the hypergeometric CDF given the size
of the population, the number of items with the desired char-
acteristic, and the number of samples. The final p value is cal-
culated by 1 � CDF.

Experimental Validation on (STAT1, NF-�B/RelA, TG) Triplets

An interaction between STAT1 and RelA has been previ-
ously implicated by co-localization experiments based on con-
focal fluorescence microscopy (38). To verify the interaction
between RelA and STAT1, we used immunoprecipitation and
quantitative stable isotope dilution-SRM-MS to measure the
enrichment of STAT1 in the sample obtained from the immu-
noprecipitation of anti-RelA antibody. The nuclear extract of
A549 cells were incubated with anti-RelA antibody and non-
specific IgG (negative control), respectively, as depicted under
“Experimental Procedures.” The proteins associated with the
antibodies were pulled down and subjected to LC-SRM-MS to
quantify the level of STAT1 in each sample.
Targets of the STAT1-RelA interaction were validated by

STAT1 knock-out and poly(I:C) stimulation. Specifically, the
real action modes of the predicted triplets of (STAT1, NF-�B/
RelA, TGs) were validated by comparing the expression level of
a target gene candidate in four conditions consisting of STAT1
wild-type human 2f (STAT1�/�) cell line and knock-out U3A
(STAT1�/�) combined with the absence or presence of
poly(I:C) stimulation in human fibrosarcoma cells. The exper-
imental action modes were then compared with the predicted
action modes.

RESULTS

Implementation of the Probabilistic Model for (M, TF, TG)
Triplet Prediction—We implemented an algorithm for predict-
ing (M, TF, TG) triplets based on a compendium of 2158
expression profiles. The underlying probabilistic model (19) of
triplet action depends on four basic parameters, �c, �f, �m, and
�, that correspond to the basal level of a TG, the dependence of
TG expression on TF, the dependence on theM, and the inter-
active effect of the M and TF on the TG. For accurately pre-
dicting (M, TF, TG) triplets, two partial effects and one total
effect of the M and TF on the TG were also estimated,
respectively, by the parameters �m, �f, and �f � �m (“Exper-
imental Procedures”). The existence of a functional (M, TF,
TG) triplet is inferred if both �̂ (the estimate of �) and �̂m
(the estimate of �̂m) are significantly different from zero. The
corresponding p values were estimated as described under
“Experimental Procedures.”
According to the estimated values of the parameters �, �f, �f,

and �m for the given triplet that correspond to the effect of TF

on TG and the interactive effect of M and TF, the inferred
triplets were categorized into one of six action modes: inhibi-
tion attenuation, inhibition enhancement, inhibition inversion,
activation inversion, activation enhancement, and activation
attenuation. Approximately 2% of the triplets did not have an
assigned category because the estimated parameters did not
pass the adopted significance thresholds. The unclassified trip-
lets were not considered in further analysis. Among the modu-
lators ofNF-�B/RelA, 36% have prevalent actionmodes of their
triplets, whereas other modulators act in many or all action
modes. We formalized the distinction between specific and
general modulators using the entropy of the distribution of the
action modes as a measure of specificity. The entropy is com-
pared with the entropy expected of a nonspecific modulator
with the same number of affected targets (“Experimental
Procedures”).
In three of the six actionmodes (inhibition attenuation, inhi-

bition inversion, and activation enhancement), the parameter �̂
is significantly positive, and the TG is predominantly up-regu-
lated by M; that is, M is a dominant activator. Conversely, for
inhibition enhancement, activation inversion, and activation
attenuation, �̂ is significantly negative, and the modulator is a
dominant inhibitor.
Moreover, a modulator is classified as an agonist of NF-�B/

RelA if it prevalently regulates the TGs in the same direction as
NF-�B/RelA (up-up- or down-down-regulation), i.e.with inhi-
bition enhancement and activation enhancement modes. Con-
versely, if M regulates its TGs prevalently in the opposite direc-
tion to NF-�B/RelA (up-down- or down-up-regulation) it is
considered an antagonist. Note that a dominant activator can
be an agonist or antagonist of NF-�B/RelA and likewise an
inhibitor. For all four cases (activator, inhibitor, agonist, and
antagonist), we used the hypergeometric test to assess the sig-
nificance of the dominant category.
Input Data for Inferring NF-�B/RelA Modulatory Network—

Our goal was to characterize the dependences between the
modulators and corresponding target genes of NF-�B/RelA.
We expected that the most significant (M, NF-�B/RelA, TG)
triplets would contain modulators and TGs with prior associa-
tion with NF-�B/RelA. Therefore, we focused on triplets in
which the candidatemodulator was independently indicated as
anNF-�B/RelA interactor and the candidate target was a target
gene ofNF-�B/RelA.Using such restricted sets of candidateMs
andTGs allowedminimizing the false discovery rate in inferred
triplets. Before the triplet prediction and the following modu-
latory network inference, NF-�B/RelA modulators (NF-�B/
RelA-binding proteins) and the TG candidates were first col-
lected as follows.
Candidate Modulators—We postulated that the modulators

of NF-�B/RelA would be enriched in proteins physically inter-
acting with the NF-�B/RelA protein. To identify candidate
NF-�B/RelA modulators, we performed two independent LC-
MS/MS experiments in which 365 NF-�B/RelA-associated
proteins were identified (supplemental Data File S1, Sheets
2–4). Additional RelA interactors were found by mining the
PIANA database resource (see “Experimental Procedures”)
containing literature and other sources of data including the
HPRD (39) and BioGRID databases (40) and existing RelA tar-
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gets (TGs).3 We thus collected 297 proteins that have been
previously reported to interact with NF-�B/RelA (supplemen-
tal Data File S1, Sheet 1). We refer to these 297 proteins as
“previously known binding proteins” of NF-�B/RelA. There are
31 proteins present in both our LC-MS/MS data and the
PIANA data set.
The functional categories enriched in the newly identified

NF-�B/RelA-associated proteins are shown in Table 2. The
mapped protein network of all newly identified NF-�B/RelA-
associated proteins is shown in Fig. 2. Mapping the newly iden-
tified 365 NF-�B/RelA-associated proteins into the global pro-
tein-protein interaction network from the IntAct database (41)
by PPI spider (42) shows that the most enriched pathways are
TNF receptor signaling pathway and TNF�/NF-�B (supple-

mental Data File S3). It demonstrates the relevance of the
experimentally identified proteins to the biological context of
RelA association. Functional analysis of the newly identified
RelA-binding proteins (supplemental Data File S3) confirms
the established biological functions of NF-�B/RelA, such as
enrichment in the following GO categories: response to DNA
damage stimulus; cell cycle progress; post-transcriptional reg-
ulation of gene expression; regulation of translation; and regu-
lation of protein ubiquitination, microtubule cytoskeleton, and
chromatin organization.
The combined set of LC-MS/MS data and existing RelA-

associated proteins contains 632 unique proteins. Within this
group, the mRNA expression profiles are available for 620 of
the proteins, and these were selected for further analysis

TABLE 2
Representative enriched functional categories of the new identified RelA associated proteins

Functional categories Protein name p value -Fold ratio

DNA binding factors and enzymes
DNAmetabolic process XRCC5, SSRP1, AIFM1, XRCC6, SMC3, MCM5, NONO, RFC5,

TFAM, SET, MCM7, PPIA, SFPQ, TOP2A
0.013 2.6

DNA recombination NONO, XRCC5, PPIA, SFPQ, XRCC6 0.044 4.6
DNA integration XRCC5, PPIA, XRCC6 0.009 16.9
Response to DNA damage stimulus RFC5, NONO, XRCC5, SSRP1, MCM7, MYO6, AIFM1, SFPQ,

XRCC6, TOP2A, SMC3
0.032 2.7

DNA ligation XRCC6, TOP2A 0.036 21.2
DNA-dependent ATPase activity RFC5, XRCC5, G3BP1, XRCC6, TOP2A 0.002 10.0
DNA helicase activity XRCC5, MCM7, G3BP1, XRCC6 0.009 9.8

RNA binding factors and enzymes
RNA binding RALY, FUS, SRSF1, HNRPF, PNPT1, SRP68, HNRPR, RBP56,

ELAV1, NEB1, HNRPM, HNRPL, FUBP1, NONO, FUBP2,
FUBP3, DDX17, DDX28, DDX3X, PCBP1, PCBP2, DDX21,
HNRPC, G3BP1, PTBP1, DDX1, NPM, TIM50, ILF3, NXF1,
DDX5, RBMX, FXR1, SRSF2, PA2G4, PTRF, ILF2, SRSF6,
SFPQ, PABP1, RBM39, MATR3, PUF60, THOC1

3.6e�19 5.8

RNA metabolic process RALY, FUS, SRSF1, HCD2, HNRPF, PNPT1, HNRPR, SMD2,
ELAV1, NEB1, HNRPM, HNRPL, SF3B2, FUBP1, NONO,
TFAM, FUBP2, SRRT, SF3B1, DDX17, PCBP1, PCBP2, DHX15,
DDX21, CCAR1, HNRPC, PTBP1, DDX1, DDX5, RBMX,
SF3A3, SRSF2, PA2G4, PTRF, SRSF6, SFPQ, PABP1, CPSF6,
RBM39, PUF60, THOC1

6.6e�13 4.1

RNA helicase activity DDX17, DDX3X, G3BP1, DHX15, DDX1, DDX21, DDX5 2.6e�07 25.7
Establishment of RNA localization FUBP2, NUP93, NPM, NXF1, THOC1 3.9e�02 4.7

Nuclear matrix and cytoskeleton components
Cytoskeleton TARA, TLN1, LIMA1, ENAH, LMNB1, LMNB2, CBX3, TPM4,

KIFC3, NUMA1, MACF1, ARPC3, KRT85, MYOF, KRT86,
KIF2A, KIF11, MYO6, MYO1E, MAP1B, FLOT1, LMNA, NPM,
RAI14, PALLD, KRT34, SMC3, VASP, DCTN1, DAPK1,
MPRIP, H4, KRT36, CALM, SVIL, TMOD3, RBM39, ANX11,
MYH10

4.5e�07 2. 7

Cytoskeleton organization TARA, LIMA1, TLN1, KIF11, CNN3, MAP1B, NPM, DOCK7,
PALLD, SMC3, VASP, SVIL, EHD2, KRT86, BUB3, KIF2A

4.6e�4 3.4

Ribosome biogenesis
Ribosome biogenesis PDCD11, GTPBP10, RPL24, SIRT1, FBL, RPS7, EIF4A3, PA2G4,

RPS28, RPS16, RPL7, RPLP0, RPS14, NPM1, RPS15, DDX21
1.2e�2 3.6

Ribosome RPL18, RPL13, SRP68, CANX, MRPS31, RPS3, RPS3A, RPLP0,
MRPL37, MRPL39, MRPL1, MRPL4, MRPL9, RPS4X, MRPS2,
MRPS9, RPS16, RPS14, RPS15, MRPL49, RPS13, MRPL47,
MRPL48, MRPL46, MRPL44, RPS15A, RPL38, GCN1L1,
MRPL11, MRPL13, RPS28, MRPL12, RPL7, MRPL15, MRPL14,
RPL9, MRPL17, NPM1, RPL3, RPS21, MRPS27, MRPS23,
MRPS22, RPL27, RPL24, MRPS21, RPS7, RPL23, MRPL27,
DAP3

3.0e�28 7.7

Protein degradation
Proteasomal ubiquitin-dependent protein

catabolic process
PCBP2, RPN1, GRP78, PSMD3, NPL4, BUB3 0.035 4.1

Ubiquitin-protein ligase binding TARA, PA2G4, PCBP2, GRP78 0.049 5.6
Mitochondrial proteins
Mitochondrion HCD2, CMC1, GPDM, PNPT1, SFXN3, SFXN1, PRDX3, PRDX1,

COX5B, TFAM, ECHA, DDX28, MTCH2, PGAM5, QCR1,
LACTB, ATP5H, ECHB, DNM1L, AIFM1, IMMT, THIL,
IDH3B, TIM50, ILF3, VDAC2, IDH3A, ATAD1, P5CS, EFTU,
LETM1, C1QBP, PTRF, PTCD3, PHB2, ATPO, CLPP, ADAS

1.3e�7 2.9
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(supplemental Data File S1, Sheet 5). Several factors may be
responsible for the relatively small overlap (10%) between the
literature-derived set and our LC-MS/MS experiments. Our
experimental identification of NF-�B/RelA interactors was
restricted to nuclear extract, and the results may have been
affected by different experimental techniques, interaction sam-
pling variety, and indirect binders of NF-�B/RelA identified by
LC/MS spectrometry. However, as discussed above, the
newly discovered set of RelA interactors exhibits properties
characteristic of those previously known, expanding the set
of experimentally verified NF-�B/RelA interactors by more
than 2.5 times. We are confident that our work will be a very
valuable contribution to elucidating NF-�B/RelA regulatory
and modulatory networks.
Candidate Target Genes—The set of target genes used for

triplet prediction has been compiled from two sources, our
NF-�B/RelA ChIP-Seq experiments and literaturemining. Our
ChIP-Seq experiments (“Experimental Procedures” and Ref.
32) have identified 830 TGs of NF-�B/RelA. These newly iden-
tified TGs, ranked by confidence scores, are provided in sup-

plemental Data File S2, Sheet 1. The literature search (“Exper-
imental Procedures”) conducted to uncover possible additional
TGs yielded 424 targets ofNF-�B/RelA (supplementalData File
S2, Sheet 2). In total, 1194 unique NF-�B/RelA TGs were col-
lected. 1182 of them had expression profiles available (supple-
mental Data File S2, Sheet 3). GO analysis of the newly identi-
fied NF-�B/RelA TGs confirmed that they have functional
properties and are involved in biological processes that are
characteristic for NF-�B/RelA target genes, such as response to
stress, regulation of apoptosis, cell proliferation, differentia-
tion, and intracellular signaling pathways.
Triplets Predicted Using the Candidate NF-�B/RelA Modu-

lators and TGs of NF-�B/RelA—Using the above described sets
of candidate NF-�B/RelAmodulators and TGs of NF-�B/RelA,
we inferred the 8349 (M, NF-�B/RelA, TG) regulatory triplets
of the six action modes (supplemental Data File S4). At the
current threshold, for the triplets that satisfy the three hypoth-
eses H1, H2, and H3, there are 2% (196) outliers among the
predicted triplets that do not belong to any of the six action
modes. In these cases, �̂f and �̂f � �̂f are not significantly dif-

FIGURE 2. Mapped protein network of the newly identified RelA-associated proteins. The proteins are color-coded according to their corresponding
functions or pathways.
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ferent from zero, whereas �̂f, �, and �̂m are significantly differ-
ent from zero. The modulators have main and interactive
effects in the presence of the transcription factor, whereas the
total effect is zero. Confounding factors may explain these
cases. We excluded these types of modulators from all analyses
and only considered the triplets with one of the six action
modes. There is at least one predicted TG for 562 of the 620
binding proteins. The triplets and their parameters are listed in
supplemental Data File S4. The action modes among the 8349
triplets are 1179 inhibition attenuation, 839 inhibition
enhancement, 1042 inhibition inversion, 724 activation inver-
sion, 2580 activation enhancement, and 1985 activation atten-
uation. The modulators act as agonists of RelA in 3419 triplets
(839 inhibition enhancement plus 2580 activation enhance-
ment) and as antagonists in 4930 triplets (inhibition attenua-
tion, inhibition inversion, activation inversion, and activation
attenuation). Similarly, in 4801 triplets,modulators up-regulate
TGs,whereas in the remaining 3548 triplets, themodulators act
as repressors to down-regulate TGs.
The 20 modulators with the greatest number of TGs and

their targets are shown in Fig. 3. Among them, the top 10 spe-
cific modulators (filtered by the entropy of their action modes
and not TGs of NF-�B/RelA themselves) are 1) glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), 2) estrogen receptor �
(ESR1), 3) phosphatidylinositol-binding clathrin assembly pro-
tein (PICALM), 4) actin �1 (ACTG1), 5) radixin (RDX), 6) tran-
scription factor 4 (TCF4), 7) heterogeneous nuclear ribo-
nucleoproteins C1/C2 (hnRNPC), 8) ribosome protein L38

(RPL38), 9) microtubule-actin connecting factor 1 (MACF1),
and 10) and ATP synthase subunit � (ATP5C1). The top 10
specific modulators and their distributions of action modes are
visualized in Fig. 4.
We closely examined these top 10 NF-�B/RelA modulators

and found that there are reports in the literature in support of
each of them as bona fide NF-�B/RelA modulators. Moreover,
the literature generally supports the prevalent action modes
identified here.
Specifically, GAPDH participates in NF-�B signaling (43,

44). Recently, it has been reported that the mechanism is
related to the role of GAPDH in TNF-induced NF-�B activa-
tion (45). This function may be disrupted during pathogen
infection as an important virulence strategy used by attaching/
effacing pathogens to inhibit the host NF-�B-dependent innate
immune responses. Consistently, the predicted triplets demon-
strate that as a modulator GAPDH predominantly activates
NF-�B TGs. Specifically, 155 triplets are of activation enhance-
ment mode and 101 are inhibition inversion.
ESR1 and NF-�B have been found to repress each other in a

cell type-specific manner in several contexts (46, 47). Among
the predicted 211 (ESR1, NF-�B/RelA, TG) triplets, 91 are acti-
vation attenuation (p� 1.1e�10), consistent with the observed
repression of NF-�B activity by ESR1.
In a yeast Alzheimer disease model induced by secretory

amyloid-�, a PICALM ortholog is involved in cellular toxicity
by interacting with mitochondrion. Activation of the NF-�B
pathway has been linked to amyloid-� neurotoxicity (48, 49) in

FIGURE 3. The triplets and action modes of the top 20 specific modulators. The color-coded edges denote the action mode. The pink ovals indicate the top
20 modulators, which include all the listed top 10 specific modulators in the main text.
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both neuronal cells and microglial cells. Consistently, we pre-
dicted that the PICALMortholog is amodulator of NF-�Bwith
prevalent activation enhancement.
ACTG1 is one of the three isoforms of actin, andMACF1 is a

microtubule and actin connecting factor involved in cytoskele-
ton dynamics homeostasis. Perturbation of cytoskeleton
dynamics activates NF-�B (50, 51), which can be mediated by
I�B degradation, p38 mitogen-activated protein kinase activa-
tion (51), or NADPH oxidase-dependent pathways (51).
RDX encodes radixin, a component of the ezrin-radixin-

moesin (ERM) complex that acts as a linker between the actin
cytoskeleton and plasma membrane proteins and signal
transducers involved in cytoskeletal remodeling (52). In colon
cancer cells, ERM is essential for L1 cell adhesion molecule
(L1CALM)-mediated metastasis through activation of NF-�B
(53). In THP-1 monocytes treated with TNF�, ERM rapidly
translocates the RhoA small GTPase to the plasma membrane
and induces actin polymerization through NF-�B (54). The
predicted triplets of RDX demonstrate that it is an agonist of
NF-�B transcriptional activity of which 38 exhibit inhibition
enhancement and 31 exhibit activation enhancement (p �
1.9e�6).
TCF4 encodes the E2-2 protein, a member of the E2 box

protein family, that is an essential and specific regulator of plas-
macytoid dendritic cell development (55). One of the E2-2-as-
sociated proteins, Spi-B, regulates plasmacytoid dendritic cell
survival through direct induction of the antiapoptotic gene
BCL2A1 (56), which is also an important target gene of NF-�B.
Consistently, TCF4predominantly activatesNF-�B in 51 of 106
predicted triplets with activation enhancement (p � 3.1e�8).

HNRNPC encodes hnRNPC1/C2, which mainly mediate
nuclear mRNA retention in 40 S hnRNP particles by competing
with exporting proteins as an mRNA length ruler (57). Direct
modulation of hnRNPC1/C2 has not been reported. However,
there are reports on modulation of NF-�B by alternative
hnRNPs: hnRNPA1 enhances NF-�B activity through the
mRNA stability of the modulator cIAP1 of NF-�B in HeLa cells
(58). hnRNPU stabilizes the mRNA of the TGs regulated by
NF-�B in the Toll-like receptor signaling pathway in macro-
phages (59). hnRNPU/hnRNPA1 are also involved in the stress
response as components of a stress sensor complex, B23-hn-
RNPU-hnRNPA1 (60). hnRNPA1 attenuates NF-�B activity
through demobilizing the mRNA level of cIAP1.
RPL38 was reported to be predominantly expressed in pan-

creatic ductal epithelium (61) and to perform transcript-spe-
cific translational control of HOXmRNA translation in mouse
tissue patterning (62). No direct proof exists that RPL38
directly regulates NF-�B TGs. However, RPLS3 protein has
been found to selectively regulate NF-�B TGs (63). Also, other
ribosomal subunits have been previously implicated in selec-
tively regulating NF-�B TGs. RPL38, in our prediction, preva-
lently attenuates the NF-�B TGs where 65 of 76 triplets are of
activation attenuation (p � 0).
Direct binding of ATP5C1 and RelA has not been reported.

Nevertheless, there is indirect evidence of an interaction
including that both ATP5C1 and RelA were reported to inter-
act with mediator complex subunit 15 (MED15/ARC105), an
RNA polymerase II transcription cofactor activity involved in
transcription initiation. These interactions were detected by
yeast two-hybrid and pulldown assays, respectively, in Stelzl et

FIGURE 4. The mode distribution of the 10 modulators analyzed. The six numbers in each bin chart represent the numbers of triplets of the corresponding
six color-coded action modes.
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al. (64) and Näär et al. (65). In a recent study of the transcrip-
tional response to relaxation training, ATP5C1 was one of the
top up-regulated critical molecule, and served as a hub in the
interactive network of the relaxation response-affected path-
way. At the same time, NF-�B TGs were the top down-regu-
lated hubs (66). Consistently, 48 of 65 (ATP5C1, NF-�B/RelA,
TG) triplets showed ATP5C1 to be a repressor, including 15
inhibition enhancement, 9 activation inversion, and 24 activa-
tion enhancement (p � 6.6e�8) (Fig. 4).
Thus, for most of the predicted modulators, the functional

association with NF-�B/RelA is supported by the literature.
These modulators may constitute key links in the cross-talk
pathways modulating RelA/NF-�B activity in virus and bacte-
rial infection, stress, immunity, and cancer. The pathways
include mitochondrion (ATP5C1), estrogen receptor pathway,
actin cytoskeleton organization (ACTG1, MACF1, and RDX),
clathrin-mediated endocytosis (PICALM), and hnRNPC1/C2-
mediated mRNA nuclear retention and genomic integrity.
The NF-�B/RelA Modulatory Network and Its Functional

Characterization—Many of the above triplets may be inter-
twined in the same pathway. To unravel the organization of
transcription regulated by NF-�B/RelA and its modulators, we
constructed a modulatory network in which one type of nodes
was modulators and the other was TGs of RelA. This modula-
tor-target interaction network can be represented as a matrix
whose rows are modulators and columns are TGs. The matrix
elements correspond to the edges in the modulatory network,
represented by the main effect of a modulator on a specific TG,
�m. In this way, the association between any pair of modulators
can be evaluated by their similar effect on all the TGs, and
conversely, the association between twoTGs can be assessed by
their similar modulation by all the modulators. Subsequently,
we used hierarchical biclustering to uncover the global organi-
zation of the modulatory network. The hierarchical approach
to clustering was chosen because we expect that modulator-
target interactions would reflect biological functions related
to the NF-�B transcriptional activity, and such functions are
known to form a nested structure. Such multilevel structure
cannot be reflected by flat clustering methods, such as
K-means, and most affinity propagation algorithms. Also,
model-based clustering did not apply in this case because no
a priori model of the complex and diverse interaction net-
work is known.
Specifically, the rows and columns of this matrix were clus-

tered using the agglomerative clustergram function fromMat-
lab with default parameters. The M-TG network was parsed
into a hierarchy of groups according to the similarity of the
value of �m. The hierarchical clustering dendrograms and the
heat maps for the �m matrix (Fig. 5) show obvious large mod-
ules. As shown in Fig. 5, modulators contain three dense clus-
ters, A, B, and C. Also, the TGs show three main clusters (I, II,
and III in Fig. 4). The lists of genes in these clusters are pre-
sented in supplemental Data File S5. Clustering according to �̂
did not produce modules as obvious as �m, and using both �m
and �̂ did not improve the results (data not shown). Therefore,
we based further analysis on clustering according to �m.
The module composition and the significant triplets in each

module are provided in supplemental Data File S5. We found

that modulators in the positive correlation network modules
tended to up-regulate the TGs in the samemodule, whereas the
modulators in the negatively correlated network modules
down-regulated the TGs in the samemodule (selectedmodules
are presented in Fig. 6). To identify the function associatedwith
each module, we analyzed the enrichment of GO terms within
clusters found in the network of all binding proteins and all
RelA TGs. First, we considered the networkmodules that show
dominant positive correlations between the modulators from
clusters A, B, and C and TGs from clusters I, II, and III (A-II,
B-II, C-I, and C-III in Fig. 5), termed positive correlation net-
work modules. For each positive correlation network module,
we found GO terms enriched in both the set of modulators and
TGs; this demonstrates the functionality of the module (Table
3). The functional annotations were characterized using
BiNGO software (26) in Cytoscape (27).
As shown in Fig. 5 and supplemental Data File S6, the largest

such module (C-I) consists of 296 annotated modulators and
261 positively modulated TGs (Fig. 5). 34 of 50 enriched GO
terms of the TGs overlap with 385 enriched GO terms of mod-
ulators. For the 296 modulators in module C-I, the most signif-
icantly enriched biological processes with enrichment -fold
ratio greater than 3.0, p 	 0.001, and more than 20 modulators
include RNA processing and splicing, translation, interspecies
interaction between organisms, protein complex biogenesis
and assembly, response to DNA damage stimuli (29 genes, 3.5-
fold), cellular macromolecular complex assembly, generation
of precursormetabolites and energy, regulation of cell cycle (28
genes, 5.5-fold), and positive regulation of protein metabolic
process. In many cases, the enrichments for modulators are
consistent with the observed functional enrichments of TGs in
this module. First, a number of significant GO terms of TGs are
also enriched for modulators (see supplemental Data File S6).
These GO terms include regulation of cell death (42 TGs, 2.7-
fold and 37Ms, 2.1-fold), regulation of transcription fromRNA
polymerase II promoter, positive regulation of apoptosis (22
TGs and 24Ms), positive regulation of transcription from RNA
polymerase II promoter, response to chemical stimulus (46TGs
and 44 Ms), regulation of transforming growth factor � recep-
tor signaling pathway (6 TGs and 5 Ms), response to stress (52
TGs and 55Ms), cell death (26 TGs and 25Ms), and regulation
of binding and aging (9 TGs and 9 Ms). Additional consistency
exists between the functions of Ms and TGs in the same mod-
ules even if not represented by the sameGO term. For example,
response toDNAdamage stimuli (enriched inmodulators)may
result in cell death and affected cell proliferation, which are the
most enriched GO terms of the regulated TGs mediated by
gene-specific transcription, RNA splicing, and protein metab-
olism (supplemental Data File S6) (67) in NF-�B pathways.
For module C-III, which is composed of the same cluster of

the 296 Ms, the most enriched GO categories are cell cycle,
mitotic cell cycle, cell cycle process, and negative regulation of
macromolecule biosynthetic process. Modules A-II and B-II
are, respectively, composed of 44 and 32 annotatedmodulators
as shown on the top of themap in Fig. 4. Thesemodulators have
a prevalent effect opposite to cluster C: the TGs down-regu-
lated by cluster C (115 TGs in A-II and 165 TGs in B-II) are
up-regulated here. For module A-II, cluster A is most enriched
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in translation, multiorganism process, ribosome biogenesis,
cellular localization, and RNA processing. The 115 TGs of A-II
aremost enriched in antiapoptosis, cell activation, and cell pro-
liferation in immunity and inflammation processes. Consis-
tently, the overlap between the categories enriched by the Ms
and TGs composing module A-II includes positive regulation
of transcription, regulation of primary metabolic process, pro-
teinmetabolic process, andmultiorganismprocess. Formodule
B-II, cluster B (in green in Fig. 5) is most enriched in antiapo-
ptosis, glucose homeostasis, fat cell differentiation, embryonic
development, response to wounding, cell cycle arrest, response
to stress, and organ development. The 165 annotated TGs of
B-II are mostly enriched in response to wounding, immune
system process, defense response, cell migration, motility, and
adhesion. Consistently, the overlap between the categories
enriched by the Ms and TGs composing module A-II include
response to wounding, positive regulation of biosynthetic pro-
cess, organ development, regulation of cell differentiation, and
antiapoptosis.
The constructed modulation network also contains four

main negatively correlated networkmodules, C-II, A-I, B-I, and

B-III, that were also analyzed. The modulator clusters are neg-
atively correlated with the respective TG clusters (Table 3 and
supplemental Data File S6). Among the overlapping GO cate-
gories that are the top significant categories for the TGs for C-II
are regulation of cell death (rank 52), cellular response to stim-
ulus, regulation of cell cycles, multiorganism process, regula-
tion of protein metabolic process, and positive regulation of
apoptosis. Besides, C-II is also enriched in other processes
including immune system development, cellular response to
chemical stimulus, hemopoiesis, regulation of protein meta-
bolic process, regulation of cell cycle, multiorganism process,
cell cycle arrest, placenta development, initiation of viral infec-
tion, maintenance of location, and phosphorylation.
As seen in Fig. 5 and Table 3, a finer hierarchy of submodules

can be observed if deeper levels of clustering are considered for
the modulation matrix. The functional annotations of these
submodules do not differ significantly from their parent mod-
ules. Specifically, module C-II splits into C-II-1 and C-II-2 and
further into C-II-1a and C-II-1b. The enriched GO categories
for C-II-1 and C-II-2 are very similar and are consistent with
the sub-submodules. For C-II-1a, the enriched GO categories

FIGURE 5. Hierarchical clustering of the M-TG network. The dendrograms of both modulators (left) and target genes (top) are generated according to the
values of �̂m (heat map). Outlined rectangles correspond to functional modules. The top enriched GO terms for clusters (A, B, C, I, II, and III) and modules (A-I, A-II,
etc.) are listed in the insets.
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are regulation of gene-specific transcription, positive regula-
tion of molecular function and protein modification process,
and cellular response to stimulus. For C-II-1b, the enrichedGO
categories are regulation of apoptosis, multiorganism process,
positive regulation of apoptosis, regulation of cell cycle, and
regulation of cellular protein metabolic process. Functional
analysis shows that A-I is most enriched in transcription regu-
lation, B-I ismost enriched in response towounding and fat cell
differentiation, whereas B-III is most enriched in negative reg-
ulation of gene expression. Representative overlapping GO
terms of A-I, B-I, and B-III can be found in supplemental Data
File S6 and Fig. 5. Our analysis suggests that the functional
organization of the modulatory network may reflect the mech-
anisms of the cooperation between different processes.
Validation of the Prediction Using Triplets Predicted from the

Unconstrained TG Candidates—To validate the prediction
method, we testedwhether the predicted triplets were enriched
in target genes obtained independently from the prediction. To
this end, we applied the model allowing all genes as candidate
targets of modulated regulation by NF-�B/RelA. Next, we
selected all inferred target genes that had significant �̂ and �̂m in
at least one predicted triplet. Using p value thresholds between
1e�6 (for a low false positive rate) and 1e�3 (for a low false
negative rate), we obtained between 4785 and 19,115 candidate
genes dependent on the modulated regulation by NF-�B/RelA.

Over the entire range, the predicted TGs are significantly
enriched in the 830 targets of RelA identified by ChIP-Seq
(Table 4). Also, the enrichments in the literature-derived and
combined target lists are significant (see Tables 5 and 6).
Experimental Validation of the (STAT1, NF-�B/RelA, TG)

Triplets from the Unconstrained TG Candidates—STAT1 is an
important modulator of RelA as a proinflammatory effector.
Acetylated STAT1 will repress the expression of antiapoptosis
NF-�B target genes via binding RelA and nuclear export (38) as
revealed by in situ immunofluorescence analysis. To verify the
interaction between RelA and STAT1 in the nucleus, we used
immunoprecipitation and quantitative stable isotope dilution-
SRM-MS (31) in the samples obtained from the immunopre-
cipitation by anti-RelA antibody and nonspecific IgG (negative
control) from the nuclear extract of A549 cells. The proteins
associated with the antibodies were captured on protein A
beads and subjected to LC-SRM-MS to quantify the level of
STAT1 in each sample. Compared with the negative control
sample, STAT1 was enriched �3.2-fold in the sample obtained
from the immunoprecipitation of the anti-RelA antibody, indi-
cating that STAT1 was directly associated with RelA. Thus, the
interaction between STAT1 and RelA is confirmed by our SRM
experiment (Fig. 7).
As amodulator ofNF-�B/RelA-regulated expression, STAT1 is

also predicted to modulate 2450 genes at a threshold of p value

FIGURE 6. Action modes of the significant triplets in network modules A-I, A-II, B-I, and B-III. Rows represent modulators, and columns are TGs. Small
squares are color-coded according to the action mode of the triplet composed by the corresponding modulator and the TG (the color scheme is the same as
in Figs. 2 and 3: dark green, inhibition attenuation; light green, inhibition enhancement; yellow, inhibition inversion, light orange, activation inversion; dark
orange, activation enhancement; red, activation attenuation). The numeric value in each square is the p value of �̂m. Only statistically significant triplets are
provided.
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of �̂ and p value of �̂m smaller than 1e�2 in this study. We
found that STAT1 modulates RelA-dependent gene transcrip-
tion with multiple action modes depending on the TGs. To
validate the predicted (STAT1, NF-�B/RelA, TG) triplets and
their corresponding action modes, we selected 12 of the pre-

dictedTGs covering four actionmodes and p values of �̂ and �̂m
in the range from0 to 1e�2 (see supplementalData File S7).We
predicted 31 triplets. The corresponding estimated false dis-
covery rate is 0.19 at the thresholds.We conducted quantitative
PCR experiments measuring mRNA expression of the 12 TGs
in STAT1-deleted (U3A, STAT1�/�) and STAT1 wild-type
cells (2f) stimulated with poly(I:C) as described under “Experi-
mental Procedures.” We performed three independent quanti-
tative PCR experiments for each triplet. 32% of the predicted
triplets (10 of 31 triplets as shown in supplemental Data File S7)
were validated by the experiment (p � 0.016 with binomial
distribution test). The validated 10 triplets involve sixTGs: EGF
receptor kinase substrate 8 (EPS8), integrin �E (ITGA6), short
stature homeobox 2 (SHOX2), and CCCH-type containing 7B
(ZC3H7B), neurotrophin 4 (NTF4), and O-sialoglycoprotein
endopeptidase-like (OSGEPL1). Considering that the esti-
mated -fold discovery ratio at the model thresholds is 0.19, our
prediction approach is effective. Because each gene has several
probe sets, multiple triplets with different actionmodesmay be
predicted for each TG (supplemental Data File S7). For each
TG, only the most significant triplet was kept. In this way, four
of the 12 TGs were validated by the experiment with the same
action mode. As shown in Fig. 8, four predicted TGs were fully
confirmed along with the exact same action modes: EPS8,
ITGA6, SHOX2, and ZC3H7B. Interestingly, the fully validated
four TGs were among the highest ranked according to their p
values of the probabilistic model parameter with ranks 1, 2, 4,

TABLE 3
Modules and their representatives of enriched GO categories

Modules Representatives of enriched GO categories

C-I Regulation of cell death, positive regulation of apoptosis,
response to chemical stimulus, regulation of TGF�
receptor pathway, aging

C-I-1 Regulation of apoptosis, aging, cellular component
organization, positive regulation of apoptosis

C-I-2 Regulation of apoptosis, response to chemical stimulus
C-II Regulation of cell death, cellular response to stimulus,

regulation of cell cycle, multiorganism process,
regulation of protein metabolic process, positive
regulation of apoptosis

C-II-1 Regulation of apoptosis, positive regulation of gene
expression, protein modification process, response to
organic substance

C-II-1a Regulation of gene-specific transcription, positive
regulation of molecular function, positive regulation of
protein modification process, cellular response to
stimulus

C-II-1b Regulation of apoptosis, multiorganism process, positive
regulation of apoptosis, regulation of cell cycle,
regulation of cellular protein metabolic process

C-II-2 Regulation of apoptosis, positive regulation of gene
expression, protein modification process, response to
organic substance

C-III Cell cycle, mitotic cell cycle, cell cycle process, negative
regulation of macromolecule biosynthetic process

B-I Response to wounding, cell fat differentiation
B-II Response to wounding, response to stress, positive

regulation of biosynthetic process, organ
development, regulation of cell differentiation,
antiapoptosis

B-III Negative regulation of biosynthetic process, negative
regulation of gene expression

A-I Regulation of transcription from polymerase II promoter
A-II Positive regulation of transcription, regulation of

primary metabolic process, protein metabolic process,
multiorganism process

TABLE 4
Enrichment of the predicted TGs in the newly identified TGs from ChIP-
Seq at different triplet detection thresholds

�log10 (the p value of
the model parameters

�̂ and �̂m)

p value
of the

enrichment
No.

overlap

No.
predicted

TGs
Enrichment
-fold ratio

0.001 0 811 19,115 1.07
0.00032 0 780 16,941 1.17
0.0001 0 709 14,180 1.27
3.2e�05 0 608 11,263 1.37
1.0e�05 0 472 8,570 1.40
3.2e�06 4e�13 348 6,413 1.38
1.0e�06 1.3e�07 251 4,785 1.33

TABLE 5
Enrichment of the predicted TGs in the existing TGs collected from
database and literature at different triplet detection thresholds

�log10 (the p value of
the model parameters

�̂ and �̂m)

p value
of the

enrichment
No.

overlap

No.
predicted

TGs
Enrichment
-fold ratio

0.001 1.2e�05 407 19,115 1.06
0.00032 0.0014 364 16,941 1.07
0.0001 0.0057 309 14,180 1.08
3.2e�05 0.0043 253 11,263 1.12
1.0e�05 0.024 192 8,570 1.11
3.2e�06 0.042 145 6,413 1.12
1.0e�06 0.031 112 4,785 1.16

TABLE 6
Enrichment of the predicted TGs in the combined TGs at different tri-
plet detection thresholds

�log10 (the p value of
the model parameters

�̂ and �̂m)

p value
of the

enrichment
No.

overlap

No.
predicted

TGs
Enrichment
-fold ratio

0.001 0 1,148 19,115 1.07
0.00032 0 1,080 16,941 1.14
0.0001 0 961 14,180 1.21
3.2e�05 0 811 11,263 1.28
1.0e�05 0 630 8,570 1.31
3.2e�06 6.3e�12 466 6,413 1.29
1.0e�06 4.6e�08 345 4,785 1.28

FIGURE 7. Validation of the association of STAT1 with RelA by SRM exper-
iment. AQUA represents absolute protein quantitation using stable isotope-
labeled synthetic peptides and HPLC-MS. AQUA peptide is a synthetic tryptic
peptide corresponding to a peptide of interest.
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and 6 (the prevalence of the highest ranking TGs is significant:
p � 0.049 with rank sum test). The experimental results here
justify our lower p value thresholds in triplet prediction from all
the TGs and binding proteins of RelA.
Although STAT1 is both a binding protein andTGof RelA as

newly identified by us and thus involved in a feedback pathway,
our analysis validated the predicted triplet action modes of
STAT1-RelA.Considering thehighnoiseof the candidate targets,
which actually are quantified by gene expression profiles from the
genome-wide genes, our proposed computational model is effec-
tive in generating testable general triplet hypotheses.

DISCUSSION

We used a combination of experimental and computational
approaches to characterize the modulation of transcription
regulated by NF-�B/RelA. We selected candidate modulators
of NF-�B/RelA using LC-MS/MS and identified 365 binding
proteins including 334 not previously reported. The identified
modulators are functionally enriched in categories previously
identified as related to NF-�B/RelA activity as well as novel
ones, such as ATP synthesis-coupled electron transport, DNA
helicase activity and conformation change, Ku70-Ku80 com-
plex, RNA transport, oxidation-reduction, and cytoskeleton
organization. Among the most significant enriched GO
functions of the newly identified binding proteins and of the
existing modulators are RNA processing (alternative splic-
ing), cell cycle, mitochondrion, and ribosome biogenesis,

which may be candidate alternative processes interdepen-
dent with the NF-�B/RelA pathways.

We implemented a probabilistic model for modulatory net-
work inference that combines an earlier approach of GEM (19)
with Shannon entropy filtering. Our method is selective for
modulators with well defined prevalent action modes. Using
this probabilistic model, we generated a network of 8349 (M,
NF-�B/RelA, TG) triplets. The results have been validated by
enrichments of predictedTGs inNF-�B/RelA targets identified
in a ChIP-Seq experiment and by functional analysis of the
identified regulations.
We discoveredmodules by hierarchical clustering of the reg-

ulatory network built from all the binding proteins and TGs.
Somemodulatorsmight affect the rate of transcription of genes
of all or any of NF-�B/RelA complex proteins themselves. In
this case, the corresponding modified modulators are target
genes themselves. We removed the feedback loop to avoid this
type of modulator in our network analysis. Additional valida-
tion of the method comes from literature-based analysis of the
functions of the top predicted modulators.
One of the predicted RelA modulators is STAT1, a member

of the STAT family of transcription factors, which modulate
NF-�B-mediated regulatory pathways in response to many cell
stimuli and pathogens (38). Considering the important role of
STAT1 in modulating RelA activity, we analyzed the predicted
(STAT1, NF-�B/RelA, TG) triplets and validated their action

FIGURE 8. Experimental validation of the STAT1-modulated RelA-dependent genes and the corresponding action modes. Error bars represent S.E.
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modes by STAT1 deletion and quantitative real time PCR in
human fibrosarcoma cells.
In conclusion, collecting all candidate binding proteins and

the TGs of RelA (the main component of NF-�B complex) and
predicting the (M,NF-�B/RelA, TG) triplets resulted in an inte-
grated functional interaction network containing potential new
mechanisms of NF-�B activity and specificity. Analysis ofmod-
ule organization of the modulation network may reveal mech-
anisms involved in the cooperation between different biological
processes in immune responses, inflammation, cancer, and
others. Identification of new mechanisms of RelA-dependent
gene expression and related signaling pathways that cross-talk
with NF-�B may provide guidance for the design of targeted
therapeutics. The newly discovered 562 NF-�B/RelA modula-
tors with distinct profiles of TGs may be potential drug targets.
The modulatory network and its clusterings clarify mecha-
nisms of achieving NF-�B/RelA specificity through modula-
tors. Our computational and statistical approach can be readily
applied to elucidate modulation of other transcription factors.
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