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Abstract

We study estimation and model selection of semiparametric models of multivariate survival

functions for censored data, which are characterized by possibly misspecified parametric copulas

and nonparametric marginal survivals. We obtain the consistency and root-n asymptotic normality

of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and

provide a simple consistent estimator of its asymptotic variance, allowing for a first-step

nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the

penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate

survival functions subject to copula misspecification and general censorship. An empirical

application is provided.
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1. Introduction

Economic, financial, and medical multivariate survival data are typically non-normally

distributed and exhibit nonlinear dependence among their component variables. A class of

semiparametric multivariate survival models that has proven to be useful in modeling such

data is the class of semiparametric copula-based multivariate survival functions in which the

marginal survival functions are nonparametric, but the copula functions characterizing the

dependence structure between the component variables are parameterized. More
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specifically, let X = (X1, …, Xd)′ be the survival variables of interest with a d-variate joint

survival function: Fo(x1, …, xd) = P(X1 > x1, …, Xd > xd) and marginal survival functions

. Assume that  are continuous. A straightforward

application of Sklar's (1959) theorem shows that there exists a unique d-variate copula

function Co such that , where the copula

Co(·) : [0, 1]d → [0, 1] is itself a multivariate probability distribution function; it captures

the dependence structure among the component variables X1, …, Xd. This decomposition of

the joint survival function leads naturally to the class of semiparametric multivariate

survival functions in which the marginal survival functions are unspecified, but the copula

function is parameterized: Co(u1, …, ud) = Co(u1, …, ud; αo) for some parametric copula

function Co(u1, …, ud; α) and some value . As a multivariate survival function in

this class depends on nonparametric functions of only one dimension, it achieves dimension

reduction while maintaining a more flexible form than purely parametric survival functions.

This class of semiparametric multivariate survival functions has been used widely in

survival analysis, where modeling and estimating the dependence structure between survival

variables is of importance. See Joe (1997), Nelsen (1999), Oakes (1989, 1994), Frees and

Valdez (1998) and Li (2000) for examples of such applications.

A semiparametric copula-based multivariate survival model has two sets of unknown

parameters: the unknown marginal survival functions , and the copula

parameter αo of the parametric copula function Co(u1, …, ud; αo). For complete data (i.e.,

data without censoring or truncation), Oakes (1994) and Genest et al. (1995) propose a two-

step estimation procedure: in first step the marginal distribution functions

 are estimated by the rescaled empirical distribution functions, in the

second step the copula parameter αo is estimated by maximizing the estimated log-

likelihood function. For randomly right censored data, Shih and Louis (1995) independently

propose the same two-step procedure, except that the Kaplan–Meier estimators of marginal

survival functions are used in the first step. For a random sample of size n, Genest et al.

(1995) establish the root-n consistency and asymptotic normality of their two-step estimator

of αo. For randomly right censored data, Shih and Louis (1995) derive similar large sample

properties of their two-step estimator of αo under the assumption of bounded partial

derivatives of score functions. Unfortunately, this assumption is violated by many

commonly used copulas including the Gaussian copula, the Student's t copula, Clayton

copula and Gumbel copula. In addition, Shih and Louis (1995) assume that the censoring

scheme is i.i.d. random and the parametric copula function is correctly specified.

A closely related important issue in applying this class of semiparametric survival functions

to a given data set is how to choose an appropriate parametric copula, as different parametric

copulas lead to survival functions that may have very different dependence properties. A

number of existing papers has attempted to address this issue. For complete data, we refer to

Chen and Fan (2005, 2006a) for a detailed discussion of existing approaches and references.

For bivariate censored data, existing work include Frees and Valdez (1998), Klugman and

Parsa (1999), Wang and Wells (2000), Chen and Fan (2007), and Denuit et al. (2006). Frees

and Valdez (1998) and Klugman and Parsa (1999) consider fully parametric models of
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bivariate distribution (or survival) functions, and they address model selection of parametric

copulas and parametric marginals for insurance company data on losses and allocated loss

adjustment expenses (ALAEs). The particular data set they use was collected by the US

Insurance Services Office in which loss is censored by a fixed censoring mechanism and

ALAE is not censored. Using various model selection techniques including AIC/BIC, Frees

and Valdez (1998) select the Pareto marginal distributions and the Gumbel copula, while

Klugman and Parsa (1999) select inverse paralogistic for loss marginal distribution, inverse

Burr for ALAE marginal distribution and the Frank copula. Wang and Wells (2000), Denuit

et al. (2006) and Chen and Fan (2007) consider model selection of semiparametric bivariate

distribution (or survival) functions in which they do not specify marginals, but restrict the

parametric copulas to be in the Archimedean family. In particular, Wang and Wells (2000)

propose a model selection procedure for comparing copulas in the one-parameter

Archimedean family, allowing for various censoring mechanisms, as long as a consistent

nonparametric estimator for the bivariate joint distribution (or survival) function is available.

Their selection procedure is based on comparing point estimates of the integrated squared

difference between the true Archimedean copula and a parametric copula; the one with the

smallest value of the integrated squared difference is chosen over the rest of the one-

parameter Archimedean copulas. Denuit et al. (2006) apply Wang and Wells's (2000)

procedure to copula model selection for the same Loss-ALAE data set studied in Frees and

Valdez (1998). They use a nonparametric estimator of the bivariate distribution that takes

into account the fixed censoring mechanism underlying the Loss-ALAE data. They examine

four one-parameter Archimedean copulas (Gumbel, Clayton, Frank and Joe) and select

Gumbel copula since it yields the smallest estimated integrated squared difference. Chen and

Fan (2007) propose a model selection test for comparing multiple semiparametric bivariate

survival functions by taking into account the randomness in the estimated integrated squared

difference. However, their test is still only applicable to model selection of parametric

copulas within the Archimedean family only. It is known that a one or two-parameter

Archimedean copula family could be too restrictive to capture various dependence structures

among multivariate variables. In addition, the semiparametric model selection procedures in

Wang and Wells (2000), Denuit et al. (2006) and Chen and Fan (2007) require consistent

nonparametric estimation of the joint distribution function and the limiting distributions are

complicated. As a result, even for a parametric Archimedean copula family, these tests are

difficult to implement for multivariate (higher than bivariate) data with general censorship.

In this paper we bridge the gap in existing work for estimating and selecting a

semiparametric multivariate copula-based survival model by (i) allowing for data to be

censored under various censoring mechanisms, (ii) using nonparametric estimation of

marginal survival functions only, (iii) permitting any parametric copula specification, which

may be misspecified, non-Archimedean, and its score function may have unbounded partial

derivatives. For random samples without censoring, Chen and Fan (2005) already consider

the Pseudo-likelihood estimation of copula parameters and Pseudo-likelihood ratio (PLR)

model selection test for semiparametric multivariate copula-based distribution models,

accounting for (ii) and (iii). In this paper, we extend their results to allow for general right

censorship. In particular, we first establish the convergence of the two-step estimator of the

copula parameter to the pseudo-true value defined as the value of the parameter that
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minimizes the Kullback-Leibler Information Criterion (KLIC) between the parametric

copula induced multivariate density and the unknown true density. We then derive its root-n

asymptotically normal distribution and provide a simple consistent asymptotic variance

estimator by accounting for (i), (ii) and (iii). These results are used to establish the

asymptotic distribution of the penalized PLR statistic for comparing multiple

semiparametric multivariate survival functions subject to copula misspecification and

general censorship. We also propose a standardized version of the test, whose limiting null

distribution is easy to simulate. To illustrate the usefulness of our testing procedure, we

apply it to copula model selection for the loss-ALAE data, taking into account the

underlying censoring mechanism in the data and allowing parametric copulas to exhibit

more flexible dependence structures than those in the Archimedean family. We find that the

standardized test is generally more powerful than the non-standardized test.

The rest of this paper is organized as follows. Section 2 introduces the model selection

criterion function and the two-step estimation of the copula dependence parameter. In

Section 3, we study the large sample properties of the pseudo-likelihood estimator of the

copula parameter allowing for independent but general right censorship and misspecified

parametric copulas. In Section 4, we present the limiting null distributions of the (penalized)

PLR test statistics for model selection among multiple semiparametric copula models for

multivariate censored data. Section 5 provides an empirical application to the Loss-ALAE

data set and Section 6 briefly concludes. All technical proofs are gathered into the

Appendix.

2. Model selection criterion and parameter estimation

To simplify notation, we shall present our results for bivariate survival models only.

Obviously, all these results have straightforward extensions to multivariate copula models

for survival data with any finite dimension.

In the following we shall use (D1, D2) to denote the censoring variables. Thus under the

right censorship, one observes ( , ) = (X1 ^ D1, X2 ^ D2) and a pair of indicators, (δ1,

δ2) = (I{X1 ≤ D1}, I{X2 ≤ D2}), where a ^ b = min(a, b) for real numbers a and b and I{·} is

the indicator function. We assume that the censoring variables (D1, D2) are independent of

the survival variables (X1, X2). Let  denote the true but unknown

marginal survival function of Xj for j = 1, 2. Suppose n independent (but possibly non-

identically distributed) observations  are available, where ( ,

) = (X1t ^ D1t, X2t ^ D2t) and (δ1t, δ2t) = (I{X1t ≤ D1t}, I{X2t ≤ D2t}). Denote

.

2.1. Model selection criterion

Let  be a class of parametric copulas with i = 1, 2, …, M.

By Sklar's (1959) theorem, each parametric copula family i corresponds to a parametric

likelihood , where
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where  is the density function of copula Ci(u1, u2; αi).

In this paper, we are interested in testing whether a benchmark model (say copula model 1)

performs significantly better than the rest of the copula models according to the KLIC. Let

E0 denote the expectation with respect to the true probability measure. Define

as the pseudo-true value that minimizes the KLIC between the i-th parametric copula family

induced multivariate density and the unknown true density. To conclude that copula model 1

performs significantly better than the rest of the copula models calls for a formal statistical

test, where the null hypothesis is:

meaning that none of the copula models 2, …, M is closer to the true model (according to

KLIC) than model 1, and the alternative hypothesis is:

meaning that there exists a copula model from 2, …, M that is closer to the true model

(according to KLIC) than model 1.

2.2. Two-step estimation

To construct a test statistic for the null hypothesis H0 against the alternative H1, we need

estimates of  and  for i = 1, …, M.

For j = 1, 2, let  be the Kaplan–Meier estimator of :
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where  are order statistics of  for j = 1, 2, and

 are similarly defined. Then under independent censoring,  is

consistent for , j = 1, 2; see e.g., Lai and Ying (1991).

Given the definition of , a natural estimator for it is the pseudo-likelihood estimator :

Since this estimation procedure involves the first-step nonparametric estimation of the

marginal survival functions , j = 1, 2, the estimator  is also called the “two-step”

estimator.

Note that no assumption is made on the censoring variables (D1t, D2t) other than their

independence with the survival variables (X1t, X2t). As a result, various censoring

mechanisms are allowed, including the simple random censoring, fixed censoring, and of

course no censoring. If the censoring variables are fixed at Djt = +∞ for j = 1, 2, 

becomes the estimator proposed in Genest et al. (1995). If the censoring variables (D1t, D2t)

are i.i.d. with a continuous joint survival function,  becomes the estimator proposed in

Shih and Louis (1995). Assuming that the parametric copula density ci(u1, u2; αi) is

correctly specified and that log ci(u1, u2; αi) has bounded partial derivatives with respect to

u1, u2, Shih and Louis (1995) establish the root-n asymptotic normality of  and provide a

consistent estimator of its asymptotic variance for i.i.d. randomly censored data.

The censoring mechanism for the loss-ALAE data is non-random; ALAE is not censored

and Loss is censored by a constant which differs from each individual to another. Results in

Shih and Louis (1995) may not be directly applicable to this data set even under a correct

specification of the copula function. Moreover, for model selection, we need to establish the

asymptotic properties of the two-step estimator under copula misspecification. This will be

done in the next section for a general censoring mechanism.

2.3. Penalized pseudo-likelihood ratio criteria

To test the null hypothesis H0 against the alternative H1, we use the PLR statistic:
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where

In most applications, several parametric copula families are compared which may have

different numbers of parameters. To take this into account, we follow the approach in Sin

and White (1996) by adopting a general penalization of model complexity. Let Pen(pi, n)

denote a penalization term such that Pen(pi, n) increases with pi dim( ), decreases with n,

and Pen(pi, n)/n → 0. Then the penalized PLR statistic is

We note that Pen(pi, n) = pi corresponds to AIC, and Pen(pi, n) = 0.5pi log n corresponds to

BIC criterion.

In many existing applications of copula models, AIC has been used to compare different

families of parametric copula models. To be more specific, let

Then the values of AICi for i = 1, …, M are compared; copula model 1 will be selected if

AIC1 = min{AICi : 1 ≤ i ≤ M} or equivalently if

(2.1)

Noting, however, that  (such as AICi) is a random variable, the fact

that  for i = 2, …, M (or inequality (2.1) holds) for one sample

 may not imply that copula model 1 performs significantly better than

the rest of the models; it may occur by chance. As we will show in the next section,

for i = 2, …, M. To conclude that copula model 1 performs significantly better than the rest

of the models we need to perform a formal statistical test for H0 against H1.
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To test H0, we have to take into account the randomness of the (penalized) PLR statistic.

More precisely, we need to derive the asymptotic distributions of  and the test statistics

under the null hypothesis. This will be accomplished in Sections 3 and 4 of this paper.

3. Asymptotic properties of the two-step estimator under copula

misspecification

As mentioned in the previous section, asymptotic properties of the two-step estimator are

established for randomly censored data in Shih and Louis (1995) under the assumptions that

the parametric copula density correctly specifies the true copula density and that its score

function has bounded partial derivatives. In this section, we will extend their results to a

more general censoring mechanism and allow for misspecified parametric copulas whose

score functions may have unbounded partial derivatives.

Recall that  is the parameter space. For α,  we use ∥α − α*∥ to denote the

usual Euclidean metric. To simplify notation, we now let

where c(u1, u2; α) is the density of the parametric copula C(u1, u2; α). Then the pseudo-true

copula parameter value is , and its two-step

estimator is .

Finally we denote
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3.1. Consistency

The following conditions are sufficient to ensure the convergence of the two-step estimator

 to the pseudo true value .

C1 (i) The sequence of survival variables,  is an i.i.d.

sample from an unknown survival function Fo(x1, x2) with

continuous marginal survival functions ;

(ii) The sequence of censoring variables  is an

independent sample with joint survival functions

 and marginal survival

functions ;

(iii) The censoring variables (D1t, D2t) are independent of survival

variables (X1t, X2t) and there is no mass concentration at 0 in the

sense that  as η → 0.

C2 Let  be a compact subset of . For every ∊ > 0,

C3 The true (unknown) copula function Co(u1, u2) has continuous partial

derivatives.

C4 (i) For any (u1, u2) ∈ (0, 1)2, ℓ(u1, u2; α) is a continuous function of

(ii) Let  and 

Then,

(iii) For any η > 0, ∊ > 0, there is K > 0 such that

 for all  and all uj ∈ [η, 1)

such that 
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C5 If  are subject to non-trivial censoring (i.e., Djt ≠ ∞), then  is

truncated at the tail in the sense that for some  for all xj ≥ τj

and lim inf n−1 .

Note that in contrast to the censoring mechanism in Shih and Louis (1995) Condition C1(ii)

allows the censoring variables  to be non-identically distributed. In addition,

no assumption is made on the joint survival function Gt(x1, x2) of the censoring variables

(D1t, D2t). Hence Condition C1(ii) includes the fixed censoring mechanism in which each

survival variable (X1t, X2t) is censored at a pre-specified, fixed time (D1t, D2t) which may

differ from one observation to another, in which case, the survival function Gt(x1, x2) is

degenerate at (D1t, D2t). It also allows the variables X1t and X2t to have different censoring

mechanisms, one random and the other fixed or one censored and the other uncensored. For

example, the censoring mechanism for the Loss-ALAE data is such that Loss is censored by

a fixed censoring mechanism and ALAE is uncensored. As a result, the observed variables

 may not be identically distributed and the identifiably unique maximizer

 defined in Condition C2 may depend on n. Condition C5 is imposed to handle the

possible tail instability of the Kaplan–Meier estimator, especially for non-identically

distributed censoring times. The truncation can be achieved by simply using Djt ∧ τj as the

censoring variables. Thus, without loss of generality, we shall assume that Djt ∧ τj are the

censoring variables so that . The simple truncation at τj can be changed to the more

elaborate tail modification. We refer to Lai and Ying (1991) for the issue of tail instability

and modification. Finally, because we allow the left tail of the copula to blow up as well, we

shall set  whenever  for j = 1 or 2.

Proposition 3.1. Under conditions C1–C5, we have:

(1)

(2)

Proposition 3.1(1) states that the two-step estimator  is a consistent estimator of the

pseudo true value . If the censoring mechanism is random, then  which does not

depend on n. In addition, if the parametric copula correctly specifies the true copula, then

, where αo is such that C(u1, u2; αo) = Co(u1, u2) for almost all (u1, u2) ∈ (0, 1)2.

3.2. Asymptotic normality

Recall that . For j = 1, 2, we denote
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with  the cumulative hazard function of Xj,

 and dNjt (u) = Njt (u) − Njt (u−), and

.

Let Var0 denote the variance with respect to the true probability measure. The following

conditions are sufficient to ensure the asymptotic normality of .

A1 (i) C2 holds with  ∈ int(A*) for all n, where A* is a compact subset

of ;

(ii)
 has all its eigenvalues

bounded below and above by some finite positive constants;

(iii)

has all its eigenvalues bounded below and above by some finite

positive constants;

(iv)

satisfies Lindeberg condition.

A2 Functions ℓαα(u1, u2; α) and ℓαj(u1, u2; α), j = 1, 2, are well-defined and

continuous in .

A3 (i)  for some q >

0 and aj ≥ 0 such that

;

(ii)  for

some bk, ak and j ≠ k such that

for some ξj ∈ (0, 1/2).

A4 (i) Let  and

. Then,
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(ii) For any η > 0 and any ∊ > 0, there is K > 0, such that

for all  and all uj ∈ [η, 1) such that , j = 1,

2.

Shih and Louis (1995) require bounded  and  for j = 1, 2,

however, this requirement is not satisfied by many popular copula functions such as

Gaussian copula, t-copula, Gumbel copula and Clayton copula. Conditions A3 and A4 relax

the boundedness requirement, and allow the score function and its partial derivatives with

respect to the first two arguments to blow up at the boundaries. Similar conditions have been

verified for Gaussian, Frank and Clayton copulas in Chen and Fan (2006b).

Proposition 3.2. Under conditions C1–C5 and A1–A4, we have:

 in distribution, where Bn and Σn are defined A1.

Proposition 3.2 extends Theorem 2 in Shih and Louis (1995) in two directions: (i) it allows

for more general censoring mechanisms than the simple random censoring in Shih and Louis

(1995), and (ii) it allows for the possibility that the parametric copula may not specify the

true copula correctly. As a result, there are several differences between Proposition 3.2 and

Theorem 2 in Shih and Louis (1995): First, since the censoring variables  may

not be identically distributed, Bn and Σn may depend on n; Second, since the parametric

copula may misspecify the true copula, the information matrix equality may not hold.

Consequently, the asymptotic variance of , , can not be reduced to

 as in Shih and

Louis (1995). For complete data, Proposition 3.2 reduces to that in Chen and Fan (2005).

To estimate the asymptotic variance  of , we let

with
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in which for j = 1, 2,

(3.1)

We note that an alternative expression for  is:

where ,

in which  is so-called Nelson's estimator. This is because

By the consistency of the Kaplan-Meier estimators and , and by applying the law of large

numbers to independent observations, we can the following result, which provides a

consistent variance estimator.

Proposition 3.3. Under conditions C1–C5 and A1–A4, the asymptotic variance of 

can be consistently estimated by , where  is the generalized inverse of .
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4. Pseudo-likelihood ratio test for model comparison

By applying Proposition 3.1(2) we immediately obtain the probability limit of the PLR

statistic.

Proposition 4.1. Suppose for i = 1, …, M, the copula model i satisfies the conditions of

Proposition 3.1. Then

where  for j = 1, 2.

In the following, we adopt the convention that all the notations involving the copula function

C(u1, u2; α) introduced in Section 3 are now indexed by a subscript i for i = 1, …, M to

make explicit their dependence on the parametric copula model i. In addition, we define

,

where for i = 1, …, M and for j = 1, 2,

It is easy to see that  has the same asymptotic distribution as a

multivariate normal random variable with mean zero and variance Ωn, where

It is easy to compute a consistent estimator  for Ωn:
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(4.1)

where  and for i = 2, …, M,

in which

for i = 1, …, M and j = 1, 2 with  given in (3.1).

Before we present the test statistics, we recall the following definition from Chen and Fan

(2005): For model i ∈ {2, …, M},

Models 1 and i are generalized non-nested if the set

 has positive Lebesgue measure;

Models 1 and i are generalized nested if  for almost all (v1, v2)

∈ (0, 1)2.

Given the definition of the pseudo true value , the closest  to the true copula c0

(according to KLIC) in a parametric class of copulas  depends on the true

(but unknown) copula. Hence it is not obvious a priori whether two parametric classes of

copulas are generalized non-nested or generalized nested.

Remark 4.1. Define

It is obvious that if models 1 and i are generalized nested, then

 almost surely, eit = 0 almost surely, and .
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Following the proof of Proposition 3 in Chen and Fan (2005), we can show that if 

then models 1 and i are generalized nested, and σii = 0. Therefore it is easy to test whether

the models 1 and i are generalized nested by testing , which may be done by using its

consistent estimator:

See Chen and Fan (2005) for details.

The following proposition provides the basis for our tests. Note that we allow for some but

not all of the candidate models i ∈ {2, …, M} to be generalized nested with the benchmark

model 1.

Proposition 4.2. For i = 1, 2, …, M, assume that the copula model i satisfies conditions of

Proposition 3.2 and that {eit : t = 1, …, n} satisfies Lindeberg condition. If  is

finite and its largest eigenvalue is positive uniformly in n, then:

(1)

(2)

Proposition 4.2 and the continuous mapping theorem imply

Define

Proposition 4.2 implies that under the Least Favorable Configuration (LFC), i.e.,
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Tn → maxi=2,…,M Zi in distribution. This allows us to construct a test for H0. Suppose the

largest eigenvalue of Ωn is positive uniformly in n, then we will reject H0 if Tn > Zα, where

Zα is the upper α-percentile of the distribution of maxi=2,…,M Zi.

The asymptotic power properties of this test against fixed alternatives and Pitman local

alternatives follow immediately from Proposition 4.2 and are summarized in the following

proposition.

Proposition 4.3. Suppose all conditions of Proposition 4.2 are satisfied. Then the test based

on Tn is consistent against fixed alternatives of the form H1 and has non-trivial power

against local alternatives satisfying

Note that if the censoring mechanism is random, then the local alternatives in Proposition

4.3 can be written in the more familiar form:

for a positive constant K.

In general, the distribution of maxi=2,…,M Zi is unknown, since the asymptotic variance Ωn of

(Z2, #x2026;, ZM) depends on . Following White (2000), one can use either

“Monte-Carlo RC” p-value or “bootstrap RC” p-value to implement this test. As noted in

Chen and Fan (2005), Hansen (2003), and Romano and Wolf (2005), the finite sample

power of this test may be improved by standardization. In our empirical application, we

have computed both “Monte-Carlo RC” p-value using

and “bootstrap RC” p-value based on
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where  is a consistent estimator of σii such as the one given in (4.1), b = bn → 0 as n →
∞, and Gb(·) is a is smoothed trimming which trims out small . The particular trimming

function being used in our empirical study is

where gb(χ) = (b−1g(b−1 χ−1) and g(z) = B(a+1)−1za(1−z)a,z ∈ [0, 1] for some positive

integer a ≥ 1, where B(a) = Γ(a)2/Γ(2a) is the beta function and Γ(a) is the Euler gamma

function.

We note that the standardized tests TnS and TnI proposed here allow that some candidate

models are generalized nested with the benchmark model, since the trimming  in TnS

and TnI removes the effect of generalized nested models (with the benchmark model) on its

limiting distribution. By a minor modification of the proof of Theorem 7 in Chen and Fan

(2005), we immediately obtain the following result:

Proposition 4.4. Suppose all conditions of Proposition 4.2 are satisfied. If b → 0 and nb →
∞, then under the null hypothesis H0, the limiting distribution of TnI is given by that of

, where

Proposition 4.4 implies that the asymptotic null distribution of TnI depends on models that

are generalized non-nested with the benchmark and satisfy

and hence is unknown. We propose the following bootstrap procedure to approximate the

asymptotic null distribution of TnI:

Step1 Generate a bootstrap sample by random draws with replacement from a

consistent nonparametric estimator of the unknown joint distribution of (X1t,

X2t) that takes into account the censoring scheme. Denote ( , , , ) as

the bootstrap analogs of ( , , , ).

Step2
Compute the bootstrap value  of

, i = 2, …, M, and define its recentered value as

, where an → 0 is a small positive (possibly

random) number such that .
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Step3 Compute the bootstrap value of TnI as

Step4 Repeat Steps 1–3 for a large number of times and use the empirical distribution

function of the resulting values  to approximate the null distribution of TnI.

We note that the above bootstrap procedure is very similar to that proposed in Chen and Fan

(2005), except that in Step 1 we generate bootstrap samples from a consistent nonparametric

estimator of the joint distribution that takes account of the censoring. For example, for

bivariate random right censoring, we could sample from the bivariate Kaplan–Meier

estimator; see Dabrowska (1989). See Davison and Hinkley (1997, page 85) for additional

ways to generate bootstrap sample for censored data. The consistency of this standardized

bootstrap RC test  could be established by a minor modification of the proof of Theorem

8 in Chen and Fan (2005).

Remark 4.2. Recall that

If  (which is automatically satisfied

with AIC and BIC), then

Therefore, penalization could be incorporated in the tests. Define

and

(4.2)

Then we can conduct the test using  (or  or ) instead of Tn (or TnS or TnI).
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5. An empirical application

In this section, we illustrate our testing procedure for the selection of multiple copula-based

survival functions by using insurance company data on losses and ALAEs. The particular

data set we use was collected by the US Insurance Services Office and has been analyzed in

some detail in Frees and Valdez (1998), Klugman and Parsa (1999), and Denuit et al.

(2006).

Two alternative approaches have been used in the literature to model multivariate survival

data; that of the multivariate distribution function and that of the multivariate survival

function. It is important to realize that in the context of semiparametric copula-based

models, the copula in a semiparametric copula-based distribution function corresponds to its

survival copula in the corresponding semiparametric survival function. To be specific,

consider the bivariate case. Let (X1, X2) be the survival variables of interest with a joint

survival function Fo(x1, x2) = Pr(X1 > x1, X2 > x2) and marginal survival functions , j =

1, 2. Let H(x1, x2) denote the corresponding joint cumulative distribution function (cdf) with

marginal distributions Hj(·), j = 1, 2. Assume that  and  are

continuous. By the Sklar's (1959 theorem, there exists a unique copula function Ch such that

H(x1, x2) ≡ Ch(H1(x1), H2(x2)), which in turn implies that the representation

holds where

is itself a copula function, known as a survival copula. Hence the bivariate distribution

function Ch(H1(x1), H2(x2)) and the bivariate survival function ,

where  is the survival function of Hj(·) and Co is the survival copula of Ch represent the

same model.

In Frees and Valdez (1998) and Klugman and Parsa (1999), fully parametric modeling of the

joint distribution of the loss and ALAE has been examined; using various model selection

techniques including AIC/BIC, Frees and Valdez (1998) select Pareto marginals and

Gumbel copula, while Klugman and Parsa (1999) select inverse paralogistic for the loss,

inverse Burr for ALAE and the Frank copula. Denuit et al. (2006) adopt a semiparametric

distribution framework in which the marginal distributions of loss and ALAE are left

unspecified, but their copula is modeled parametrically via a one-parameter Archimedean

copula. Their model selection procedure is the same as that in Wang and Wells (2000)

except that the joint distributions of loss and ALAE are estimated differently. They

examined four one-parameter Archimedean copulas: Gumbel, Clayton, Frank and Joe, and

select the same Gumbel copula as Frees and Valdez (1998). Compared with Denuit et al.

(2006), we do not restrict the parametric copulas to be Archimedean. In addition, our test

takes into account the randomness of the selection criterion. Chen and Fan (2005) have also
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studied this data set, but since their model selection test is applicable to uncensored data

only, they restrict their analysis to the subset of 1466 complete data. We now apply our

proposed test to the original censored data with 1500 data points.

The scatterplots for loss and ALAE presented in Frees and Valdez (1998) and Denuit et al.

(2006) reveal positive right tail dependence between loss and ALAE: large losses tend to be

associated with large ALAE's. This is because expensive claims generally need some time to

be settled and induce considerable costs for the insurance company. Actuaries therefore

expect positive dependence between large losses and large ALAE's. On the other hand, these

plots do not reveal any visible left tail dependence between the two variables. As a result, it

is not surprising that the Gumbel copula is chosen in Frees and Valdez (1998) and Denuit et

al. (2006). To shed some light on the robustness of this result to the set of copula families

being considered, we add three more copula families to the set considered in Denuit et al.

(2006): Gaussian copula, survival Clayton, mixture of Clayton and Gumbel copulas; see

Appendix B for expressions of these seven copulas and their partial derivatives. Survival

Clayton has right tail dependence and the mixture of Clayton and Gumbel exhibits both left

tail and right tail dependence unless the weights are degenerate. the Gaussian copula does

not have tail dependence and is thus expected to fit poorly. They are included here in the set

of copulas to see if the power of the test is adversely affected by the presence of poor copula

candidates in the selection set.1

To facilitate comparison, we also apply our tests to the subset of 1466 complete data. The

results of the “Monte Carlo RC” test  (using the AIC penalization factor) for the original

censored data are presented in Table 1 and those for the subset of 1466 complete data are

presented in Table 2, with 500,000 Monte Carlo repetitions. For each copula, we estimated

its parameter(s) by the two-step procedure and computed the value of the AIC. To apply our

model selection test we need to choose a benchmark model. In view of the existing results,

we first use the Gumbel copula as the benchmark. For the Gumbel benchmark, we found the

p-value of the test to be 1 with or without taking into account censoring. This provides

strong evidence that none of the other six copulas performs significantly better than the

Gumbel copula for the loss-ALAE data. This is consistent with the selection result based on

comparing the values of the AIC only; Gumbel followed by mixture of Clayton and Gumbel,

then by survival Clayton and then by Joe. The parameter estimates for the mixture of

Clayton and Gumbel provide additional evidence in favor of the Gumbel copula; the

estimates of the weight on Clayton are only 0.0003 when censoring is taken into account and

0.0002 when censoring is not taken into account. In addition, the estimates of the parameter

in the Gumbel copula obtained by fitting the mixture of Clayton and Gumbel are very close

to the estimates obtained by fitting the Gumbel copula alone for both the subset of complete

data and the original censored data. To see if the test is sensitive to the choice of the

benchmark model, we also used each of the remaining six copulas as the benchmark.

1Since our test is developed for semiparametric copula-based survival functions instead of distribution functions, we use the survival
copulas of these seven copula functions in implementing our test. However, we present our empirical results in terms of copulas of the
corresponding semiparametric distribution functions in order to compare our results with existing results just cited.
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For each of the Tables 1 and 2, we present two versions of the Monte Carlo tests based on

the non-standardized test, , and the standardized test, , as described in Remark 4.2.2

Comparing the first two columns in Tables 1 and 2, we see that both tests yield similar high

p-values when the benchmark is either Gumbel or the mixture of Clayton and Gumbel; for

all the other cases, the standardized test  yields significantly lower p-values than those of

. This indicates that the standardized version of the test is generally more powerful than

the original non-standardized test.

Additionally, we present a bootstrap version of the test based on  (using the AIC

penalization factor). We generate a bootstrap sample by random draws with replacement

from a consistent non-parametric estimator of the bivariate joint distribution that takes into

account the censoring scheme. For this loss-ALAE data set, we could draw bootstrap

samples either from the bivariate Kaplan–Meier estimator of Dabrowska (1989), or from the

estimator of Akritas (1994) and Denuit et al. (2006). Let  be the counterpart of  for

one bootstrap iteration, we write the re-centered bootstrap test statistic as

, where for simplicity we use the same parameter values

(a, bn, an) = (1, n−1/2, 0:025n−1/2 log log n) as those in Chen and Fan (2005). In this

empirical application we use 100 bootstrap repetitions. The bootstrap p-values in Tables 3

and 4 overwhelmingly support the conclusion that the Gumbel copula fits the loss-ALAE

data the best among the seven copulas we considered. This finding is consistent with

existing results in the literature. The fact that the results in Tables 3 and 4 are so close to

each other confirms the statement in Denuit et al. (2006) that the limited amount of censored

points present in this Loss-ALAE data does not seem to affect the copula selection result.

Finally, by comparing the bootstrap p-values in Tables 3 and 4 with the Monte Carlo p-

values in Tables 1 and 2, we notice that the standardized “bootstrap RC” test is in general

more powerful than the standardized “Monte Carlo RC” test, which in turn is more powerful

than the non-standardized “Monte Carlo RC” test. Nevertheless, it is noteworthy that the

standardized “bootstrap RC” test is computationally much more intensive than the

standardized “Monte Carlo RC” test. For an AMD Athlon(tm) 64 Processor, 1.18 GHz and

384 Mb of RAM, for each benchmark case, the standardized “bootstrap RC” test (with 100

bootstrap replications) takes about 10,500 computer seconds, whereas the standardized

“Monte Carlo RC” test (with 500,000 Monte Carlo repetitions) only takes about 350

computer seconds. Moreover, we are happy to see that the standardized “Monte Carlo RC”

test and the standardized “bootstrap RC” test yield very similar rankings and lead to the

same conclusion that the Gumbel copula fits the loss-ALAE data the best.

6. Conclusion

Many models of semiparametric multivariate survival functions are characterized by

nonparametric marginal survival functions and parametric copula functions, where different

2When computing the test statistic , we have used a = 1 and bn = 10/n2.
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copulas imply different dependence structures. In this paper, we first establish large sample

properties of the two-step estimator of copula dependence parameter when the parametric

copula function may be misspecified and when data may be subject to an independent but

otherwise general right censorship. We then provide a penalized pseudo-likelihood ratio test

for selecting among multiple semiparametric copula models for multivariate survival data.

An empirical application to the famous Loss-ALAE insurance data set indicates the

usefulness of our theoretical results.

Although our theoretical results allow for general right censoring scheme, we still assume

that the data is independent and is subject to independent censoring. In some economic and

financial applications, data could be serially dependent and may be subject to dependent

censorship. The two-step estimator and its large sample properties have been extended to

time series settings in Chen and Fan (2006a,b), but their results do not allow for any

censoring. We shall extend the results in this paper to allow for time series and/or dependent

censoring in another paper.
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Appendix A. Technical proofs

We first introduce additional notation: , ,

 and  the marginal cumulative

hazard function of Xj, j = 1, 2.

Lemma A.1. Suppose that Conditions C1 and C5 are satisfied. Then: (i) the marginal

Kaplan–Meier estimators are uniformly strongly consistent:

 a.s. for j = 1, 2; (ii) they can be expressed as martingle

integrals:

where op() is uniform in x ∈ [0, τj], for j = 1, 2.

Proof of Lemma A.1. Because of Condition C5, the risk set size in (−∞, τj] is of order n.

Consequently, the uniform strong consistency is a special case of Theorem 3 of Lai and
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Ying (1991). The martingale integral approximation follows from formula (3.2.13) of Gill

(1980) and the consistency of the Kaplan–Meier estimator.

Lemma A.2. Let , j = 1, 2. There exists τ0 > 0 such that for every ∊
> 0, there is an η > 0 such that

Proof of Lemma A.2. For notational convenience, subscript j 1, 2 will be omitted. By

definition,

The right-hand side is bounded by , x ≤ τ0 for suitably chosen τ0,

provided that , which holds for all large n. Thus,

(A.1)

By a theorem of van Zuijlen (1978, Theorem 1.1), for any ∊ > 0, there exists η such that

(A.2)

Since , it follows from (A.1), (A.2) and the fact that

 for all  that the lemma holds.

Proof of Proposition 3.1. The main ideas here are to use the uniform consistency of the

Kaplan–Meier estimator and the identifiability Condition C2. Write

(A.

3)

We first show that the first term on the right-hand side of (A.3) is of order op(1), uniformly

in . Under Condition C5, , j = 1, 2, are bounded away from 0. By

continuity of ℓ() on  and Lemma A.1, the first term, with summation over
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t such that both  and  are bounded away from 0, is of order op(1),

uniformly in . i.e., for every η > 0,

(A.

4)

It remains to show that for every ∊ > 0, there exists η > 0 such that

(A.5)

and

(A.6)

By Lemma A.2 and Condition C4(iii), there exists K > 0 such that

Therefore, to show (A.5) and (A.6), it suffices to show that for any ∊* > 0, there exists η
such that

(A.7)

By Condition C4(ii) and the Markov inequality, to show (A.7), we only need to show that

for any K* > 0, there exists η such that

(A.8)

But, again by the Markov inequality, the left-hand side of (A.8) is bounded by

which can be made arbitrarily small by Condition C1.

We next show that the second term is also of order op(1). By Condition C4(ii), it suffices to

show that for every K > 0,
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converges to 0 uniformly in . But this sequence converges to 0 a.s. for every α and

has uniformly bounded derivatives over the compact set , and, therefore, the convergence

must be uniform.

Proof of Proposition 3.2. The proof can be done by essentially combining the techniques of

Shih and Louis (1995) and Chen and Fan (2005). A critical part is how to appropriately

control the tail behavior.

By the mean-value theorem, we can linearly expand the pseudo-likelihood score function at

 to get

(A.9)

where  for some  on the line segment

between  and . Under Condition A4, we can apply the same argument for proving (A.5)

to show that  is

asymptotically negligible as η → 0. This in conjunction with Condition A2 and the

consistency of  and , implies that  in probability as n → ∞.

Again by the mean-value theorem,

(A.

10)

where ( , ) lies on the line segment between ( ) and

( ).

By Lemma A.1,

(A.11)

Let  denote the right-hand side of (A.11) with the summation

restricted to those terms such that  We next show that for some ∊j > 0,

(A.12)

where Op(1) is uniform over η > 0. For any ξ ∈ (0, 1), since
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it follows from Lenglart's inequality (Gill, 1980, Theorem 2.4.2) that

(A.13)

where Op(1) is uniform in x and the second equality follows from Lemma A.2 and van

Zuijlen (1978, Theorem 1.1). From (A.13), Lemma A.2 (with ξ = 2ξj) and Condition A3,

we have, ignoring the right tail,

Hence, (A.12) holds with ∊j = 1 − 2ξj, j = 1, 2.

In view of (A.12), we can essentially pretend that ℓαj in (A.10) does not blow up at the tail.

Therefore, (A.11) implies that for j = 1, 2,

(A.14)

From (A.9)–(A.11) and (A.14), we see that  is asymptotically a sum of independent

zero-mean random vectors. Given Condition A1, Proposition 3.2 now follows from the

standard multivariate central limit theorem for independent but non-identically distributed

random variables.

Proof of Propositions 3.3. The consistency of the variance estimator clearly follows from

the laws of large numbers, the consistency of the Kaplan–Meier estimator and of , when

the possible “tail instability” is ignored. To control the tail behavior, we can applied the

same techniques as in the proofs of Propositions 3.1 and 3.2. The details are omitted.
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Proof of Proposition 4.2. For i = 1, …, M, by the definition of , we have

Hence,

where  is between  and . By conditions C2–C5, A1–A4 and Proposition 3.2, we

have

Hence,

As a result, we get for all i = 2, …, M,

where

By Proposition 3.2, we have Dn = Op(n−1).
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For generalized non-nested models, Using a proof similar to that of Proposition 3.2, we

obtain:

hence  converges in distribution to a . Therefore,

converges in distribution to a .

For generalized nested models, the term Ai,n becomes zero almost surely, we have

where by Proposition 3.2, 2nDi,n is distributed as a weighted sum of independent 

random variables.

Proof of Proposition 4.3. Note that

Let

Then

For fixed alternatives, maxi=2,…,M Kin = +∞ and so P (Tn > Zα) → 1. For local alternatives

such that maxi=2,…,MKin > 0,
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Hence limn→∞ P (Tn > Zα) > α.

Appendix B. Expressions of copulas and their derivatives

In the Appendix B we describe the seven copulas and their derivatives that we have used in

the empirical application Section 5.3 Let (X1, X2) be the lifetime variables of interest with

joint survival function Fo(x1, x2) = Pr(X1 > x1, X2 > x2) and continuous marginal survival

functions . Let H (x1, x2) denote the corresponding joint

cumulative distribution function (cdf) with marginal distributions . By

the Sklar's (1959) theorem, there exists a unique copula function Ch on [0, 1]2 such that

or equivalently

holds with

(B.1)

where the copula function Co() is sometimes called the survival copula (of Ch).

It is easy to see that, for any j ∈ {1, 2}

(B.2)

in fact, for any partial derivative of order k higher than 2 we have that

(B.3)

where ji ∈ {1, 2}. Note that this last equation implies that

(B.4)

where co and ch are the copula densities associated to Co and Ch, respectively.

3In the empirical application we have used both analytical derivatives and numerical derivatives, while the results based on analytical
derivatives perform slightly better. Since these analytical derivatives for copulas are tedious to compute, we include them in this
Appendix B so that readers could use them in other applications as well.
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Using relations (B.2)–(B.4), by replacing vj = 1 − uj in the expressions of partial derivatives

of a copula Ch and its density ch, we immediately obtain the expressions for the partial

derivatives of the survival copula Co and its density co. Therefore, in the following we only

provide expressions for the partial derivatives of several copula functions Ch and their

densities ch that we have used in the empirical application.

Gumbel copula

The Gumbel copula and its density are given by

(B.5)

and

with T1 = ((α − 1)(− log(Ch))−1 + 1). Following Frees and Valdez (1998), we can express

the partial derivative of Ch with respect to vj, j = 1, 2, as

(B.6)

Hence, a little algebra implies4

The partial derivative of the copula density ch with respect to vj, j = 1, 2, is given by

where

4We leave the dependence on (v1, v2) implicit, to ease the notational burden.
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Clayton copula

The Clayton copula and its density are given by

and

Hence the second order partial derivative of Ch with respect to vj, j = 1, 2, is given by

where

The first order partial derivative of the copula density ch with respect to vj, j = 1, 2, is given

by

Frank copula

The Frank copula and its density are given by

and

After some algebra, the second order partial derivative of Ch with respect to vj, j = 1, 2, is

given by
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where

and the first order derivative of the copula density ch with respect to vj, j = 1, 2, is given by

Joe copula

The Joe copula and its density are given by

and

where  and .

The second order partial derivative of the copula Ch with respect to vj, j = 1, 2, is given by

After some tedious algebra, the first order partial derivative of the copula density ch with

respect to vj, j = 1, 2, is given by
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Gaussian copula

The Gaussian copula and its density are given by

where ϕα is the bivariate standard normal distribution with correlation α, Φ is the scalar

standard normal distribution, and

where ϕ is the density function of Φ, and ϕα is the density function of ϕα.

The second order partial derivative of the copula Ch with respect to vj, j = 1, 2, is given by

The first order partial derivative of the copula density ch with respect to vj, j = 1, 2, is given

by
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Mixture copula

A mixture copula Ch(v1, v2; α), with its parameter α = (α1, α2, λ), is simply given by

where  is one copula (such as the Clayton copula in our application) with its

parameter α1, and  is another copula (such as the Gumbel copula in our

application) with its parameter α2. Then it is clear that the partial derivatives of Ch are

simply the linear combination of the partial derivatives of the two copulas:
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Table 1

Monte Carlo p-values of the test for the original dataset subject to censoring.

Benchmark p-value of p-value of AIC 2-step estimator

Gumbel 1.0000 0.9980 −0.1447 1.4428

Clayton 0.0015 0.0004 −0.0000 0.5152

Frank 0.0688 0.0394 −0.1009 0.0473

Joe 0.3968 0.2533 −0.1263 1.6466

Gaussian 0.1692 0.0724 −0.1125 0.4668

Survival Clayton 0.6295 0.4298 −0.1380 0.7825

Mix Clayton & Gumbel 0.9469 0.9794 −0.1420 (0.1505, 1.4433, 0.0003)
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Table 2

Monte Carlo p-values of the test for the subset without censoring.

Benchmark p-value of p-value of AIC 2-step estimator

Gumbel 1.0000 0.9940 −0.2560 1.4254

Clayton 0.0037 0.0008 −0.1203 0.5098

Frank 0.1197 0.0834 −0.2160 0.0494

Joe 0.3530 0.1643 −0.2384 1.6105

Gaussian 0.2499 0.1442 −0.2286 0.4604

Survival Clayton 0.5570 0.3412 −0.2472 0.7440

Mix Clayton & Gumbel 0.9382 0.9590 −0.2530 (0.1572, 1.4256, 0.0002)
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Table 3

Bootstrap p-values of the test for the original dataset subject to censoring.

Benchmark p-value of AIC Two-step estimate

Gumbel 1.0000 −0.1447 1.4428

Clayton 0.0000 −0.0000 0.5152

Frank 0.0000 −0.1009 0.0473

Joe 0.1010 −0.1263 1.6466

Gaussian 0.0517 −0.1125 0.4668

Survival Clayton 0.1414 −0.1380 0.7825

Mix Clayton & Gumbel 0.9900 −0.1420 (0.1505, 1.4433, 0.0003)
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Table 4

Bootstrap p-values of the test for the subset without censoring.

Benchmark p-value of AIC Two-step estimate

Gumbel 1.0000 −0.2560 1.4254

Clayton 0.0000 −0.1203 0.5098

Frank 0.0000 −0.2160 0.0494

Joe 0.1052 −0.2384 1.6105

Gaussian 0.0202 −0.2286 0.4604

Survival Clayton 0.0909 −0.2472 0.7440

Mix Clayton & Gumbel 0.9963 −0.2530 (0.1572, 1.4256, 0.0002)
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