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Low dosages: new chemotherapeutic weapons on the
battlefield of immune-related disease

Jing Liu1, Jie Zhao2, Liang Hu1, Yuchun Cao3 and Bo Huang1

Chemotherapeutic drugs eliminate tumor cells at relatively high doses and are considered weapons against tumors in clinics and

hospitals. However, despite their ability to induce cellular apoptosis, chemotherapeutic drugs should probably be regarded more as a

class of cell regulators than cell killers, if the dosage used and the fact that their targets are involved in basic molecular events are

considered. Unfortunately, the regulatory properties of chemotherapeutic drugs are usually hidden or masked by the massive cell death

induced by high doses. Recent evidence has begun to suggest that low dosages of chemotherapeutic drugs might profoundly regulate

various intracellular aspects of normal cells, especially immune cells. Here, we discuss the immune regulatory roles of three kinds of

chemotherapeutic drugs under low-dose conditions and propose low dosages as potential new chemotherapeutic weapons on the

battlefield of immune-related disease.
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INTRODUCTION

Chemotherapeutic drugs are regularly used as conventional therapeutic

measures in clinical tumor treatment. The mechanisms involved in such

therapy are both well studied and understood. Briefly, these drugs affect

DNA synthesis or cell division and cause tumor cell death, or at least

slow down malignant cell growth, as well as eliminating normal cells

that undergo rapid division, such as bone marrow cells and skin cells.

The history of such drugs goes back to two major wars of the twentieth

century, when the therapeutic value of the military weapon mustard gas

(now internationally banned) first became apparent to physicians. After

exposure to mustard gas, people were diagnosed with very low white

blood cell counts.1 Based on these observations, mustard gas was used

in therapeutic trials in advanced lymphoma patients. The results

appeared to show remarkable improvement in the disease due to the

apoptosis or self-induced death of the lymphoma cells. Later, other

chemotherapeutic agents were developed and put to clinical use against

cancers, such as acute lymphoblastic leukemia, breast cancer, lung can-

cer, lymphoma, head and neck cancer, and skin cancer. Due to their

diverse mechanisms of action, chemotherapeutic drugs were classified

as alkylating agents, antimetabolites, anthracyclines, plant alkaloids,

topoisomerase inhibitors and other antitumor agents.

Autoimmune diseases arise from an overactive immune response

against self-substances and tissues. Currently, intense efforts are being

made by medical and pharmaceutical researchers to develop more effi-

cient and less toxic therapeutic agents to fight against such immune-

related disorders. Not surprisingly, these efforts include re-examining

old drugs for any new applications. Increasing numbers of research

groups in this university as well as around the world, are reporting that

low-dose chemotherapeutic drugs, relative to the high dosage hitherto

used in cancer patients, are found to have potent and efficacious effects

on both tumor- and non-tumor-related disorders.2–5 Such low dosages

can be reduced as much as 5- to 10-fold from the high dosages regularly

used in cancer patients, without any of the usual side effects seen in

cancer treatment. Studies have demonstrated that low-dose chemother-

apeutic drugs have a positive effect on controlling the progress of

immune-related disorders, such as rheumatoid arthritis (RA), Crohn’s

disease, psoriasis and multiple sclerosis, although their exact mechan-

isms of action have so far not been well understood.6–9 However,

massive cell death and the resultant side effects caused by high-dose

chemotherapeutic drugs continuously overshadow the immune regula-

tory effects of low dosages, which have gone relatively unnoticed and are

largely ignored. Here, we discuss three kinds of chemotherapeutic drugs:

cyclophosphamide (CY), methotrexate (MTX) and cisplatin (Cis),

focusing partly on their underlying immunoregulatory mechanisms

but more on their potential clinical applications at low doses in auto-

immune and infectious diseases and cancers. We propose that, in addi-

tion to these highlighted drugs, other chemotherapeutic drugs may also

act as immune regulators under low-dose conditions.

LOW-DOSE CY IN IMMUNE REGULATION

CY is an alkylating agent that is widely used in cancer therapy. As a

prodrug, CY undergoes a series of biological activation steps necessary
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for its cytotoxic effects.10 These include the following: (i) catalysis of

CY to 4-hydroxycyclophosphamide by hepatic cytochrome P450 iso-

zymes; (ii) interconversion of 4-hydroxycyclophosphamide with its

tautomer, aldophosphamide; (iii) diffusion of aldophosphamide of

hepatic cells into the circulation and subsequent uptake by other cells;

and (iv) spontaneous degradation of aldophosphamide to phosphor-

amide mustard and acrolein. Finally, phosphoramide mustard med-

iates cell death by causing DNA crosslinking. To overcome drug

resistance and kill as many tumor cells as possible, a very high dose

of CY is usually used. For example, in B-cell chronic lymphocytic

leukemia, 600 mg/m2 CY was used in combination with other che-

motherapeutic drugs.11 In addition, high-dose CY can also be used to

treat autoimmune disorders by killing activated immune cells. For

instance, in pediatric multiple sclerosis, CY was generally adminis-

tered at 600–1000 mg/m2 per dose.12 Interestingly, low doses of CY

also appear to possess treatment value. Daily oral CY (50 mg, low dose)

is now in phase II clinical trial in patients with advanced solid tumors,

together with other chemo drugs, such as weekly vinblastine injection

and oral rofecoxib.13 The effect of CY at low doses might be attrib-

utable to the fact that CY is capable of augmenting immune responses

by reducing the suppressor function of regulatory T cells.14,15 It has

been demonstrated that low-dose CY selectively ablated CD41CD251

regulatory T (Treg) cells, leading to the enhancement of immune

responses.16,17 Based on this principle, low-dose CY has been success-

fully tested in the treatment of various types of tumor, as well as

condylomata acuminata (CA).3,18–20

CA is a common sexually transmitted disease that results from

infection with human papillomavirus, typically types 6 and 11.21,22

Human papillomavirus infects primitive basal keratinocytes and

causes genital warts with a highly variable latent period. An in-house

study found that Foxp31 Treg cells accumulate in large warts and play

an important role in genital wart immune evasion. These findings

suggest that Treg cells may act as a target for the treatment of CA. In

another recently published in-house paper, low-dose CY was shown to

efficiently deplete CD41CD251 Treg cells in patients with large CA,

and prevented the recurrence of disease after laser therapy.3 In 78

patients recruited after laser therapy, 52 patients took 50 mg CY orally,

once a day for 1 week, and showed complete clearance and no recur-

rence in the first 6 weeks. Although nine of them had a later recurrence,

seven of nine patients recovered after another week of low-dose CY

treatment. By contrast, six of eight patients who were taking a much

higher concentration of CY (200 mg orally) did not receive such a

curative effect. Interestingly, aside from depleting Treg cells, low-dose

CY seems not to be capable of influencing other immune cells, such as

other T-cell subsets and natural killer (NK) cells.3 Instead, low-dose

CY treatment is also able to augment the proliferation of T cells and

IFN-c secretion by NK cells upon stimulation. By contrast, 200 mg

high-dose CY treatment resulted in a decrease in the number of these

two cell types.3 Similar effects of low-dose CY were also observed in

cancer patients. Oral administration of low-dose CY (100 mg/day for 2

weeks or more) in advanced cancer patients not only selectively ablates

circulating Treg cells but also recovers the function of conventional T

and NK cells, which were suppressed by Treg cells, leading to the

restoration of peripheral T-cell proliferation and innate killing activ-

ities.23 Also, there is no significant decrease in the number of total

leukocytes, or any of the T-lymphocyte, CD31 T-cell, CD81 T-cell and

CD32CD561 NK cell subsets.23 In addition, low-dose CY is capable of

ameliorating the immune milieu of CA by upregulating IFN-c and

IL-2 and downregulating IL-10, transforming growth factor-b and

Foxp3.3 Thus, although the potent immune regulatory role of CY

has long been overshadowed by its killing effect at high doses, these

new findings suggest that CY, under low-dose conditions, may act as

positive immunoregulator, benefiting not only patients with cancer

but also patients with infectious disease.

The mechanism underlying the augmentation of immunity by low-

dose CY is at least partially explained by the selective depletion of Treg

cells. However, the molecular basis of such Treg depletion needs to be

addressed. Recently, our in-house studies found that differential ATP

concentrations might explain the selective depletion of Treg cells by

low-dose CY. It was found that CD41CD251 Treg cells from either

human or mouse express much lower levels of intracellular ATP than

conventional T cells. This may be due to the fact that Treg cells dra-

matically downregulate one microRNA, miR-142-3p, and upregulate

ecto-nucleoside triphosphate diphosphohydrolase, CD39. The low

levels of miR-142-3p lead to elevated synthesis of adenyl cyclase 9,

which converts ATP to cyclic adenosine monophosphate (cAMP),

and high levels of CD39 accelerate the degradation of extracellular

ATP,24 which facilitates the efflux of cytosolic ATP.25 Thus, both

biochemical reaction pathways lower the levels of intracellular ATP,

leading to the attenuation of glutathione synthesis because ATP is

required for the activity of glutamate cysteine ligase, the key rate-

limiting enzyme for glutathione synthesis. Conjugation with glu-

tathione is an important route for detoxification from CY, as well as

phosphoramide mustard and other metabolites.26,27 Therefore, the

selective depletion of Treg cells by low-dose CY may be explained by

reduced intracellular ATP levels. The elucidation of this mechanism

provides assurance that metronomic, low-dose CY administration

may be a safe way to deplete Treg cells for the treatment of cancers

and infectious diseases.

LOW-DOSE MTX IN IMMUNE REGULATION

MTX is an antimetabolite drug that acts by competitively inhibiting

the binding of dihydrofolate reductase to folate, inducing the sub-

sequent blocking of tetrahydrofolate synthesis.28 The latter is essential

for the de novo synthesis of DNA and RNA. As an antimetabolite

chemotherapeutic drug, MTX has a strong, inhibitory effect on cell

growth, especially for rapidly dividing cells, such as early hematopoi-

etic cells and malignant cells. For a long time, MTX at very high doses

has been considered an effective agent in the treatment of acute lym-

phoblastic leukemia.29,30 It has been reported that a dose of 1 or 2 g/m2

MTX was administered to children with high-risk non-B acute lym-

phoblastic leukemia and that rescue by leucovorin, a 5-formyl deriv-

ative of tetrahydrofolic acid, could relieve the MTX-related toxicity.31

Another report indicated that the dosage of MTX could be increased

from 0.5 g/m2 up to 5.0 g/m2 in the treatment of childhood and adult

acute lymphoblastic leukemia with the help of leucovorin.32 Even

higher doses were administered in childhood acute lymphoblastic

leukemia by infusion at 5 or 8 g/m2 over 24 h, 2–9 times per patient,

with high leucovorin doses for rescue.33 In addition to leukemia, MTX

is also used alone or in combination with other chemotherapeutic

drugs in regimens against breast cancer,34 lung cancer,35,36 head and

neck cancer,37 primary central nervous system lymphoma38 and osteo-

sarcoma.39 In addition to the numerous applications of MTX to can-

cerous disorders, MTX appears to have a role in the treatment of other

disorders. The most well-known use is to treat patients with RA, which

was approved by the US Food and Drug Administration 30 years

ago.40 To treat RA, the starting dose is usually 7.5–10 mg per week,

and this can be increased to 20–25 mg per week, if a positive response

has not occurred within 4–8 weeks after MTX initiation and there has

been no toxicity.41 Aside from RA, MTX has also been tested in other
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inflammatory disorders, such as systemic lupus erythematosus,42

psoriasis43 and Crohn’s disease.44 In a retrospective study of 12 cuta-

neous lupus erythematosus patients treated with weekly low-dose

MTX at 10–25 mg, six and four of these patients showed complete

and partial remission, respectively. Five of the 10 responding patients

presented with a long-term remission. This beneficial effect of MTX

was further confirmed by subsequent studies. Once again, the critical

treatment difference between cancer and these autoimmune diseases

lies in the dose. In contrast to the low doses used in autoimmune

diseases, cancer patients usually receive high-dose MTX at 50–500 mg

for treatment, and such high doses do not have a beneficial effect on

autoimmune diseases. Therefore, different doses probably confer dif-

ferent properties on MTX, which raises the question of why MTX is

efficacious in both cancer and autoimmune diseases, depending on

the dose.

It is easy to take for granted that MTX exerts an anti-inflammatory

effect through interfering with tetrahydrofolate pathway because MTX

inhibits dihydrofolate reductase. However, there is debate about

whether this is the true active pathway and the results from different

laboratories are controversial. Administration of folic acid led to either

little or mild-to-moderate reduction in the anti-inflammatory effects of

MTX treatment in patients with RA.45,46 On the other hand, reports

showed that a decrease in folate polyglutamate level, a reduction in both

the number and reactivity of antigen-specific T lymphocytes and the

suppression of pathogenic rheumatoid factor in RA may be due to

folate-related effects of low-dose MTX prescription.47–49 This inconsist-

ency suggests the existence of other mechanism(s).50 Recently, aden-

osine, the nucleotide derivative, has been reported to function as an

important immunosuppressor to mediate the inhibition of inflam-

mation. By engaging with the adenosine A2A receptor, adenosine effec-

tively inhibits the production of IL-2 and IFN-c by T cells, which could

be partially explained by its influence on the intracellular cAMP path-

way.51 It is known that, when taken up by cells, MTX is metabolized to

MTX polyglutamates. The latter inhibit a critical enzyme, aminoimida-

zole carboxamide ribonucleotide (AICAR) transformylase, leading to

the elevation of intracellular AICAR52 and subsequently increasing

adenosine concentration in different ways: (i) AICAR inhibits the meta-

bolism of AMP by inhibiting AMP deaminase. The increase in AMP

levels may prevent the transition of adenosine to AMP; on the other

hand, the enzyme ecto-5’-nucleotidase (CD73) may catalyze the pro-

duction of more adenosine from AMP; (ii) AICAR blocks the metabol-

ism of adenosine by inhibiting adenosine deaminase. Besides inhibiting

T-cell activation, adenosine may enhance endothelial barrier function

by altering the expression of adhesion molecules, such as L-selectin and

b2 integrin, thus inhibiting vascular permeability in the inflammatory

milieu.53 In our unpublished data, in vitro treatment with MTX at low

dose (0.1 mg/ml) was found to effectively downregulate the expression

of IL-2 but upregulate the expression of Foxp3 in T cells in response to

stimulation with concanavalin A or phorbol 12-myristate 13-acetate

plus ionomycin. The in vivo administration of low-dose MTX (5 mg)

also showed a potential therapeutic effect against concanavalin

A-induced liver damage. However, such dosages impaired host defenses

against bacterial infection in a mouse model, whereas high-dose MTX

(500 mg) did not show such effects, suggesting that MTX under low-

dose conditions has an immunoregulatory role. Whether the adenosine

pathway mediates such effects needs further clarification. In addition,

low-dose MTX may induce the production of polyamine, leading to the

inhibition of inflammation. Low-dose MTX treatment affects a number

of inflammatory mediators, such as lipid derivatives, cytokines, chemo-

kines and growth factors. For example, MTX has been reported to

suppress tumor-necrosis factor-a levels in RA patients and a mouse

model54,55 and other inflammatory mediators, such as IL-1 and

leukotriene B4, are also modulated by MTX therapy.56,57 MTX at low

doses can act via numerous pathways to downregulate inflammatory

responses.

LOW-DOSE CIS IN IMMUNE REGULATION

Cis is a broad-spectrum, cell cycle nonspecific, platinum-based che-

motherapeutic drug used to treat various types of tumors, including

sarcoma, lymphoma, small cell lung cancer, bladder cancer, ovarian

cancer and testicular cancer.58–60 The therapeutic effect of Cis comes

from its ability to bind and cause irreversible DNA crosslinking, ulti-

mately triggering cellular apoptosis.61 To achieve the best treatment

efficiency against tumors, high-dose Cis is required in clinical treat-

ment. For example, platinum- and taxane-based chemotherapy is the

standard program for the treatment of advanced-stage ovarian cancer

after cytoreductive surgery. Patients with advanced-stage III/IV epi-

thelial ovarian cancer received six cycles of an intense dose of Cis

(75 mg/m2) in combination with other chemo drugs, such as CY,

paclitaxel and filgrastim; 89% experienced complete clinical remis-

sion. The median progression-free survival and median survival were

18.9 months and 5.4 years, respectively.62 Despite the efficacy of high-

dose Cis in cancer treatment, low concentration Cis treatment for

non-cancer disorders has been attempted in recent years. Pan et al.

reported that low-dose Cis therapy attenuated the lethality of cecal

ligation and puncture (CLP) in a murine model.63 Interestingly, they

showed that, when treated with low-dose Cis at 0.1 mg/kg, the survival

rates of CLP mice were improved, whereas treatment with high-dose

Cis at 1 mg/kg did not have this beneficial effect. Such protection was

demonstrated to be due to the prevention of systemic release of high-

mobility group box 1 protein (HMGB1). In addition, low-dose Cis

was also reported to sequester HMGB1 inside the nucleus of redox-

stressed hepatocytes.64 Therefore, it is assumed that targeting HMGB1

might be a mechanism involved in the therapeutic effects of low-dose

Cis.

HMGB1 is found in the nucleus of all cells and is normally respons-

ible for DNA transcription by binding chromosomes.65 In addition to

such physiological effects, HMGB1 is also released into the extracel-

lular space and acts as an alarm for both innate and adaptive immun-

ity.66 In response to stress-induced necrosis, for example, HMGB1

may be passively released from necrotic cells. More significantly,

HMGB1 can be secreted from activated immune cells such as lipopo-

lysaccharide-stimulated macrophages, and the underlying mechanism

involves the deacetylation of lysine residues of HMGB1. This extra-

cellular, soluble HMGB1, in turn, functions as a pro-inflammatory

cytokine.67 In vitro studies have shown that HMGB1 upregulates

expression of the key pro-inflammatory cytokine tumor-necrosis fac-

tor-a. As expected, injection of anti-HMGB1 antibody attenuates the

inflammatory response in animal models with liver disease or myo-

cardial infarction.68,69 HMGB1 has also been identified as a particip-

ant in lipopolysaccharide-induced sepsis in mice and the

administration of neutralizing HMGB1 antibody decreased the leth-

ality in mice.70,71 Pan et al. found that the injection of 0.1 mg/kg Cis

prevented systemic HMGB1 release and the administration of even

small amounts of recombinant HMGB1 could restore the mortality of

the CLP mouse model.63 Their experiments confirmed that HMGB1

upregulated inducible NO synthase gene expression. In line with the in

vivo data, low-dose Cis in vitro inhibited the release of HMGB1

induced by lipopolysaccharide stimulation and instead retained it in

the nucleus of macrophages. Moreover, in vitro studies showed that
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non-toxic concentrations of Cis can sequester HMGB1 inside the

nucleus of hypoxic cells. The in vivo administration of non-toxic doses

of Cis prevented liver damage in a murine model of hepatic ischemia/

reperfusion, resulting in decreased levels of inflammatory cytokines,

such as tumor-necrosis factor-a, IL-6 and inducible NO synthase,

inhibition of mitogen-activated protein kinase activation, autophagy

and ischemia/reperfusion-associated histopathological changes.64

Together, these findings suggest that the mechanism for the anti-

inflammatory and therapeutic effects of low-dose Cis in non-cancer

diseases may occur via its regulation of HMGB1 release as well as its

ability to alter cell survival and stress signaling in the form of autop-

hagy and mitogen-activated protein kinase activation.

Currently, the activities of HMGB1 are a focus of attention for the

study of the induction and propagation of autoimmune conditions.

Autoimmune diseases, like systemic lupus erythematosus, Sjögren’s

syndrome, juvenile idiopathic arthritis, myositis and systemic scler-

osis, have already been reported to be associated with the presence of

autoantibodies recognizing HMGB1 and the closely related protein

HMGB2.72–76 These findings indicate that low-dose Cis has great

potential for the treatment of inflammatory autoimmune disease by

regulating the release of HMGB1. Recently, a report from Shen et al.

showed that low-dose, metronomic chemotherapy with Cis (0.6 mg/

kg/day) can dramatically inhibit the proliferation of human umbilical

vascular endothelial cells in a dose- and time-dependent manner.77

Under such a low dose in a mouse model, tumor growth was delayed

without apparent body weight loss, compared with mice that received

Cis at the maximum tolerated dose. The expression of genes such as

vascular endothelial growth factor and matrix metallopeptidase 2 was

also much lower in those mice that were treated with low-dose, met-

ronomic Cis compared with the control and maximum tolerated dose

groups. Moreover, continuous low-dose Cis was shown to suppress

angiogenesis in a chicken chorio-allantoic membrane model. The

anti-angiogenic effect of low-dose Cis chemotherapy provides a new

strategy with few toxic side effects and little drug resistance, and the

same rule might also be applicable to certain other chemotherapeutic

drugs. However, the underlying mechanisms behind the efficacy of

low-dose chemotherapy may be very complicated.78 Low-dose Cis can

lead to significant upregulation of Fas (CD95) mRNA and protein in

SW480 colon cancer cells and oral cancer cell lines,79,80 thus facilitat-

ing apoptosis of the tumor cells. This could be explained by the fact

that Cis could trigger the redistribution of Fas into the plasma mem-

brane rafts by activating acid sphingomyelinase, which contributed

to cell death and sensitized tumors to Fas-mediated apoptosis.81

Therefore, it is possible for low-dose Cis to attenuate inflammatory

responses by downregulating the expression of vascular endothelial

growth factor and matrix metallopeptidase 2 and even by inducing Fas

expression on effector T cells. The latter is an interesting hypothesis

and worthy of investigation.

POTENTIAL APPLICATIONS OF LOW-DOSE

CHEMOTHERAPEUTIC DRUGS IN CANCER TREATMENT

THROUGH IMMUNOLOGICAL PATHWAYS

Routine high-dose chemotherapeutic drugs are widely used for the

treatment of various tumors, especially for that of unresectable and/or

extensively metastatic tumors.82 However, the intensive and wide-

spread side effects, due to non-selective cytotoxic effects on both

tumor cells and normal cells, have largely limited their applications.

Currently, the search for more specific chemotherapeutic drugs is the

focus of cancer therapeutic research. However, the success of tumor

treatment is not achieved solely by killing tumor cells. It is now widely

accepted that the tumor problem is not only about seeds (i.e., the

tumor cells themselves) but also about the soil (i.e., the tumor micro-

environment) and that targeting the tumor microenvironment can

also have therapeutic effects. Cellular components and mediators in

the tumor microenvironment aid the proliferation and survival of

tumor cells, facilitate angiogenesis and metastasis, subvert antitumor

immune responses and modify the responses of tumor cells to hor-

mones and chemotherapeutic agents. Thus, the tumor microenviron-

ment is vital for the initiation, promotion and progression of cancer.

Immune cells and immune-associated molecules are major compo-

nents of the tumor microenvironment, and regulating their function is

considered a promising strategy against cancer. In this regard, low-

dose chemotherapeutic drugs may have potential as cancer treatments

due to their immune regulatory properties. Chemotherapeutic drugs

can kill cancer cells not only via cytotoxic effects, but also by acting as

adjuvants for antitumor immune responses.82 The latter function

might be more important for the complete eradication of any remain-

ing cancer cells and the prevention of relapse after surgical treatment.

The advantages of low-dose chemotherapeutic drugs in cancer treat-

ment are evident: (i) low-dose chemotherapeutic drugs have fewer

effects on normal cells, thereby avoiding the side effects usually seen

in routine high-dose chemotherapy; and (ii) by modulating the

immune microenvironment, low-dose chemotherapy may have a pro-

found impact on the progression of cancer and could promote relief

and even recovery from cancer.82–84 As reported, the low-dose CY

regimen can selectively deplete or inhibit CD41CD251 Treg cells by

reducing intracellular ATP and glutathione levels, thus restoring

the activities of cytotoxic T and NK cells in end-stage cancer

patients.17,18,23 Such an effect has also been confirmed in other cases,

such as lymphoma, sarcoma and metastatic melanoma.85,86 Despite

the widespread use of low-dose CY in cancer treatment for targeting

Treg cells, data on the use of other low-dose chemotherapeutic drugs

to enhance antitumor immunity are still rare. Therefore, testing the

dosages of other chemotherapeutic drugs and screening for candidates

that are able to upregulate antitumor immunity under low-dose con-

ditions is highly desirable and also clinically significant.

In addition to the inherent ability of some low-dose chemothera-

peutic drugs to augment antitumor immunity, chemotherapeutic

drugs may use inflammatory pathways or be combined with anti-

body-based therapy to achieve antitumor immunotherapy. Althou-

gh it is thought that chemotherapy exerts its effects via the direct

elimination of tumor cells, the success of some chemotherapeutic

protocols depends on innate and adaptive antitumor immune res-

ponses, indicating that some chemotherapeutic drugs play an immune

adjuvant role. Studies from Zitvogel’s group have provided evidence

for this hypothesis and suggest that inflammatory signaling molecules

derived from dead tumor cells after chemotherapy are potential arms

for antitumor immunotherapy.87 We here suggest that a better anti-

tumor benefit may be generated by lowering the dosage of some of the

adjuvant-like chemotherapeutic drugs to reduce side effects while still

keeping the inflammatory–immunological signals. A new study by

Park et al. has shown that, although anti-HER2/neu antibody

increased influx of both innate and adaptive immune cells into the

tumor microenvironment, which resulted in enhanced antitumor

immune responses and tumor eradication, the addition of the che-

motherapeutic drugs CY or paclitaxel, could also abrogate antibody-

initiated immunity, leading to decreased resistance to rechallenge or

earlier relapse.88 The authors speculated that such a loss of protection

from tumor rechallenge might be attributable to the reduced white

blood cell count or early immune suppression that occurs after routine
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chemotherapy. However, as discussed above, the dosage might be

critical in this case and low dosages, especially for CY, are worthy of

testing. In short, low-dose chemotherapeutic drugs are potential

weapons to augment antitumor immune responses by directly ant-

agonizing regulatory pathways or indirectly expanding tumor-reactive

T cells in the tumor microenvironment. Low-dosage chemotherapy

plus other cancer regimens might generate more effective treatment

protocols in the near future.

CONCLUSIONS

Despite their well-established role as direct killers, chemotherapeutic

drugs may actually act as basic regulators of the fundamental intracel-

lular events (Figure 1). This latter regulatory nature of chemotherapeu-

tic drugs has long been hidden or masked by the overwhelming cell

death brought about by the high dosages of the drugs that are normally

administered. At low dosages, however, the regulatory nature may

become more evident. To date, numerous chemotherapeutic drugs have

been produced and used in the clinic. This provides a grand opportun-

ity to do some gold panning in the slags of chemotherapeutic drugs

administered in cancerous and non-cancerous diseases, such as auto-

immune and infectious diseases. It should be noted that specific low-

dose agents for cancer treatment may not be suitable for autoimmune

diseases and vice versa, due to their different modes of action. Based on

what has been reviewed here, one can be forgiven for hypothesizing that

chemotherapeutic drugs, under low-dose conditions, may provide new

vistas into the development of pharmacological therapies against non-

cancerous diseases, perhaps even resulting in revolutionary break-

throughs in the treatment of one or more refractory diseases.
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