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SAHA, an HDAC inhibitor, synergizes with tacrolimus to
prevent murine cardiac allograft rejection

Xin Zhang1,3, Shu Han1,3, Yindong Kang1, Meng Guo2, Shanjuan Hong2, Fang Liu1, Shangxi Fu1, Liming Wang1

and Quan-Xing Wang2

Suberoylanilide hydroxamic acid (SAHA), as a histone deacetylase (HDAC) inhibitor (HDACi), was recently found to exhibit an

immunosuppressive effect. However, whether SAHA can synergize with calcineurin inhibitors (CNIs) to inhibit allograft rejection and

its underlying mechanism remain elusive. In this study, we demonstrated the synergistic effects of SAHA and non-therapeutic dose of

tacrolimus (FK506) in prolonging the allograft survival in a murine cardiac transplant model. Concomitant intragraft examination

revealed that allografts from SAHA-treated recipients showed significantly lower levels of IL-17 expression, and no discernable

difference for IL-17 expressions was detected between SAHA- and SAHA/FK506-treated allograft as compared with allografts from

FK506-treated animals. In contrast, administration of FK506 significantly suppressed interferon (IFN)-c but increased IL-10

expression as compared with that of SAHA-treated animals, and this effect was independent of SAHA. Interestingly, SAHA synergizes

with FK506 to promote Foxp3 and CTLA4 expression. In vitro, SAHA reduced the proportion of Th17 cells in isolated CD41 T-cell

population and decreased expressions of IL-17A, IL-17F, STAT3 and RORct in these cells. Moreover, SAHA enhances suppressive

function of regulatory T (Treg) cells by upregulating the expression of CTLA-4 without affecting T effector cell proliferation, and

increased the proportion of Treg by selectively promoting apoptosis of T effector cells. Therefore, SAHA, a HDACi, may be a promising

immunosuppressive agent with potential benefit in conjunction with CNI drugs.
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INTRODUCTION

There is compelling evidence that the application of immunosuppres-

sive drugs has significantly improved short-term solid organ graft

survival in transplantation, but prolongation of long-term allograft

survival is still a formidable challenge.1 Since the advent of calcineurin

inhibitors (CNIs), marked reduction for the rates of acute rejection

and improvement of 1-year graft survival have been achieved.2 Despite

the beneficial effect of CNIs on renal allografts,3 long-term use of CNIs

has been reported to be associated with many side effects such as renal

toxicity, neurotoxicity and diabetegenesis, which in turn affects the

survival rate of allografts.4 Some studies further revealed that CNIs

alone might cause Th17/regulatory T (Treg) imbalance by increasing

Th17/Treg ratio associated with renal dysfunction even rejection.5,6

Therefore, CNI agents are now believed to be necessary for prevention

of allograft rejection but preferably with reduced doses.7 Indeed, the

imbalance of Th17/Treg has been shown to be associated with the

development of inflammatory disorders8–10 and allograft rejection.11

Treg cells contribute to the induction and maintenance of tolerance of

recipients to allografts,12 while Th17 cells are important to mediate

chronic allograft rejection.13 Therefore, therapeutic strategies aiming

at manipulating Th17/Treg balance are now considered to be the most

promising approach to prevent allograft rejection and to induce tol-

erance.

Alterations in histone acetylation are associated with changes in

chromatin structure and transcriptional regulation of genes essential

for fundamental biological processes such as cell cycle progression

and/or apoptosis.14–16 The levels for histone acetylation are currently

believed to be controlled by the steady state balance of two classes of

epigenetic enzymes, histone deacetylases (HDACs) and histone acet-

yltransferases.17,18 Other than chromatin proteins, transcription fac-

tors and cell-signaling regulatory proteins could also be the substrates

for HDACs.19 Particularly, HDAC superfamily has been receiving

increasing attention for its role in modulating both innate and adap-

tive immune responses20,21 implicatd in allograft survival and trans-

plantation outcome.22 As such, HDAC inhibitors (HDACis) are now

under intensive study for their feasibility as potential anti-rejection

agents.23,24 Suberoylanilide hydroxamic acid (SAHA), an FDA-

approved drug for the treatment of cutaneous T-cell lymphoma,25 is

1Institute of Organ Transplantation, Changzheng Hospital, Shanghai, China and 2National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai,
China

Correspondence: Dr QX Wang, National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai 200433, China.
E-mail: wangqx64@yahoo.com.cn
or Dr LM Wang, Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China.
E-mail: wt2530@yahoo.com.cn

Received 2 May 2012; revised 19 June 2012; accepted 9 July 2012

3 These authors contributed equally to this work.

Cellular & Molecular Immunology (2012) 9, 390–398
� 2012 CSI and USTC. All rights reserved 1672-7681/12 $32.00

www.nature.com/cmi

www.nature.com&sol;cmi


an HDACi composed of hydroxamic acid compound that can be well

tolerated by the cancer patients.26,27 While its role in anti-cancer ther-

apy has been extensively studies, its impact on transplant rejection is

yet to be explored.

Previously, we demonstrated that HDAC inhibitors can block cell

cycle progression and induce apoptosis in bladder cancer cells.28 In the

present study, we explored the impact of SAHA on cardiac allograft

rejection. We noted that SAHA synergizes with tacrolimus (FK506) to

prevent murine cardiac allograft rejection, in which SAHA enhances the

proportion of Treg cells by inducing T effector (Teff) cell apoptosis.

MATERIALS AND METHODS

Mice and ethics statement

Male BALB/C and C57BL/6 mice (4–6 weeks, weight 15–20 g) were

obtained from the Joint Ventures Sipper BK Experimental Animal

Company (Shanghai, China). All animal experiments were performed

in accordance with the guidelines of National Institute of Health

Guide for the Care and Use of Laboratory Animals, and approved

by the Scientific Investigation Board of Second Military Medical

University (Shanghai, China).

Reagents

SAHA was purchased from Cayman (San Diego, CA, USA; disolved in

0.1% dimethylsulfoxide (DMSO) medium, and stored at 220 uC at a

concentration of 10 mmol/l); FK506 was obtained from Astellas

Pharma, Inc. (Tokyo, Japan; dissolved in methanol and freshly pre-

pared by dilution with culture medium). Mouse CD41 T cell Isolation

Kit II and CD41CD251 Regulatory T Cell Isolation Kit were pur-

chased from Miltenyi Biotec (Aubum, CA, USA). Antibodies against

FOXP3 and CTLA-4 antibody were provided by Abcam (Cambridge,

MA, USA). Horseradish peroxidase-labeled goat anti-mouse IgG and

FITC fluorescence-labeled goat anti-mouse IgG were purchased from

BioLegend (San Diego, CA, USA). Transforming growth factor (TGF)-

b1, IL-6, IL-1b, anti-IFN-c, anti-IL-4, and IL-23 were purchased from

PeproTech (Rocky Hill, NJ, USA). PMA, Brefeldin A and ionomycin

were from Sigma (St Louis, MO, USA). ELISA kits for mouse IL-2,

interferon (IFN)-c, IL-4 and IL-10 were purchased from eBioscience

(San Diego, CA, USA). PCR primers were synthesized by Fudan Yueda

Biotechnology Company (Shanghai, China).

Cardiac transplantation and histopathological examination

Cervical heterotopic heart transplantation was performed as

described.29 Recipient mice were injected intraperitoneally with

SAHA (50 mg/kg/day), FK506 (1 mg/kg/day) or SAHA (50 mg/kg/day)

along with FK506 (1 mg/kg/day), respectively. The study end point

was defined as complete cessation of cardiac beat. Survival rates of

cardiac grafts were monitored by two independent observers without

prior knowledge of the treatment protocols by palpation, followed by

confirmation with histological analysis. Cardiac grafts were harvested

at indicated time points, fixed in 10% formalin and embedded in

paraffin. Sections were cut at 4 mm and counterstained for 1 min with

hematoxylin–eosin. Infiltrating cells and myocardial destruction were

counted under high power field (340) by using the software Image-

Pro Plus (Version 6.0.0.260).

Cell isolation and culture

Splenic CD4 T cells were isolated with anti-CD4 microbeads through

positive selection by AutoMACS (Miltenyi Biotec) as instructed.

CD41CD252 and CD41CD251 T cells were isolated from CD4 T cells

as described previously.30 Isolated T cells were cultured in RPMI1640

supplemented with 10% fetal calf serum (FCS).

Quantitative real-time PCR (qPCR)

Total RNA was extracted from allografts using the TRIzol (Invitrogen,

Carlsbad, CA, U.S.) reagents according to the manufacturer’s instruc-

tions. cDNA was synthesized using an oligo d(T) primer (Applied

Biosystems, Foster City, California, U.S.) with a SuperScript III

Reverse Transcriptase Kit (Invitrogen). A StepOneTM Real-Time

PCR System (Applied Biosystems) and a SYBR RT-PCR kit (Takara,

Japan) were used for quantitative real-time RT-PCR analysis. All reac-

tions were conducted in a 20 ml reaction volume in triplicates. The

relative expression levels for a target gene were normalized by

GAPDH. The specificity of qPCR was verified by melting curve

analysis and agarose gel electrophoresis. Primer sequences used in

RT-PCR analysis are shown in Table 1.

Western blot analysis

The cells were washed twice with cold phosphate-buffered saline (PBS)

and then lysed in cell lysis buffer (Cell Signaling Technology, Danvers,

Massachusetts, U.S.) supplemented with a protease inhibitor cocktail

(Calbiochem, Darmstadt, Germany.). Protein concentrations for lysates

were determined by BCA assay (Pierce, Rockford, IL, USA). Equal

amount of cell lysates were loaded and subjected to SDS–PAGE. The

separated proteins were next transferred onto nitrocellulose membranes,

and then analyzed by Western blotting as previously described.31

Flow cytometry

Anti-CD4-PE, anti-CD25-FITC, anti-CD4-FITC, anti-IL-17A-PE,

anti-Foxp3-PE, anti-CTLA4-APC, Annexin V-FITC and CFSE were

purchased from either eBiosciences or BioLegend. Intracellular stain-

ings for FOXP3, CTLA-4 and IL-17A were performed using the rele-

vent Fix/Perm Buffer set as instructed. The intensity of intracellular

fluorescence was measured using the LSR II software (BD, Franklin

Table 1 RT-PCR primer sequence

Primer Sequence 59R39

TNF-a F AAGCCTGTAGCCCACGTCGTA

R GGCACCACTAGTTGGTTGTCTTTG

RORct F TCACCTGACCTACCCGAGG

R TCCAAGAGTAAGTTGGCCGTC

GAPDH F AGGTCGGTGTGAACGGATTTG

R TGTAGACCATGTAGTTGAGGTCA

IL-17A F TCGCCATTCAGCAAGAAATCC

R CACAGGTGCAGCCAACTTTTA

IL-17F F TGCTACTGTTGATGTTGGGAC

R AATGCCCTGGTTTTGGTTGAA

STAT3 F CTGCTGCCGCTTTTTCCAG

R GGAAGCACTCAGTAAGATGACG

CD11b F ATGGACGCTGATGGCAATACC

R TCCCCATTCACGTCTCCCA

IFN-c F GAACTGGCAAAAGGATGGTGA

R TGTGGGTTGTTGACCTCAAAC

CTLA-4 F AGAACCATGCCCGGATTCTG

R CATCTTGCTCAAAGAAACAGCAG

IL-4 F GGTCTCAACCCCCAGCTAGT

R GCCGATGATCTCTCTCAAGTGAT

FOXP3 F TCAAGTACCACAATATGCGACC

R CCATCGGATAAGGGTGGCA

Abbreviations: IFN, interferon; TNF, tumor-necrosis factor.
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Lakes, New Jersey, U.S.), all data were analyzed using the Flowjo

software (TreeStar, Ashland, U.S.).

Statistical analysis

Data from multiple groups were analyzed using one-way ANOVA

with post hoc Bonferroni’s correction (GraphPad Prism 5.0;

GraphPad Software, La Jolla, CA, U.S.). Data derived from two groups

were analyzed using an unpaired Student’s t-test or a Mann–Whitney

test (two-tailed). All data were expressed as mean6s.e.m. In all cases,

P,0.05 was considered with statistical significance.

RESULTS

SAHA prolongs the survival time of murine cardiac allografts

We first sought to address the impact of SAHA on allograft rejection,

and a fully MHC-mismatched (BALB/CRC57BL/6) murine cervical

heterotopic cardiac transplant model was employed for the study.

Transplantation of syngeneic grafts (C57BL/6RC57BL/6) was served

as controls. It was noted that cardiac arrest occurred within seven days

in recipients treated with control vehicle DMSO, and in sharp con-

trast, adminstration of SAHA and FK506 prolonged allograft median

survival time to 10 and 16 days, respectively (Figure 1a). Interestingly,

adminstration of low dose of SAHA along with low dose of FK506

prolonged allograft median survival time to 27 days (Figure 1a), indi-

cating that SAHA synergizes with FK506 to prevent allograft rejection.

To confirm the above results, three allografts from each study

group were harvested on day 7 post-transplantion and subjected to

histological analysis. In line with the above results, severe inflam-

matory infiltration and myocardial destruction were present in

DMSO-treated allografts, while grafts from syngeneic transplanta-

tion remained intact myocardial structure (Figure 1b). Importantly,

although administration of SAHA significantly suppressed inflam-

matory infiltration, we still observed impaired myocardial structure

in the allografts. On the contrary, adminstration of SAHA along

with FK506 has almost completely prevented inflammatory infiltra-

tion without perceptible changes for myocardial structure

(Figure 1b–c). Together, these data support that SAHA synergizes

with non-therapeutic dose of FK506 to prmote the survival of MHC

fully mismatched cardiac allografts.

SAHA regulates the balance of Th17/Treg

Next, we examined the impact of SAHA on the expression of inflam-

matory cytokines and regulatory molecules. To this end, allografts
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Figure 1 SAHA prolongs the cardiac allograft survival in murine model. (a) Fully MHC-mismatched cardiac allograft recipients (BALB/CRC57BL/6) were treated with

DMSO, SAHA (50 mg/kg/day), FK506 (1 mg/kg/day) or SAHA–FK506 combination by intraperitoneal injection since the day receiving transplantation until when

cardiac arrest occurred. Graft survival was assessed every day. (b, c) Pathological examination of allografts harvested on day 7 post-transplantation. Shown are section

graphs from the low power field (b) and high power field (c). NC, negative control represented cardiac graft from isotransplantation. (d) Statistical analysis of the

pathological graphs in (c). Infiltrating cells (left panel) and myocardial destruction (right panel) per high field were counted from four mice per group. *P,0.05,

**P,0.01, compared with DMSO group. DMSO, dimethylsulfoxide; FK506, tacrolimus; SAHA, suberoylanilide hydroxamic acid.
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were harvested on day 7 after transplantation for qPCR analysis.

Compared with allografts derived from DMSO or FK506 treated ani-

mals, allografts from SAHA-treated recipients showed significantly

lower levels of IL-17 expression, and in consistent with this result,

no discernable difference for IL-17 expressions was detected between

SAHA- and SAHA/FK506treated allografts (Figure 2a), indicating that

the reduced IL-17 expression was a direct effect caused by SAHA. In

contrast, administration of FK506 significantly suppressed IFN-c

(Figure 2b) but increased IL-10 (Figure 2c) expression as compared

with that of DMSO or SAHA treated animals, and this effect was

independent of SAHA, as we failed to detect a significantly difference

between allografts-treated with FK506 alone and that treated with

SAHA/FK506. Interestingly, a synergizing effect was noted between

SAHA and FK506 on the expression of regulatory molecules. For

example, SAHA synergizes with FK506 to promote Foxp3 (Figure 2d)

and CTLA4 (Figure 2e) expression, while to suppress CD11b express-

ion (Figure 2f).

Given the role of Foxp3 and CTLA4 played in Treg cells, the above

results prompted us to examine the number of Treg cells in animals of

each study group. The recipient mice were sacrificed on day 7 after

transplantation to harvest thymus, spleen and draining lymph nodes

for analysis of Foxp31 Treg cells by flow cytometry. Indeed, SAHA

treatment significantly increased the proportion of Foxp31 Treg cells

among total CD41 T cells in the thymus, lymph nodes and spleen

(Figure 2g) along with enhanced Foxp3 expression as determined by

mean fluorescence intensity (Figure 2h).

To address whether the prolonged allograft survival was solely

caused by the upregulation of Treg cells, we transplanted BALB/

C-derived cardiac grafts into Foxp3 deficient B6 recipient mice.

To our surprise, although loss of Foxp3 attenuated allograft sur-

vival, but failed to completely eradicate the impact of SAHA on

allograft survival (Figure 3a), suggesting that Treg cells only

partly involved in SAHA-mediated protection against allograft

rejection.

Since SAHA suppressed IL-17 expression in the allografts independ-

ent of FK506, we therefore examined the impact of SAHA on Th17

development. Naı̈ve CD41 T cells were isolated and then polarized to

Th17 lineage in the presence of SAHA or DMSO as previously

described.32 Flow cytometry analysis of polarized T cells revealed

that SAHA significantly suppressed the production of Th17 cells

(Figure 3b), and western blot analysis indicated that SAHA reduced

the expression of RORct and STAT3, and by which it promoted Foxp3

expression (Figure 3c). In line with these results, qPCR analysis further

confirmed that SAHA downregulated the expression of IL-17A, IL-

17F, STAT3 and RORct, but upregulated Foxp3 and CTLA-4 expres-

sions (Figure 3d). Taken together, our data suggest that SAHA regu-

lates the balance between Th17 and Treg cells, through which it

prolongs allograft survival.

SAHA enhances Treg function without affecting Teff

responsiveness

To further dissect the mechanisms underlying SAHA protection of

allograft rejection, we further examined its impact on Teff cells. We

isolated CD41CD252 T cells from the spleens of recipient mice on day

7 after transplantation, and examined their proliferation in the presence

of anti-CD3/CD28 antibodies. Flow cytometry analysis demonstrated a
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similar proliferation potency between SAHA and DMSO treated

CD41CD252 T cells (Figure 4a and b), suggesting that SAHA does

not affect Teff cell responsiveness. Next, we examined the suppressive

function of CD41CD251 Treg cells isolated from SAHA- and

DMSO-treated recipient mice, respectively. It was found that

CD41CD251 T cells derived from SAHA-treated mice showed signifi-

cantly higher potency to suppress CD41CD252 T cell proliferation as

compared with their DMSO-treated counterparts (Figure 4c).

Consistently, significantly higher expressions for Foxp3 and CTLA-4

were observed for Treg cells derived from SAHA treated mice as com-

pared with that derived from DMSO-treated mice (Figure 4D).

Collectively, these data suggest that SAHA specifically enhances the

suppressive function of Treg cells without affecting the responsiveness

of Teff cells.

Low dose of SAHA enhances Treg cell proportion without

promoting Foxp3 expression

We next intend to determine the impact of SAHA doses on Treg cells

production. Unexpectedly, disparate results were obtained when vari-

ous doses of SAHA were employed. It was consistently found that low

dose of SAHA (0.1 mM) enhanced the proportion of CD41Foxp31 T

cells, while high dose of SAHA (0.5 and 1 mM) significantly suppressed

the generation of Foxp31 T cells (Figure 5a and b). Furthermore,

qPCR analysis disclosed that low dose of SAHA did not increase the

expression of Foxp3 mRNA, whereas high dose of SAHA markedly

inhibited Foxp3 expression (Figure 5c). Western blot analysis further

demonstrated a significant downregulation Foxp3 protein levels along

with the increase of SAHA doses (Figure 5d).

Low dose of SAHA selectively induces Teff cell apoptosis

To address why low dose of SAHA did not alter Foxp3 expressions but

increased the proportion of Treg cells, we investigated the impact of

SAHA on Teff cell apoptosis. Upon anti-CD3/CD28-stimulated

activation, around 17% of activated Teff cells underwent apoptosis.

Surprisingly, SAHA dose-dependently promoted Teff cell apoptosis

(Figure 6a and b). Given that low dose of SAHA failed to enhance

Foxp3 mRNA, we assume that the increase for the proportion of Treg

cells upon low dose of SAHA treatment was caused by enhanced Teff

cell apoptosis or Teff cell to Treg cell conversion. To test this notion,

we isolated CD41CD251 Treg and CD41CD252 non-Treg cells using

magnetic beads, and activated them by anti-CD3 treatment in the

presence of SAHA (0.1 mM). qPCR analysis revealed that low dose

of SAHA neither upregulated Foxp3 expression nor promoted the

conversion of CD41CD252 T cells to Treg cells (Figure 6c). This result

prompted us to examine whether SAHA induced Teff cell apoptosis.

Indeed, flow cytometry analysis confirmed that low dose of SAHA

selectively promoted the apoptosis of Teff cells, but without a percept-

ible impact on Treg cells (Figure 6d). Together, these data suggest that

low dose of SAHA enhances the proportion of Foxp31 T cells by

promoting Teff cell apoptosis.

DISCUSSION

In clinics, immunosuppressive agents are usually combinedly used

for post transplant recipients to enhance suppressive effect, and at

the same time, to reduce side effects caused by high-dose drug

administration. As a cornerstone of immunosuppression in trans-

plantation, the administration of CNI agents markedly reduced

the incidence of acute rejection by blocking the mainstream of

T-cell signal transduction,33 making the management of chronic

rejection the main task for transplant physicians. Unfortunately,

the precise mechanism of chronic rejection remains elusive. We

therefore put forward the hypothesis that the chronic rejection is

possibly mediated by the activation of some bypasses under the
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circumstances of long-term CNI use and therapeutic inhibition of

these bypasses by some mild immunosuppressants might be bene-

ficial to prolong graft survival.

HDACis, which are initially used in clinic as anticancer agents,

have a broad effect on the biology of a variety of functional cells.

Previous studies have demonstrated that HDAC is also actively

involved in some inflammatory diseases,34,35 making these agents

hold promise as immunomodulatory drugs. HDACis, such as

FR276457 and TSA, have been reported to prolong the median

survival time of the transplanted grafts in a rodent animal model

as a monotherapy, and even more effective in combination with

FK506 or rapamycin,23,36 which is consistent with our observation

in the current study. Obviously, a combination of SAHA and FK506

is more effective than either of them alone in the prevention of

allograft rejection, which lead us to explore the pharmacological

mechanism of SAHA.

Over the past years, the roles of Treg cells in prevention of transplant

rejection and induction of immune tolerance has drawn an increasing

attention from many investigators.37 Theraputic manipulation of

Foxp3 acetylation using HDACis was demonstrated to promote the

development and suppressive functions of Treg cells, with beneficial

results obtained in models of colitis,38 arthritis39 and transplant rejec-

tion.40 However, the understanding about the effect of HDACis on

Treg cells are still controversy. Some studies revealed that HDACis

could upregulate the expression of Foxp3 in CD41 T cells, thus pro-

moting the conversion of naive T cells to Treg cells in vitro,41–43 while

Liu et al.44 argued that trichostatin A (TSA) reduces the expression of

Foxp3 and the number of Treg cells both in vitro and in vivo. Our

results are not in agreement with any of the published studies. In the

current study, we demonstrated disparate effects of SAHA on Foxp3

expression under varying SAHA concentrations. High dose of SAHA

(0.5 and 1 mM) significantly suppressed the generation of Foxp31 T

cells, while low dose (0.1 mM) of SAHA enhances the proportion of

Treg in CD41 T-cell population by selectively inducing apoptosis of

Teff without affecting Treg cells under in vitro circumstances. These

data not only perfectly explain the conflicting results from previous

studies of HDACis’ effect on Tregs, but also indicate that attention

should be paid to the dose of SAHA in its potential clinical application

in the future.

The involvement of CD41 cells in immune responses of trans-

plant rejection has long been established,45 of which Th2 polariza-

tion is believed to protect allograft from rejection due to the ability

of IL-4 for inhibition of Th1 differentiation.46 Besides, as a newly

described subset of CD41 T cells, Th17 has been proved to play a

key role in the pathogenesis of inflammatory and immune dis-

eases.47 Bosisio et al.48 has revealed that HDACis could inhibit

the Th1- and Th17-inducing potential of dentritic cells by decreas-

ing the production of relevant cytokines. However, there is still rare

report concerning the regulation of HDACis on Th17 differenti-

ation. In this study, the intragraft examination revealed that SAHA
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upregulated the expressions of Foxp3 and CTLA-4, but downregu-

lated CD11b and IL-17. As CD11b is associated with the activation

of monocytes and neutrophilic granulocytes,49 the downregulation

of CD11b revealed an improvement on intragraft infiltration. As

Th17 are not the only IL-17 producing cell,50 we isolated CD41 T

cells and confirmed the downregulation of IL-17 in CD41 T cell

subset by FCM analysis in vitro. Although IL-17 has already been

shown to participate in the pathogenesis of chronic rejection in a

murine cardiac transplant model, yet our results in

this study seem to be a challenge to Itoh’s report,51 in which

gamma delta (cd) T cells were believed to be the predominant

source of IL-17 production. Moreover, SAHA treatment also

down-regulates the expression of STAT3, which is believed to be

a master regulator of Th17, including cell differentiation and cyto-

kine production.52 All these results may serve as evidence for the

hypothesis that SAHA probably prevents allograft rejection through

modulating the balance between Treg and Th17 and drives the

balance towards Treg deviation.
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