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Calorie restriction and health
Calorie restriction (CR) is defined as a reduction in calorie 
intake below the usual ad libitum intake without malnutrition.  
In general, the daily caloric intake subjected to CR has been 
restricted to 50% to 70% of the average food intake in subjects 
eating ad libitum[1, 2].  CR was first reported to retard aging and 
prolong median and maximal life span in the 1930s[3].  Over 
the last several decades, CR has been widely studied which 
exhibits an apparent beneficial impact on longevity, age-
associated diseases, and attenuation of functional decline, 
across a broad variety of species (including rats, mice, fish, 
flies, worms and yeast)[4, 5].  Moreover, CR provides protection 
against a cadre of chronic diseases including diabetes mellitus, 
neurodegenerative diseases, autoimmune disorders[6–8] and 
cancer[9–12].  CR has been shown to alter a variety of physiologi-
cal parameters especially reduced metabolic rate and oxidative 
damage, resulting in a decrease in the incidence of cardiovas-
cular diseases[13].  In response to energy deficiency, experimen-
tal animals experience a drastic decrease in both fat mass and 
lean body mass.  Muscle mass is overtly reduced, although the 
rate of loss of function and mass/body weight with the aging 
process is attenuated[9, 14–16].  Metabolic rate may decrease tran-

siently although studies have indicated similar metabolic rate 
per kg lean body mass to that of ad libitum fed rodents in long-
term CR protocol[17].  Body temperature, systolic and diastolic 
blood pressure all decrease[18, 19] along with the reduced sym-
pathetic activity[20].  CR-treated animals are more spontane-
ously active and display superior cognitive abilities compared 
to their ad libitum counterparts[21, 22].

The most prominent mechanism that may be responsible 
for the beneficial health and physiological effects of CR are 
usually mediated through increased insulin sensitivity which 
results in reduced plasma glucose and insulin concentrations 
and improved glucose tolerance[23]; reduced levels of oxida-
tive stress (decreased oxidative damage to proteins, lipids and 
DNA)[24], increased resistance to various types of stress includ-
ing heat, oxidative and metabolic stress[25] as well as enhanced 
immune function[26].  

Impact of CR on aging
An inverse relationship between calorie intake and lifespan 
has been revealed in mice, suggesting a key role for regulators 
of energy metabolism in the mechanism of CR.  Accordingly, 
CR-induced metabolic reprogramming may be a key event 
in the mechanism of lifespan extension[27, 28].  The age when 
CR is started, the severity of restriction, and strain or genetic 
background of animals determine the magnitude of life exten-
sion.  The only mammals in which CR has clearly been shown 
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to slow primary aging and extend maximum lifespan are rats 
and mice[29–31].  In rodents, initiating a 30% to 60% reduction in 
calorie intake below usual ad libitum intake early in life (from 
shortly after weaning to age 6 months) caused a proportion-
ate 30% to 60% increase in maximum lifespan, whereas a 44% 
reduction in calorie intake started in adulthood (12 months) 
extended maximum lifespan by only 10% to 20%[32].  Data from 
rodents found that CR increases longevity by preventing or 
delaying chronic diseases including diabetes, atherosclerosis, 
cardiomyopathy, autoimmune diseases, kidney and respira-
tory diseases, and cancer[3, 30–32].  In addition, CR is capable 
of decreasing neurodegeneration in the brain and enhancing 
neurogenesis in animal models of Alzheimer’s disease, Parkin-
son disease, Huntington disease and stroke[27, 32–34].  However, 
reduction of chronic diseases does not completely explain 
the increased lifespan and preservation of function at more 
youthful-like states in calorie-restricted rodents.  In particular, 
approximately one third of these experimental rodents die 
without any evidence of apparent organ pathology[35].  

More recent studies suggest that reducing calorie intake can 
also increase the lifespan in nonhuman primates[36, 37].  There 
are two longevity studies (one at the University of Wisconsin, 
the other at the National Institute on Aging) examining the 
long-term effects of CR on aging in rhesus monkeys[38].  Up-to-
now, the experimental data have shown that a number of met-
abolic, hormonal and structural adaptations taken place in CR-
treated rodents also exist in CR monkeys.  A 20-year longitudi-
nal adult-onset CR study in rhesus monkeys at the Wisconsin 
National Primate Research Center revealed that moderate CR 
lowered the incidence of aging-related death.  Fifty percent of 
control fed animals survived as compared with 80% of the CR 
animals.  Furthermore, CR delayed the onset of age-associated 
pathologies.  Specifically, CR reduced the incidence of diabe-
tes, cancer, cardiovascular disease, and brain atrophy[27].  In 
addition, immune senescence and sarcopenia are attenuated 
in calorie restricted monkeys[39].  Taken together, emerging 
evidence from ongoing research of CR in monkeys suggest 
that this nutritional paradigm may be universal among species 
with regards to extension of life span and retardation of aging.

It is likely that certain physiological and psychological con-
sequences elicited by CR seen in animals may distinctly impact 
human life.  It is rather difficult to determine whether CR has 
beneficial effects on longevity in humans because there are lit-
tle validated biomarkers that may serve as surrogate markers 
of aging.  Furthermore, it is impractical to conduct random-
ized, diet-controlled, long-term survival studies in human[40].  
Nonetheless, data from epidemiological studies suggest that 
CR may offer beneficial effects on the factors involved in the 
pathogenesis of primary and secondary aging and life expec-
tancy in humans.  Data from a series of studies conducted 
by the Calorie Restriction Society, a group that practices self-
imposed CR with a belief that diet restriction extends lifespan, 
were recently reported[41–43].  Compared with control individu-
als consuming a Western diet, calorie restricted individuals 
exhibited similar alterations in metabolic and organ function 
reported previously in calorie restricted rodents.  The main 

parameters for metabolic and organ function include low per-
centage of body fat, low systolic and diastolic blood pressure, 
markedly improved lipid profile, increased insulin sensitiv-
ity, reduced plasma concentration of inflammatory markers, 
low circulating growth factors, and low serum concentration 
of T3

[41–43].  Interestingly, left ventricular diastolic function (ie, 
parameters of viscoelasticity and stiffness) in calorie restricted 
individuals was somewhat similar to those who were ~16 
years younger[43] and is consistent with the beneficial cardiac 
effects of CR seen in mice[44].  Nonetheless, further large scale 
study is in need to determine the human metabolic and func-
tional adaptive responses to CR.  

Impact on cardiovascular system
CR exerts a protective effect on cardiovascular system.  Evi-
dence from both experimental animals and human has dem-
onstrated that CR decreases basal heart rate[29, 45].  In addition, 
Mager and coworkers recently depicted that rats maintained 
on a CR diet display increased heart rate variability[46].  High 
heart rate variability is usually associated with improved 
cardiovascular function, whereas low heart rate variability is 
usually indicative of poor cardiovascular function.  Other than 
heart rate, CR may also participate in the regulation of blood 
pressure.  Hypertension is a major risk factor for coronary 
artery disease and stroke[47].  Both systolic and diastolic blood 
pressures are significantly reduced in rats maintained on a CR 
diet[48].  Similarly, monkeys also display reduced blood pres-
sure following CR diet[37].  

Progressive CR induces a dose-dependent increase in myo-
cardial triglyceride content and a dose-dependent decrease 
in diastolic function in lean healthy men[49].  Viljanen and col-
leagues showed that myocardial free fatty acid uptake was 
reduced after a short-term low calorie diet resulting in overt 
weight loss.  Furthermore, these changes were in parallel with 
the reduction of left ventricular mass, cardiac work, and per-
fusion at rest and a subtle reduction in myocardial triglyceride 
content[50].  

It has been shown that diastolic dysfunction is favorably 
affected by CR in human[43].  Interestingly, changes of dia-
stolic function in CR subjects were very similar to lifelong CR 
mice[44].  CR possesses cardiac-specific effects which may offset 
aging-associated changes in diastolic function.  These benefi-
cial effects on cardiac function might be mediated by the effect 
of CR on blood pressure, systemic inflammation and myo-
cardial fibrosis[43].  Further evidence revealed notable effect 
of CR on endothelial function[22].  CR is capable of improving 
endothelium-dependent vasodilatation[51].  It is plausible to 
speculate that CR improves endothelial function in the non-
obese, probably via decreased production of ROS.  CR lowers 
most major coronary heart disease (CHD) risk factors, includ-
ing plasma low density lipoprotein cholesterol (LDL-C) con-
centration, total cholesterol/high density lipoprotein choles-
terol (HDL-C) ratio, C-reactive protein (CRP) concentrations, 
and the homeostasis model assessment for insulin resistance 
(HOMA-IR) index[52].

CR reduces levels of oxidative stress in cardiovascular 
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system by alleviating oxidative modifications of proteins 
and DNA and decreased levels of lipid peroxidation in the 
heart[24, 53, 54].  CR reduces inflammatory processes which trig-
gers atherosclerosis, as indicated by reduced levels of leuko-
cytes and circulating levels of tumor necrosis factor α (TNF-α) 
and other inflammatory cytokines[1, 55].  By suppressing athero-
sclerosis, CR should ultimately reduce the risk of cardiovascu-
lar disease and stroke.

Effect of CR on cardiovascular disease and cardiopatho­
logy
Much of the cardiovascular disease is related to the metabolic 
syndrome which diagnosis standard including clinical 
findings of increased abdominal circumference, elevated 
triglycerides, low high-density lipoprotein-cholesterol, 
elevated fasting blood glucose and/or elevated blood pres
sure.  It is well established that, beside drug therapy, lifestyle 
therapies that combine energy restriction and physical activity 
independently improve a number of cardiovascular disease 
risk factors including insulin resistance, impaired glucose 
tolerance, dyslipidemia and hypertension[56–58].  

Hypertension and cardiac hypertrophy 
Reduced caloric intake lowers blood pressure in hyperten-
sion[59–61] and obesity[62], which are usually accompanied with 
overt cardiovascular anomalies.  The mechanisms respon-
sible for this observation have not been clarified.  However, 
decreases in sympathetic nervous activity frequently accom-
pany reduced caloric intake.  In the spontaneously hyper-
tensive rats, fasting-induced reduction in blood pressure is 
accompanied by reduced cardiac norepinephrine turnover[63] 
and reduced sympathetic support of blood pressure[60].  
Reduced plasma norepinephrine levels and decreased sym-
pathetic support of blood pressure have also been observed 
in aortic coarctation-induced hypertension following CR[59].  
There is thus considerable evidence suggesting that reduced 
sympathetic activity may serve as an important mechanism 
behind the reduction in blood pressure following decreased 
caloric intake[64].  

The Dahl salt-sensitive rat is model which indices of decom-
pensated, pressure-overload hypertrophy.  Seymour reported 
that CR reduced the degree of change rather than prevent-
ing it.  CR reduced restrictive pattern development (lower 
E/A), prolonged early filling deceleration time, and shortened 
relaxation time.  These authors concluded that modest CR, 
independent of salt intake, reduced hypertension associated 
decompensated pressure-overload hypertrophy[65].  

Ischemia and reperfusion 
Shinmura showed that short-term (2 weeks) CR is capable of 
improving myocardial ischemic tolerance in both young and 
old Fischer 344 rats.  The cardioprotection induced by CR is 
associated with an increase in AMPK activation[66].  Further-
more prolonged CR (6 months) improves myocardial ischemic 
tolerance and restores ischemic preconditioning (IP) effect in 
middle-aged rats, possible through a nitric oxide-dependent 

increase in nuclear human silent information regulator type 1 
(Sirt1) content[67].  CR also promoted ischemia-induced revas-
cularization in wild-type mice but not adiponectin knockout 
mice.  Adiponectin is known to promote vascular cell function 
and survival under stressed conditions[66, 67].  It was recently 
reported that CR may confer resistance to myocardial isch-
emia-reperfusion injury by increasing adiponectin levels[68].  
Lifelong CR drastically attenuates myocardial oxidative stress 
during ischemia/reperfusion[23] and post-ischemic inflamma-
tory response[69].  

IP is able to protect the heart against ischemia reperfusion 
damage in adult but not in senescent rat hearts.  Abete and 
colleagues found that IP reduces postischemic dysfunction 
in the hearts from adult and food-restricted but not in the ad 
libitum-fed senescent rats[70].  Nonetheless, exercise training 
and food restriction individually produce partial preservation 
of IP in the aging heart[71].  One of the mechanisms responsible 
for early IP conservation in aging heart may be restoration 
of the norepinephrine release in response to preconditioning 
stimulus.

Diabetes mellitus and metabolic syndrome 
Major metabolic effects of substantial weight loss in obese 
patients with type 2 diabetes provide an avenue to understand 
the mechanisms behind metabolic syndrome.  Typical diagno-
sis of metabolic syndrome requires presence of 3 of 5 character-
istics: increased abdominal waist, hyperglycemia, high blood 
triglycerides, high blood pressure and HDL-C.  One of the 
commonly accepted hypotheses is that the crucial initial event 
is the increased concentration of circulating free fatty acids 
(FFAs) and cytokines derived from excess visceral abdomi-
nal fat[72].  Increased circulating FFAs is known to decrease 
glucose uptake by heart and skeletal muscle[72] although it is 
rather difficult to link chronically increased circulating FFAs 
to increased blood triglycerides and decreased high density 
lipoprotein (HDL) in humans.  Weight loss in obesity led to 
decreased waist circumference, decreased circulating glucose 
and triglycerides, and cytokines.  Conversely, increased cir-
culating FFAs taken up by the heart promote accumulation of 
myocardial triglycerides leading to diastolic dysfunction and 
lipotoxic cardiomyopathy in human[73].  Overall, these results 
provide support the concept that excess circulating FFA, as 
associated with abdominal visceral obesity, is fundamental 
in the pathogenesis of an increasingly common human dis-
ease, namely, metabolic syndrome.  It was also indicated that 
unloading the human body of adipose tissue induces a “reverse 
metabolic syndrome.” Similar to human, type 2 diabetic rats 
undergo CR or exercise displayed improved plasma levels of 
glucose, insulin, cholesterol and triacylglycerol and reduced 
abdominal fat accumulation[74].  Other report also reported 
reduction in cardiovascular disease risk in type 2 diabetes fol-
lowing CR[75].  Hammer and colleagues reported that a short-
term very low-calorie diet increases myocardial triglyceride 
content and is associated with a decrease in left ventricular 
diastolic function in patients with well-controlled type 2 dia-
betes[76].  Furthermore prolonged caloric restriction improves 
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glucoregulation associated with decreased myocardial trig-
lyceride content and favorable effects on blood pressure and 
myocardial function in insulin-treated obese patients with 
type 2 diabetes[77].  These data prove that myocardial triglyc-
eride stores in obese patients with type 2 diabetes are flexible 
and amendable to therapeutic intervention by caloric restric-
tion.  

Other heart diseases 
CR reduces the severity of spontaneous cardiomyopathy in 
rats and prevents age-associated alterations in late diastolic 
function in mice[78].  CR also improves the survival and myo-
cardial damage in obese mice with viral myocarditis, which is 
accompanied by increased adiponectin levels in plasma and 
myocardium[79].  In addition, CR attenuates atherosclerotic for-
mation[34].

Signal transduction mechanism involved in CR
Evidence from animal models and preliminary studies in 
humans indicates that CR delays cardiac aging and pre-
vents cardiovascular disease.  These effects are mediated by 
a wide spectrum of biochemical and cellular adaptations, 
including redox homeostasis, mitochondrial function[80], 
inflammation[81, 82], apoptosis[83], and autophagy[84].  Oxidative 
stress plays an important role in the pathogenesis of coro-
nary artery disease by mediating expression of inflamma-
tory genes and eliciting oxidative modification of lipoprotein 
particles[85, 86].  CR seems to confer vasoprotection through 
attenuation of oxidative stress and antiinflammatory effects 
in aged animals[13].  CR also increases bioavailability of anti-
atherogenic NO and improves endothelial function[13].  In 
addition, CR exerts beneficial effects on a range of systemic 
cardiovascular risk factors[87, 88].  

Over the last decades, a number of nutrient-sensitive pro-
teins have been identified in the health and longevity effects of 
CR, including the sirtuins, forkhead box transcription factors 
(FOXOs)[89] and mammalian target of rapamycin (mTOR)[90].  
Corton and Brown-Borg provided compelling evidence for the 
broad participation of the nuclear receptor transcription factor, 
peoxisome proliferator activated receptor (PPAR) α in CR[91].  
The PPAR γ co-activator PGC-1α is a key regulator of genes 
involved in mitochondrial metabolism.  CR increases mRNA 
levels of PGC-1α in multiple tissues[92].  Regulation of mito-
chondria through manipulation of SIRT1 and glycogen syn-
thase kinase 3 beta (GSK3β) is a common feature of CR and the 
stress response[93].  Other transcription factors have also been 
considered with a key role in CR-elicited biological actions.  
Heydari and colleagues reported that CR enhanced the heat 
shock transcription factor 1 (HSF-1) function and thereby 
promoted the transcription of the important chaperone, heat 
shock protein 70 (HSP70)[94].  Kim and coworkers proposed an 
important role of the following redox-sensitive transcription 
factors in CR-associated actions including nuclear factor kappa 
B (NF-κB), activator protein-1 (AP-1); and hypoxia inducible 
factor-1 (HIF-1)[95].  However, much still remains to be deter-
mined with regards to the functioning of transcription factors 

in long-term CR.  Table 1 summaries some of the most impor-
tant signaling molecules involved in CR-induced biological 
and physiological responses.

Table 1.  CR effect on signal molecule. 

  Signal molecule	   CR effect on signal molecule	             Ref No 
 
	 AP-1	 ↓	 [81, 95]

	 FOXO	 ↓	 [89, 97]

	 GSK-3β	 ↓	 [93, 98]

	 HIF-1	 ↓	 [95, 99]

	 HSF-1	 ↑	 [94]

	 HSP-70	 ↑	 [94, 100]

	 mTOR	 ↓	 [90, 101]

	 NF-κB	 ↓	 [81, 82, 95, 97]

	 PGC-1α	 ↑	 [91, 92]

	 PPAR α	 ↑	 [91, 102]

	 SIRT1	 ↑↓	 [92, 93, 103]

↑=increase in signal transduction; ↓=decrease in signal transduction.

Conclusion and perspectives
When considering all possible aging interventions evaluated, 
there is little doubt that CR remains the most robust.  Studies 
in numerous species have demonstrated that CR can increase 
lifespan, reduce the incidence and delay the onset of age-
related diseases, improve stress resistance, decelerate func-
tional decline, and in particular, exert cardioprotection.  One 
of the most pertinent issues in CR research is the relevance of 
this nutritional intervention in human aging, given the prac-
ticality of long term CR in human.  More recent research has 
targeted on the development of “CR mimetics”, namely com-
pounds mimicking favorable metabolic effect of CR without 
restricting caloric intake.  Certain compounds, such as resvera-
trol and rapamycin, have shown some clinical promises with 
many CR-like effects to promote cardiovascular health and 
retard cardiac aging in humans[96].
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