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Background:The Dorsal transcription factor regulates the dorsal-ventral developmental gene regulatory network by bind-
ing to enhancers.
Results:The core promoters ofmultipleDorsal target genes are evolutionarily conserved and functionally dependent on specific
elements.
Conclusion: The core promoter composition is an important determinant of the transcriptional outcome.
Significance: Transcriptional regulation results from an interplay between enhancers and core promoter composition.

Developmental processes are highly dependent on transcrip-
tional regulation byRNApolymerase II. TheRNApolymerase II
core promoter is the ultimate target of a multitude of transcrip-
tion factors that control transcription initiation. Core promot-
ers consist of core promotermotifs, e.g. the initiator, TATAbox,
and the downstream core promoter element (DPE), which con-
fer specific properties to the core promoter. Here, we explored
the importance of core promoter functions in the dorsal-ventral
developmental gene regulatory network. This network includes
multiple genes that are activated by different nuclear concentra-
tions of Dorsal, an NF�B homolog transcription factor, along
the dorsal-ventral axis. We show that over two-thirds of Dorsal
target genes containDPE sequencemotifs, which is significantly
higher than the proportion of DPE-containing promoters in
Drosophila genes. We demonstrate that multiple Dorsal target
genes are evolutionarily conserved and functionally dependent
on theDPE. Furthermore,wehave analyzed the activation of key
Dorsal target genes by Dorsal, as well as by another Rel family
transcription factor, Relish, and the dependence of their activa-
tion on the DPE motif. Using hybrid enhancer-promoter con-
structs inDrosophila cells and embryo extracts, we have demon-
strated that the core promoter composition is an important
determinant of transcriptional activity of Dorsal target genes.
Taken together, our results provide evidence for the importance of
core promoter composition in the regulation of Dorsal target
genes.

Transcriptional regulation of gene expression is critical for
embryonic development (1–6). Multiple sequence-specific
DNA binding transcription factors and co-regulators control
gene expression (7–10), but the ultimate target of the transcrip-

tionmachinery is the initiation of transcription at the core pro-
moter, which could hence be referred to as the gateway to tran-
scription (11–16).
Focused core promoters, i.e. promoters in which transcrip-

tion initiates at a single nucleotide or within a narrow region of
several nucleotides, exist in all eukaryotes and are predominant
in simple organisms, such as Drosophila (13, 17, 18). Focused
core promoters are typically �80 nucleotides in length and
encompass the RNA start site (13, 17, 18).
Core promoters may contain one or more functional DNA

sequence elements, termed core promoter elements or motifs,
such as the TATA box, TFIIB recognition elements (BREu and
BREd), initiator (Inr),2 TCTmotif,motif 10 element (MTE), and
downstream core promoter element (DPE), which confer spe-
cific properties to the core promoter (13, 19–21). The TATA
box, the Inr, the MTE, and the DPE motifs are recognized and
bound by subunits of TFIID, the first complex that recognizes
and binds the core promoter in the process of RNA polymerase
II recruitment to the core promoter.
The TATA box is the first core promoter motif identified

and is conserved from archaebacteria to humans (22, 23).
The upstream T is typically located at �30 or �31 relative to
the transcription start site (24). The TATA box is bound by the
TATA box-binding protein (TBP) subunit of TFIID. The Inr
encompasses the transcription start site and is the most com-
mon core promoter element (11, 19, 25). The Inr is bound by
the TAF1 and TAF2 subunits of TFIID (26). The DPE was orig-
inally discovered as a TFIID recognition site that is located
downstream of the initiator element (precisely from �28 to
�33 relative to the A�1 of the Inr) and is conserved fromDro-
sophila to humans (27, 28). It is bound by the TAF6 and TAF9
subunits of TFIID (28). The MTE is located immediately
upstream of the DPE at precisely �18 to �27 relative to the
A�1 in the Inr and is also conserved from Drosophila to
humans (29, 30). Both the DPE and theMTEmotifs are depen-
dent on the Inr and function cooperatively with it (28, 30–33).
Moreover, we have previously demonstrated that gene expres-
sion levels can be modulated via the core promoter (31).
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The existence of different types of core promoters implies
that core promoter elements play regulatory roles beyond the
specification of transcription initiation. Transcription of TATA-
dependent genes differs from transcription of DPE-dependent
genes in many respects. First, the set of basal transcription
factors that is necessary to transcribe TATA-dependent pro-
moters in vitro is insufficient to transcribeDPE-dependent pro-
moters (34, 35). Second, enhancers with preference for DPE-
containing promoters or TATA-containing promoters have
been identified, supporting the existence of enhancer-pro-
moter specificity (16, 36–38). Third, TBP is necessary for
TATA-dependent transcription. However, TBP down-regu-
lates DPE-dependent transcription (39). The two transcrip-
tional regulators, NC2 and MOT1, which have been shown to
be positive regulators ofDPE-dependent transcription, do so by
counteracting TBP, thus relieving its inhibition of DPE tran-
scription (39–41).
In this study, we explored the contribution of the DPE motif

to the regulation of gene expression in the dorsal-ventral devel-
opmental gene network that is governed by the Rel family tran-
scription factor Dorsal. We show that the promoters of many
Dorsal target genes contain DPE sequence motifs. We demon-
strate that core promoters of multiple Dorsal target genes are
evolutionarily conserved and are functionally dependent on the
DPE motif. Moreover, we have analyzed the activation of key
Dorsal target genes by Dorsal and another Rel family transcrip-
tion factor, Relish, and the dependence on theDPEmotif. Using
Drosophila S2R� cells, we further demonstrate that the TATA
box cannot compensate for the loss of DPE in the Dorsal target
brinker and can only partially compensate for the loss of DPE in
the Dorsal target twist. The addition of a TATA box to the
brinker and twist promoter can, however, compensate for the
loss of DPE using nuclear extracts derived from Drosophila
embryos. We show that Dorsal is able to discriminate between
a TATA box-containing promoter and a DPE-containing pro-
moter. Transcription of enhancer-promoter constructs in both
Drosophila S2R� cells and embryo extracts manifests the
importance of the core promoter in transcriptional regulation
of Dorsal target genes. Collectively, we demonstrate that the
DPE motif plays an important role in the expression of Dorsal
target genes regulating dorsal-ventral patterning and provides
evidence for the key contribution of the core promoter compo-
sition to gene regulatory networks.

EXPERIMENTAL PROCEDURES

Sequence Conservation Analysis—Sequence conservation
analysis was performed using the UCSC genome browser.
Calculation of Core Promoter Element Frequency—Drosoph-

ila transcripts that initiate at different chromosomal positions
(based on the RefSeq database) were used to calculate the fre-
quency of the core promoter elements (see Tables 1 and 2). Inr
elements were identified in the region �10 to �10 relative to
the transcription start site if there was an A at �1 and at least
three of five additional matches to the consensus (TCAKTY,
where the A is the �1 of the transcript). DPE motifs that were
precisely located at �28 relative to the A � 1 of the Inr, were
identified based on at least five of six matches to the DPE func-
tional range set (DSWYVY). Putative TATAbox elements were

identified based on a match to a TATA sequence located from
�45 to �19 relative to the RefSeq transcription start site. The
significance of differences in core promoter composition
between Drosophila transcripts and Dorsal target genes was
calculated using the chi-square test.
In Vitro Transcription Assays—Double-stranded oligonu-

cleotides comprising core promoter sequences from �10 to
�40 (see Fig. 1 and supplemental Fig. S1) of the tested Dorsal
target genes core promoters were inserted into the PstI and
XbaI sites of pUC119.Mutation of the DPE in the core promot-
ers was identical to that used previously (30), where themutant
DPE contains CATA at �30 to �33 relative to A � 1. Natural
tinman (tin), brinker (brk), twist (twi), and leak (lea) enhancer-
promoter constructs driving the luciferase reporter gene were
used in Figs. 3–5, and tin-twi hybrid enhancer-promoter con-
structs driving the luciferase reporter gene were used in Fig. 6.
In vitro transcription reactions were carried out as described
previously (42) using 250 ng of supercoiled DNA templates
with Drosophila high salt nuclear extracts (43). The resulting
transcripts were subjected to primer extension analysis with an
M13 reverse sequencing primer (AGCGGATAACAATTTCA-
CACAGGA; see Fig. 2) or with a reverse luciferase primer
(TCTTCCAGCGGATAGAATGGCGCC; see Figs. 5 and 6).
Quantitation of reverse transcription products was carried out
using ImageQuant, ImageJ, and GelQuantNET. All experi-
ments were carried out a minimum of three independent times
to ensure reproducibility of the data.
Expression Plasmids and Luciferase Reporter Genes—pAc-

Dorsal expression plasmid was kindly provided by Dr. Albert
Courey (UCLA) For the construction of a Relish expression
vector, the active N terminus of Relish (amino acids 1–532; not
including the ankyrin repeat-containing inhibitory domain)
(44) was cloned into a pAc expression vector. An N-terminally
FLAG-tagged full-length Caudal was cloned into a pAc expres-
sion vector. A C-terminally V5-His-tagged full-length Bicoid
was cloned into a pAc expression vector. The natural enhancer-
promoter tin reporter construct encompasses a genomic frag-
ment from �2089 to �80 relative to the A�1 of the Inr (con-
taining either a wt, or a mDPE), upstream of a firefly luciferase
reporter gene. The natural enhancer-promoter brk reporter
construct encompasses a genomic fragment from �3531 to
�60 relative to the A�1 of the Inr (containing either a wt, a
mDPE, or a mDPE with a TATA box), upstream of a firefly
luciferase reporter gene. The natural enhancer-promoter twi
reporter constructs encompasses a genomic fragment from
�2041 to�50 relative to the A� 1 of the Inr (containing either
a wt, a mDPE or a mDPE with a TATA box), upstream of a
firefly luciferase reporter gene. The natural enhancer-promoter
lea reporter construct encompasses a genomic fragment from
�3931 to �69 relative to the A�1 of the Inr (containing either
a wt, a mDPE, or a mDPE with a TATA box), upstream of a
firefly luciferase reporter gene. The tin enhancer-twi core pro-
moter hybrid promoter was constructed using the tin enhancer
from �2089 to �138 followed by the twi promoter from �134
to �50 (with a 3-nucleotide spacer in between), upstream of a
firefly luciferase reporter gene.
Luciferase reporter constructs driven by either the tin,

brk, lea, or twi genomic region with a mutated DPE (in which
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nucleotides at positions �28 to�34 relative to A�1 in the Inr
were mutated to CTCATGT) or an additional TATA box
(TATAAAAA,where the upstreamT is at position�31 relative
to the A � 1 of the Inr) were generated using a QuikChange II
site-directedmutagenesis kit (Stratagene). DNA sequence-ver-
ified fragments that encompass the mutated nucleotides were
subcloned into their corresponding locations in the wild-type
vectors. Pol III-Renilla luciferase reporter was kindly provided
by Dr. Norbert Perrimon (Harvard Medical School).
Transient Transfection and Reporter Gene Assays—Drosoph-

ila melanogaster Schneider S2R� adherent cells were cultured
in Schneider’s Drosophila medium (Biological Industries) that
was supplemented with 10% heat-inactivated FBS. Cells were
transfected in 24-well plates by using the Escort IV reagent
(Sigma). For Dorsal dose-response dual luciferase assays, cells
were transfected with the firefly luciferase reporter constructs
(80 ng) and the indicated amounts of aDorsal expression vector
that was supplemented, where necessary, with pAc control
expression vector to give a total of 1.5 �g of DNA of expression
vector. For assaying the tin, brk, twi, or lea reporter constructs
with mDPE and an added TATA box, cells were co-transfected
with either 0.5 �g of Dorsal, Relish, Bicoid, or Caudal expres-
sion vector that was supplemented, where necessary, with pAc
control expression vector to give a total of 1.0 �g of DNA of
expression vector, in addition to either tin (80 ng), brk (80 ng),
lea (80 ng), or twi reporter (20 ng).
To normalize for transfection efficiency, cells were co-trans-

fected with a Pol III-Renilla luciferase control plasmid (10 ng).
Cells were harvested 36–48 h post-transfection and assayed for
dual luciferase activities, as specified by themanufacturer (Pro-
mega). The graphs represent averages of three to four inde-
pendent experiments.

RESULTS

Identification of DPEMotifs in Core Promoters of Dorsal Tar-
get Genes—To discover distinct gene regulatory networks
(GRNs) and pathways that are regulated via the core promoter,
we have examined the core promoter composition of genes that
are involved in early embryonic fly development. This analysis
led us to focus on the dorsal-ventral GRN and in particular on
Dorsal target genes. The dorsal-ventral GRN is critical for early
embryonic development. The network includes multiple genes
that are activated by different nuclear concentrations of the
Dorsal transcription factor along the dorsal-ventral axis (45–
54). Activation of Dorsal target genes is achieved by the recruit-
ment of Dorsal to the enhancers of these genes, which contain
Dorsal-binding sites hundreds or even thousands of base pairs
upstream of the transcription start site.
To examine whether core promoter elements play a role in

the regulation of Dorsal-target gene expression, we first ana-
lyzed the core promoter sequences of Dorsal-target genes.
Using the RefSeq database, we have carried out a comprehen-
sive analysis of the core promoter composition of previously
identified Dorsal target genes (Refs. 47 and 51 and references
therein) (Table 1). Strikingly, themajority of knownDorsal tar-
get genes appear to contain Inr and DPEmotifs. Specifically, in
the mesoderm, where Dorsal nuclear concentration is highest,
of a total 30 mesodermal genes analyzed, 17 genes contain

potential Inr andDPEmotifs with high probability (Table 1, Inr
and DPE ��� and Inr and DPE ��), including Dorsal target
genes critical for mesodermal development such as tin, twi,
Hbr, and Mef2, and 3 genes contain TATA box, Inr, and DPE
motifs. In the neuroectoderm,whereDorsal nuclear concentra-
tion is intermediate, 17 genes contain Inr and DPE motifs with
high probability, including well characterized Dorsal target
genes such as brk, ths, and pyr, and 7 genes contain TATA box,
Inr, and DPE motifs of a total 35 neuroectodermal genes ana-
lyzed. In the dorsal ectoderm, where Dorsal nuclear concentra-
tion is lowest, 10 genes contain Inr and DPE motifs with high
probability, including well characterized dorsoectodermal tar-
gets such as dpp and tup, and 9 genes contain TATA box, Inr,
and DPE motifs of a total 26 dorsal ectoderm genes analyzed.
Overall, 63 of 91 genes analyzed (over 69%) are likely to contain
functional DPE motifs.
Computational analyses of the frequencies of Drosophila

core promoter elements had previously indicated that the DPE
is present in �2.1–22% of Drosophila core promoters (19, 25,
29). We have calculated the frequencies of core promoter ele-
ments among Drosophila transcripts that initiate at different
chromosomal positions using strict Inr-DPE spacing criteria.
We have discovered that 23% ofDrosophila promoters contain
Inr and DPE motifs, whereas 4% contain Inr, DPE, and TATA
box motifs (Table 2). The frequency of DPE-containing pro-
moters among Dorsal target genes (69%) is significantly
higher than the calculated (23%) and the previously reported
frequencies (2.1% to 22%) of DPE inDrosophila core promot-
ers (Table 2).
The overall frequency of a TATA box among Drosophila

transcripts is 18% (Table 2). Interestingly, only a small subset of
the Dorsal target genes appear to contain a TATA box and no
DPE. In the mesoderm there are no genes that contain only a
TATA box, 2 genes that contain a TATA box and an Inr motif,
and 3more genes that contain TATA box, Inr, and DPEmotifs.
In the neuroectoderm, 1 gene contains a TATA box, there are
no genes that contain a TATA box and Inr, and 7 genes contain
TATA box, Inr, and DPEmotifs. In the dorsal ectoderm, 1 gene
contains aTATAbox, 3 genes contain aTATAbox and Inr, and
9 genes containTATAbox, Inr, andDPE.The overall frequency
of TATAboxwithout aDPEmotif amongDorsal target genes is
less than 8% (7 of 91), and only a few (3 of 65) of the Dorsal
targets that are regulated by high or intermediate nuclear con-
centrations ofDorsal contain aTATAboxwithout aDPEmotif,
which is significantly lower than the overall frequency of Dro-
sophila core promoters containing a TATA box without a DPE
motif (13%; Table 2). Taken together, the Inr and DPE motifs
appear to be overrepresented in the core promoters of multiple
Dorsal target genes.
TheDPEMotif inMultiple DrosophilaDorsal Target Genes Is

Conserved—To examine whether core promoter elements play
a role in the regulation of Dorsal-target gene expression, we
have analyzed the sequence conservation of Dorsal target genes
that are activated by different nuclear concentration of Dorsal:
mesodermal genes that are activated by the highest concentra-
tions of Dorsal, namely tinman (tin), twist (twi), phantom
(phm), rho-like (RhoL; Mes1), and Multi drug resistance 49
(Mdr49;Mes5) (45, 47, 55–58), neurogenic ectodermgenes that
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are activated by intermediate levels of Dorsal, namely brinker
(brk), leak (lea), SoxNeuro (SoxN), and vein (vn) (59–63), and
genes that are activated by low levels of Dorsal: thisbe (ths),
pyramus (pyr) in the neuroectoderm, and tailup (tup) in the
dorsalectoderm (64, 65). In particular, we have searched these
genes for both an Inr motif and a DPE motif that matches the
functional DPE range set (DSWYVY) (33). Additionally, we

have verified that the DPE motif is precisely located at �28
relative to the A � 1 of the Inr. Such spacing was previously
shown to be critical for the function of DPE-dependent pro-
moters (28, 33). Importantly, none of these genes contain a
TATA box.
To assess the potential biological significance of the DPE

motifs in the core promoters of these Dorsal target genes, we

TABLE 1
Core promoter composition of Dorsal target genes
The abbreviations used are:Acp1, adult cuticle protein; Act57B, Actin57B; Ance, Angiotensin converting enzyme; Argk, Arginine kinase; Asph, Aspartyl beta-hydroxylase; brk,
brinker; BRWD3, bromodomain and WD repeat domain containing 3; bun, bunched; cv-2, crossveinless 2; Cyp310a1, Probable cytochrome P450 310a1; DNaseII, Deoxyri-
bonuclease II; doc3, Dorsocross3; dpp, decapentaplegic; Dr, Drop; Dscam,Down syndrome cell adhesionmolecule; Ect1, Dorsal target gene in theDorsal ectoderm 1, eiger; Ect2,
Dorsal target gene in the Dorsal ectoderm 2, Dorsocross 1; Ect3, Dorsal target gene in the Dorsal ectoderm 3; Ect4, Dorsal target gene in the Dorsal ectoderm 4; Ect5, Dorsal
target gene in the Dorsal ectoderm 5, C15; ed, echinoid; E(spl), Enhancer of split; fog, folded gastrulation; gcm, Glial cells missing; hbr, Heartbroken, Stumps, Dof; hoip,
hoi-polloi; htl, heartless; ind, intermediate neuroblasts defective; lea, leak; Lcp65Ag2, larval cuticle protein 65Ag2; loco, locomotion defects; Mbs, Myosin binding subunit;
Mdr49,Multi drug resistance 49,Mes5;Mef2, Myocyte enhancer factor 2; Mes 2, Dorsal target gene in the mesoderm 2;Mes 3, Insulin-like peptide 4; Mes 4, Dorsal target gene
in themesoderm 4; Neu2, Dorsal target gene in the neuroectoderm 2; Neu3, Dorsal target gene in the neuroectoderm 3; neur, neuralized; PGRP-SC2, Peptidoglycan-recognition
protein-SC2; Phk-3, Pherokine 3; phm, phantom; Pif1A, PFTAIRE-interacting factor 1A; pnr, pannier; ptc, patched; pyr, pyramus; rho, rhomboid; RhoL, rho-like,Mes1; ry, rosy;
sca, scabrous; sim, single-minded; sna, snail; Socs36E, Suppressor of cytokine signaling at 36E; sog, short gastrulation; SoxN, SoxNeuro; Sulf1, Sulfated; T3, lethal of scute, l(1)
sc; ths, thisbe, Neu4; tin, tinman; tld, tolloid; trbl, tribbles; trh, trachealess; Trim9, tripartite motif-containing 9; tup, tailup; TwdlM, TweedleM; TwdlN, TweedleN; twi, twist;
ush, u-shaped; vn, vein; vnd, ventral nervous system defective; wntD, wnt inhibitor of Dorsal; wts, warts; zen, zerknult; zfh 1, Zn finger homeodomain 1. Promoters containing
Inr and DPE with �� or ��� score are framed in red.

TABLE 2
Frequency of core promoter elements among Drosophila transcripts that initiate at different chromosomal positions and Dorsal target genes

Combination of core promoter elements
Drosophila transcripts Dorsal target genes

p valueNo. of Genes Frequency No. of Genes Frequency

% %
Inr 16,352 82 83 91 �0.02
TATA 3,494 18 26 29 �0.01
TATA and no DPE 2,568 13 7 8 �0.15
TATA and no Inr 461 2 2 2 1
Inr and DPE 4,628 23 63 69 �0.0001
Inr, DPE and TATA 836 4 19 21 �0.0001
Total 19,865 (100) 91 (100)
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have examined the sequence conservation of these core pro-
moters in the 12 sequenced Drosophila species. The Inr and
DPE consensus sequences, as well as the Inr-to-DPE spacing in
the core promoters of tin, brk, twi, pyr, ths,Mdr49 (Mes5), phm,
RhoL (Mes1), tup, lea, and SoxN are conserved across 12 Dro-
sophila species (Fig. 1 and supplemental Fig. S1). vn is highly
conserved throughout the core promoter sequence but in only
five Drosophila species (supplemental Fig. S1). Hence, the core
promoters of multiple Dorsal target genes appear to contain
conserved Inr and DPE motifs that match the DPE functional
range set (33).
The DPE Motifs in Multiple Dorsal Target Genes Are Func-

tionally Important for Transcription—To examine whether the
conservedDPEmotifs are functionally important for transcrip-
tion of Dorsal target genes, we have cloned both wild-type (wt)

and mutant DPE (mDPE) core promoters (�10 to �40 relative
to the A � 1 of the Inr) of 12 putative DPE-containing Dorsal
target genes (namely, twi, brk, tin, pyr, ths,Mdr49, phm, RhoL,
tup, lea, soxN, and vn) into the pUC119 vector. The activity of
wt and mDPE core promoters was tested by in vitro transcrip-
tion with Drosophila embryo nuclear extracts followed by
primer extension analysis. Mutations in the DPE motif of each
of the core promoters of the aforementioned Dorsal target
genes resulted in reduced transcription levels (Fig. 2). Hence,
transcription of the core promoters of these 12 Dorsal target
genes is highly dependent on the DPE.
Activation of Dorsal Target Genes via the DPE—To examine

the effect of core promoter composition on activation of Dorsal
target genes in the context of their natural enhancers, we
mapped the putative Dorsal DNA binding sites within the

FIGURE 1. The core promoters of multiple Drosophila Dorsal target genes contain conserved DPE motifs. The core promoter sequences (�40 to �40
relative to the A � 1 of the Inr) of the Drosophila Dorsal target genes brinker (A) and twist (B) are shown. Nucleotides conforming to the Inr consensus sequence
that are identical to D. melanogaster Inr sequence are highlighted in yellow. Nucleotides that are identical to the D. melanogaster DPE functional range set
sequence are highlighted in light blue. Nucleotides that are not conserved to D. melanogaster but still conform to the DPE functional range set are highlighted
in gray. Sequence conservation of a nucleotide in all 12 species is marked on the bottom by a colon (:), whereas sequence conservation of a nucleotide in 10 or
11 species is marked on the bottom by a single dot.

FIGURE 2. The DPE is functional in multiple Dorsal target genes. The wt and mDPE versions of the indicated core promoters (from �10 to �40 relative
to the A � 1 start site) were subjected to in vitro transcription analysis with a Drosophila embryo nuclear extract. The resulting transcripts were detected
by primer extension-reverse transcription analysis. The previously characterized Drosophila Antp P2 (Antennapedia downstream promoter) served as a
control.
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enhancers of tin, brk, and twi. Consensus Dorsal DNA-binding
sites (GGG(W)nCCM,where (W)n is four or five repeats of T/A
(48)) were identified using TFsearch and JASPAR.
To test the activation of the tin, brk, and twi genes by Dorsal

and their dependence on the DPE motif, genomic fragments
encompassing either 2.2 kb of the natural tin enhancer and
promoter, 3.6 kb of the natural brk enhancer and promoter
(each containing 6 putative Dorsal binding sites), or 2.1 kb of
the natural twi enhancer and promoter (which contains 15
putative Dorsal binding sites) were subcloned upstream of the
firefly luciferase reporter gene (illustrated in Fig. 3).D. melano-
gaster Schneider S2R� cells were co-transfected, and the tran-
scriptional activity of wt and mDPE reporter genes in the pres-

ence of varying amounts of transfected Dorsal expression
plasmid was assayed. The transcriptional activity of both tin
and brk is higher in the presence of increasing amounts of trans-
fected Dorsal expression plasmid, as expected (Fig. 3, A and B).
The levels of transcription of the mDPE tin and brk do not
increase in response to increasing amounts of transfected Dor-
sal, suggesting that the transcription of tin and brk is highly
dependent on the presence of the DPE motif.
The transcriptional activity of twi is augmentedwith increas-

ing amounts of transfected Dorsal expression plasmid, as
expected (Fig. 3C). The levels of transcription are dependent on
the presence of the DPE motif, because the transcriptional
activity ofmDPE twi is significantly lower. There is, however, an
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luciferase control plasmid and assayed for dual luciferase activity. The activities are reported relative to the wild-type promoter in the absence of co-transfected
Dorsal expression plasmid, which was defined to be 1. A schematic diagram of the genomic fragments is shown on top of panels A–C. A, transcriptional
activation of the natural tinman promoter by Dorsal (n � 3). B, transcription activation of the natural brinker promoter by Dorsal (n � 3). C, transcription
activation of the natural twist promoter by Dorsal (n � 4). D, basal transcription levels of twi. To enable the visualization of the basal transcription levels of wt
and mDPE twist reporters, these data are presented in a separate panel. In all panels, error bars represent S.E.
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increase in the mDPE twi reporter activity with increasing
amounts of transfected Dorsal expression vector. The basal
transcription levels (in the absence of transfected Dorsal) of the
twi reporter constructs are also dependent on the DPE motif
(Fig. 3D). The basal activity of the wt twi promoter was 19-fold
higher than that of themDPE twi, whereas the basal activities of
both wt tin and wt brk promoters were 6-fold higher than that
of their corresponding mDPE reporters (data not shown).
The TATA BoxMotif Cannot Substitute for the Loss of a DPE

Motif in brk Transcription and Can Only Partially Substitute for
the Loss of a DPE Motif in twi in Drosophila S2R� Cells—
Transcription of TATA-dependent genes differs from tran-
scription of DPE-dependent genes in many respects. We dem-
onstrated that mutation of the DPE reduces activation of brk
and twi (Fig. 3). Thus, to examine whether the activation of
these genes by Dorsal could occur via a TATA box motif, we
have generated reporter constructs containing either brk or twi
natural enhancer-promoter that, in addition to a mutation in
the DPE motif, contain a TATA box. Addition of a TATA box
to the brk natural enhancer-promoter with a mutation in the

DPEmotif could not restore transcription levels in the absence
or in the presence of transfected Dorsal (Fig. 4A).
Interestingly, transfection of Relish, another Rel family tran-

scription factor, which binds the same or nearly identical DNA
sequence motifs as Dorsal (66, 67), was able to activate the wt
brk, albeit to lower levels as compared with Dorsal. Addition of
a TATA box to the brk natural enhancer-promoter with a
mutation in the DPE motif could not restore transcription lev-
els in the presence of transfected Relish (Fig. 4A).
Addition of a TATA box to the mDPE twi reporter was only

able to partially restore activation by transfected Dorsal in the
context of the natural enhancer (less than 30%) (Fig. 4B). Sim-
ilarly, addition of a TATA box to the mDPE twi reporter was
only able to partially restore activation by transfected Relish in
the context of the natural enhancer. Interestingly, addition of a
TATA box to a twi reporter containing a mDPE motif was
unable to restore the basal transcription activity in the absence
of transfected Dorsal (Fig. 4C). The twi enhancer contains 15
putative Dorsal binding sites, whereas the brk enhancer con-
tains 6 putative Dorsal binding sites. To examine whether twi is

FIGURE 4. The TATA box motif cannot substitute for the loss of a DPE motif in brk transcription and can only partially substitute for the loss of a DPE
motif in twi in Drosophila S2R� cells, whereas transcriptional activation of the natural leak promoter by Dorsal is dependent on the DPE motif and
could fully be restored via a TATA box. Drosophila S2R� cells were transfected with firefly luciferase reporter constructs containing wt (columns 1), mDPE
(columns 2), or mDPE � TATA box promoter (columns 3), as well as a Dorsal expression vector, a Relish expression vector, or an empty vector, as indicated. To
normalize for transfection efficiency, cells were co-transfected with a Pol III-Renilla luciferase control plasmid and assayed for dual luciferase activity. The
activities are reported relative to the wild-type promoter in the absence of co-transfected Dorsal or Relish expression plasmid, which was defined to be 1. A,
transcriptional activation of the natural brinker promoter by Dorsal is dependent on the DPE motif and cannot be compensated via a TATA box (n � 3).
B, transcriptional activation of the natural twist promoter by Dorsal is dependent on the DPE and could partially be restored via a TATA box (n � 3). C, basal
transcription levels of twi. To enable the visualization of the basal transcription levels of wt (columns 1), mDPE (columns 2), and mDPE � TATA box (columns 3)
twist reporters (in the absence of transfected Dorsal), these data are presented in a separate panel. D, transcriptional activation of the natural leak promoter by
Dorsal is dependent on the DPE and could fully be restored via a TATA box (n � 3). In all panels, error bars represent S.E.
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less dependent on theDPE because it contains a higher number
of putative Dorsal binding sites, we have cloned a genomic frag-
ment encompassing 4.0 kb of the natural leak (lea) enhancer
and promoter, which contains 13 putative Dorsal DNA binding
sites. We have also generated lea reporter constructs contain-
ing either a mDPEmotif or a mDPEwith a TATA box and have
tested their activation by Dorsal and Relish (Fig. 4D). A muta-
tion of the DPE reduces activation of lea by both Dorsal and
Relish. Interestingly, addition of a TATAbox to the lea reporter
containing a mDPE motif was able to restore the basal tran-
scription activity, as well as the activation by transfected Dorsal
or Relish (Fig. 4D).
Taken together, in Drosophila S2R� cells, brk, twi, and lea

promoters are dependent on the DPE motif. Dorsal activates
transcription of its targets brk and twi via the DPE, whereas it
activates lea via theDPE aswell as theTATAbox. Furthermore,
Relish, which binds the same or nearly identical DNA sequence
motifs as Dorsal, is able to activate transcription of Dorsal tar-
gets with similar core promoter preference as Dorsal.
TheDPEMotif,Which Is Important for the Activity of twi, lea,

and brk in Drosophila Nuclear Extracts, Can Be Replaced by a
TATA Box—We next sought to examine the dependence of the
twi, lea, and brkon theDPEmotif inDrosophila embryonuclear
extracts, which provide a different experimental system. To
this end we have performed in vitro transcription reactions of
the enhancer-promoter reporters containing wt, mDPE, or
mDPE � TATA with Drosophila embryo nuclear extracts fol-
lowed by primer extension analysis. Mutations in the DPE
motifs of the core promoters of twi, lea, and brk result in
reduced transcription levels of the enhancer-promoter con-
structs (Fig. 5A). Hence, transcription of these Dorsal target
genes is dependent on the DPE.
The addition of a TATA box to mDPE-containing twi and

brk promoters cannot fully restore the reporter activity of the
mDPE constructs in transfected S2R� cells (Fig. 4). The addi-
tion of a TATA box to mDPE-containing twi, lea, and brk pro-
moters can, however, restore in vitro transcription using Dro-
sophila embryo nuclear extracts (Fig. 5A). This demonstrates
both the strength of the TATA box in general as well as the
apparent absence of transcription factors from Drosophila
S2R� cells. We have analyzed the enhancer of brk for putative
binding sites of transcription factors that are expressed in
0–12-h embryos but are not expressed in S2R� cells. The brk
enhancer contains 19 putative Bicoid binding sites and 60 puta-
tive Caudal bindings sites (JASPAR). To examine whether Cau-
dal or Bicoid could activate transcription of a mDPE � TATA-
containing brk reporter, we co-transfected S2R� cells with
natural brk reporter constructs containing wt, mDPE, ormDPE
�TATA box promoter, as well as expression vectors of either
Dorsal, Bicoid, or Caudal (Fig. 5B). As expected, Caudal, which
has previously been shown to be a preferential DPE-specific
transcription factor (68), was able to activate the wt brk pro-
moter but was unable to activate transcription of mDPE or
mDPE � TATA-containing promoters. Interestingly, Bicoid
was able to activate transcription of the wt brk reporter. Unlike
Dorsal and Caudal, Bicoid does not have such core promoter
preference because it activates the mDPE reporter and to some
extent, also the mDPE � TATA brk reporter. It is of note that

Bicoid activates its natural target gene giant, which contains
functional TATA box, Inr, and DPE motifs, regardless of its
core promoter composition (data not shown). Hence, a factor
other than Caudal or Bicoid accounts for the transcription of
the brk reporter containing a mDPE � TATA box using
embryo nuclear extracts.
The Core Promoter Composition Is an Important Contributor

to the Transcriptional Output—To determine the contribution
of the core promoter to the transcriptional output, we have
generated hybrid enhancer-promoter constructs with the tin
enhancer and twi core promoter and have tested their activities.
Co-transfection of a tin enhancer-twi core promoter hybrid
reporter and increasing amounts of Dorsal expression vector to
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S2R� cells resulted in an overall Dorsal activation that is
typical for the tin enhancer (compare Figs. 3A and 6A). The tin
enhancer-twi core promoter hybrid reporters containing
mDPE or mDPE � TATA can be somewhat activated by Dor-
sal, as we have observed for twi enhancer-promoter reporters
(Figs. 3, 4, and 6A). Hence, the ability of Dorsal to activate the
mDPE or mDPE � TATA hybrid promoters in S2R� cells
relies on the core promoter in addition to the enhancer.
We next compared the activity of the hybrid reporters using

Drosophila embryo nuclear extracts. As can be seen in Fig. 6B,

the transcription activities of the hybrid tin enhancer-twi core
promoter reporter constructs using embryo nuclear extracts
are very similar to the activities of the natural twi enhancer-
promoter constructs (Fig. 5A), suggesting that even though the
enhancers are present in these constructs, the activity of the
constructs in the embryo nuclear extracts is dictated by the core
promoters. Collectively, the analysis of the hybrid enhancer-
promoter constructs in both S2R� cells and nuclear extracts
derived from Drosophila embryos highlights the contribution
of the core promoter to the transcriptional output.

DISCUSSION

The DPE Is a Transcriptional Element Shared by Many Dor-
sal Target Genes—In this study we demonstrate that the DPE is
an important, conserved transcription element shared by mul-
tiple Dorsal target genes, which comprise the dorsal-ventral
gene regulatory network. Specifically, we have shown that over
two-thirds of the known Dorsal target genes contain DPE
motifs, which is significantly higher than the percentage of DPE
promoters in Drosophila genes (19, 25, 29). Remarkably, only
less than 8% of the Dorsal target genes contain TATA box ele-
ments withoutDPEmotifs. TheDPE ismost prevalent inmeso-
dermal Dorsal targets. The number of DPE containing genes
decreases in the neuroectoderm and further decreases in the
dorsal ectoderm, where the Dorsal nuclear concentration is
lowest. On the other hand, the number of genes containing a
TATA box is higher in regions where Dorsal nuclear concen-
tration is decreased. The occurrence of the DPE inmany devel-
opmentally regulated genes (68), as well as our analysis of the
frequencies of core promoter elements in Drosophila genes
(Table 2) and the identification of DPEmotifs in themajority of
Dorsal targets, imply that the DPE is not randomly distributed
in�23% of the genes; rather it is enriched in specific GRNs and
pathways.
Regulation of twi, lea, and brk via the Core Promoter—We

have examined the transcription of the natural enhancers and
promoters of twi, lea, tin, and brk in Drosophila Schneider
S2R� cells and have discovered that the basal transcription
levels of twi, lea, tin, and brk in the absence of ectopically
expressed Dorsal are highly dependent on the DPE motif (Figs.
3 and 4).
We show that the DPE core promoter motif is an important

regulatory component inDorsal target genes in S2R� cells. The
brk and twi core promoters are dependent on the DPE motif
and could not be fully activated in S2R� cells by an added
TATA box, whereas the lea core promoter is functionally
dependent on the DPE, but its activity could be restored via an
added TATA box.
Unlike the results obtained using Drosophila S2R� cells, in

vitro transcription analysis using nuclear extracts derived from
Drosophila embryos has demonstrated that the DPE motif,
which is important for the transcriptional activity of twi, lea,
and brk, can be replaced by a TATAbox. This demonstrates the
strength of the TATA box, which can restore transcription of
some mDPE-containing promoters. Nevertheless, the TATA
box is only naturally used in a minority of Dorsal target genes.
Importantly, the mDPE and mDPE � TATA reporter con-

structs of twi, brk, and leahave comparable strength in vitro, yet
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reporter constructs containing hybrid enhancer-promoters with either wt,
mDPE, or MDPE � TATA core promoter, as well as varying amounts of a Dorsal
expression plasmid, as indicated. To normalize for transfection efficiency,
cells were co-transfected with a Pol III-Renilla luciferase control plasmid and
assayed for dual luciferase activity. The activities are reported relative to the
wild-type promoter in the absence of co-transfected Dorsal expression plas-
mid, which was defined to be 1. A schematic diagram of the hybrid genomic
fragments is shown on top. A, transcriptional activation of the hybrid tinman
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mDPE � TATA motifs, were subjected to in vitro transcription analysis with a
Drosophila embryo nuclear extract. The resulting transcripts were detected
by primer extension-reverse transcription analysis.
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they do not have the same strength in S2R� cells. This suggests
that there are additional DPE specificity factors in the cells. The
identification of such DPE specificity factor(s) that act in the
activation of twi and brk, but not in lea, awaits future investiga-
tion. Taken together, our data indicate that the core promoter
contributes to the overall transcription levels and adds an
important regulatory dimension to the complex dorsal-ventral
gene network.
Not All Sequence-specific Transcription Factors Activate

Their Target Genes in a Core Promoter Preferential Manner—
In this study we have demonstrated that multiple Dorsal target
genes are dependent on the DPE and that Dorsal has the ability
to preferentially activate some of its targets via the DPE. It is
interesting to note that Relish, another Rel family transcription
factor, which is important for the activation of the Imd
(Immune deficiency) pathway of innate immunity and binds
the same or nearly identical DNA sequence motifs as Dorsal,
activates transcription in a similar manner to Dorsal, albeit to a
lower extent, presumably because of the lack of additional fac-
tors that might be missing in the S2R� cells in which the Imd
pathway has not been activated (Fig. 4).
In a separate study, we have observed that the maternal

sequence-specific transcription factor Bicoid activates its nat-
ural target gene giant, which contains functional TATA box,
Inr, and DPE motifs, regardless of its core promoter composi-
tion (data not shown). In this study we show that Bicoid acti-
vates themDPE brk reporter (Fig. 5B), highlighting the fact that
the ability of Dorsal, Relish, and Caudal to activate transcrip-
tion of some of their target genes with a preference for the core
promoter composition is not a general property of sequence-
specific transcription factors; rather, it is a unique feature of
these specific transcription factors.
DPE Transcription May Provide a Specialized Transcription

SystemDirected towardDevelopment—Thepresent study dem-
onstrates that theDPE is broadly used in the regulation of genes
that mediate the formation of the dorsal-ventral axis during
early embryonic development. Furthermore, our findings high-
light the importance of the core promoter, in addition to
sequence-specificDNAbindingmotifs in enhancers, in the reg-
ulation of gene expression. We have previously demonstrated
that the core promoters of themajority of theHox genes, which
are key regulators of the development of the embryonic body
plan, contain functional DPE motifs (68). We have also shown
that Caudal, a key regulator of the Hox gene network and a
sequence-specific enhancer binding transcription factor, acti-
vates transcription with a distinct preference for the DPE over
the TATA box (68).We now propose that the prevalence of the
DPE in developmentally regulated genes provides these genes
with certain advantages in the complex regulation of gene
expression (e.g. kinetics of responsiveness to specific signals).

The concept of a specialized transcription system has been
articulated with regards to the TCT core promoter element,
which has been shown to play a key role in a system that is
directed toward the synthesis of ribosomal proteins (20). Tran-
scription of TATA-dependent genes is different from tran-
scription of DPE-dependent genes in many respects, e.g. the
necessary basal transcription factors, the existence of core pro-
moter-specific enhancers, and the necessity for TBP for TATA

transcription as opposed to DPE transcription, where TBP
exerts inhibitory effects. Taken together, DPE transcription
may be regarded as a specialized transcription system that is
directed toward development.
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