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Molecular modeling, quantum polarized ligand 
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Aim: Both endothelin ETA receptor antagonists and angiotensin AT1 receptor antagonists lower blood pressure in hypertensive patients.  
A dual AT1 and ETA receptor antagonist may be more efficacious antihypertensive drug.  In this study we identified the mode and 
mechanism of binding of imidazole series of compounds as dual AT1 and ETA receptor antagonists.
Methods: Molecular modeling approach combining quantum-polarized ligand docking (QPLD), MM/GBSA free-energy calculation and 
3D-QSAR analysis was used to evaluate 24 compounds as dual AT1 and ETA receptor antagonists and to reveal their binding modes and 
structural basis of the inhibitory activity.  Pharmacophore-based virtual screening and docking studies were performed to identify more 
potent dual antagonists.
Results: 3D-QSAR models of the imidazole compounds were developed from the conformer generated by QPLD, and the resulting 
models showed a good correlation between the predicted and experimental activity.  The visualization of the 3D-QSAR model in the 
context of the compounds under study revealed the details of the structure-activity relationship: substitution of methoxymethyl and 
cyclooctanone might increase the activity against AT1 receptor, while substitution of cyclohexone and trimethylpyrrolidinone was 
important for the activity against ETA receptor; addition of a trimethylpyrrolidinone to compound 9 significantly reduced its activity 
against AT1 receptor but significantly increased its activity against ETA receptor, which was likely due to the larger size and higher 
intensities of the H-bond donor and acceptor regions in the active site of ETA receptor.  Pharmacophore-based virtual screening 
followed by subsequent Glide SP, XP, QPLD and MM/GBSA calculation identified 5 potential lead compounds that might act as dual AT1 
and ETA receptor antagonists.
Conclusion: This study may provide some insights into the development of novel potent dual ETA and AT1 receptor antagonists.  As a 
result, five compounds are found to be the best dual antagonists against AT1R and ETA receptors.  
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Introduction 
Hypertension is a multi-factorial trait that results from a 
combination of genetic and environmental factors[1].  Several 
candidate proteins that are linked to hypertension have been 
identified; among these, the angiotensin II type-1 receptor 
(AT1R) gene and endothelin receptor type A (ETA) are impor-
tant targets for the design of antihypertensive drugs[2–6].  

Angiotensin II (Ang II) activates the AT1R on arterial smooth 
muscle cells; this activation causes vasoconstriction and 

increases blood pressure[7], and AT1R antagonists reduce blood 
pressure in patients with essential hypertension[8].  Endothelin 
I (ET-1) activates the ETA and ETB receptors; the activation of 
these receptors induces vascular smooth muscle cell contrac-
tion and increases blood pressure[9], and ETA/ETB receptor 
antagonists are also given to patients with essential hyperten-
sion to reduce diastolic blood pressure[10].

There is a significant medical need for an antihypertensive 
drug that is effective as a monotherapy in a wide variety of 
patients[11].  The endogenous Ang II and ET-1 proteins are 
powerful vasoconstrictors and mitogens, and the pathogen-
esis of hypertension and cardiovascular disease is associated 
with both of these factors[11].  Elevated levels of Ang II pro-
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mote the synthesis and vasoconstrictive action of ET-1, and 
elevated levels of ET-1 increase the synthesis and vasocon-
strictive action of Ang II; therefore, these factors constitute a 
positive dual-feedback mechanism and an excellent target for 
hypertension management[11]. Because Ang II and ET-1 cause 
increases in blood pressure and promote each other’s actions, 
it is plausible that the concomitant blockade of both the angio-
tensin and endothelin endocrine/paracrine pathways may 
lead to enhanced reductions in blood pressure[12–14]. The dual 
inhibition of both AT1R and ETA has more physiological ben-
efit than the individual inhibition of either AT1R or ETA alone, 
as demonstrated in hypertensive transgenic rats that overex-
press the human renin gene[12].

In this study, combined homology modeling, molecular 
dynamics simulation, MM/GBSA free-energy calculations and 
atom-based 3D-QSAR analysis were performed to identify 
the mode and mechanism of binding of the imidazole series 
of compounds[15] as dual inhibitors of AT1R and ETA.  In this 
paper, we describe a robust combined ligand- and structure-
based development of 3D-QSAR and utilize this approach to 
examine the mechanism of dual inhibition of AT1R and ETA.  
The contours generated from QSAR studies highlight the 
structural features required for dual inhibition, and it will be 
useful for further design of more potent inhibitors.

Materials and methods
Homology modeling of ETA

The sequence of the human ETA (427 residues) was retrieved 
from the UniProt database (accession number: P25101).  The 
crystal structures of human β2 Adrenergic Receptor (3KJ6) and 
Adenosine A2A Receptor (3PWH) were retrieved from the Pro-
tein Data Bank (PDB) and selected as templates for homology 
modeling according to the result of a BLAST search.  The tem-
plates were selected based on sequence identity and the cover-
age of the sequence.  The sequences of ETA and the templates 
(3PWH and 3KJ6) were aligned using ClustalW (http://www.
ichec.ie/infrastructure/software/GlustalW)[16].  A BLOS-
SUM scoring matrix was used for the ClustalW alignment[17].  
Because the sequence identity of the target and template 
sequence is <30%, we chose a multiple template approach; 
this increased the coverage of the sequence alignment.  Many 
studies have reported that using multiple templates improves 
the quality of homology modeling[18–20].  Fanelli and Benedetti 
reported that the selection of the proper template by careful 
sequence comparisons is a crucial step in comparative model-
ing[21].  The ETA tertiary structure was modeled using modeller 
9.10 software (Accelrys Inc, San Diego, CA, USA)[22–25].  

Refinement and validation of the model 
To obtain a reliable model, structural refinement was per-
formed using stepwise constrained optimization[26].  First, the 
initial models were optimized and energy was minimized to 
correct disallowed torsion angles and to eliminate unfavorable 
atom-atom contacts using Prime 2.0[27] software (Schrodinger, 
LLC, New York, NY, USA)[28].  The validation of the modeled 
structures was performed by inspecting the psi/phi Ramach-

andran plot obtained from PROCHECK analysis[29].  

Molecular dynamics simulation
Molecular dynamics (MD) simulations were carried out for the 
modeled ETA protein and the theoretical AT1R protein (PDB 
ID: 1ZV0)[30] from the Protein Data Bank (www.rcsb.org) using 
Desmond MD code and the OPLS-AA 2005 (Optimized Poten-
tials for Liquid Simulations-All Atom) force field[31–32] for mini-
mization of the system.  Using the Desmond system builder, 
a 10 Å buffered orthorhombic system with periodic boundary 
conditions was constructed using a DPPC lipid membrane[33–35] 
and a TIP4P explicit water solvent[36].  The overall charge was 
neutralized by 0.15 mol/L NaCl.  The simulations were per-
formed in the NPT ensemble.  The temperature of 325 °K and 
pressure of 1.013 bar were kept constant by coupling the sys-
tem to a Berendsen thermostat and barostat.  An integration 
step of 2.0 was used, Coulombic interactions were calculated 
using a cutoff radius of 9.0 Å, and long-range electrostatic 
interactions were calculated using the smooth particle mesh 
Ewald method[37].  Before each MD simulation, a default Des-
mond membrane protein relaxation protocol was applied[38].

Preparation of protein 
The starting coordinates of the AT1R and modeled ETA pro-
tein were further modified for Glide docking calculations and 
subjected to protein preparation using the protein preparation 
wizard of Glide software (Schrodinger, LLC, New York, NY, 
USA)[39].  For these calculations, the proteins were minimized 
using the Protein Preparation Wizard by applying an OPLS-
2005 force field.  Progressively weaker restraints were applied 
to the non-hydrogen atoms.  This refinement procedure was 
carried out based on the recommendations of Schrodinger 
LLC (New York, NY, USA).  Because Glide uses the full OPLS-
2005 force field at an intermediate docking stage and claims 
to be more sensitive to geometric details than other docking 
tools.  The most likely positions of hydroxyl and thiol hydro-
gen atoms, protonation states and tautomers of His residues, 
and Chi ‘flip’ assignments for Asn, Gln and His residues were 
selected.  Progressive minimizations were performed until 
the average root mean square deviation of the non-hydrogen 
atoms reached 0.3 Å. 

Active site predictions
The active sites of the modeled ETA protein and AT1R were 
investigated using the SiteMap program (Schrodinger, LLC, 
New York, NY, USA)[40].  This software generates information 
on the binding site’s characteristics using novel search and 
analytical facilities; a SiteMap calculation begins with an initial 
search step that identifies or characterizes one or more regions 
on the protein surface that may be suitable for binding ligands 
to the receptor using grid points.

Ligand preparation
Twenty-four compounds that have been reported to be dual 
inhibitors of AT1R and ETA

[15] were drawn in Maestro (Sch-
rodinger, LLC, New York, NY, USA).  Each structure was 
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assigned an appropriate bond order using the LigPrep pack-
age from Schrodinger, LLC, New York, NY, USA[41].  The 
inhibitors were converted to mae format (Maestro, Schro-
dinger, LLC, New York, NY, USA) and optimized by means of 
the Optimized Potentials for Liquid Simulations (OPLS 2005) 
force field using the default setting.  

Glide extra precision docking (XP) and QM-polarizes ligand 
docking (QPLD) 
All the compounds were subjected to Glide XP docking.  In 
addition, the popular docking program Glide and QM/MM 
software Q-site were combined to perform a QM-Polarized 
Ligand Docking (QPLD) analysis[42, 43].  For QM/MM calcu-
lations, this approach uses the QSITE program[42], which is 
coupled with JAGUAR[44] for the QM region and the IMPACT 
molecular modeling code for the MM region[45].  When there 
are covalent connections between the QM and MM regions, 
it uses frozen localized molecular orbitals along the covalent 
bonds to construct an interface between the two regions.  The 
QM/MM energy is calculated as the coulomb–van der Waals 
force of the complex that is calculated from the electrostatic 
potential energy of the ligand; this is in turn generated from a 
single point calculation using density functional theory for the 
QM region with the 6-31G*/LACVP* basis set, B3LYP density 
functional, and “Ultrafine” SCF accuracy level (iacc=1, iac-
scf=2).  Initially, a regular standard precision (SP) Glide dock-
ing followed by extra precision (XP) refinement was carried 
out, generating 5 poses per docked molecule; these were then 
submitted to QM-ESP charge calculation at the B3LYP/3-21G* 
level within the protein environment defined by the OPLS-
2005 force field.  Finally, the resulting poses were re-docked 
for another Glide run using the ESP atomic charges and XP 
scoring modes[46].  

Computational mutagenesis studies
Computational mutagenesis and alanine scanning studies 
were carried out using the Mutate Residues script from Schro-
dinger, LLC, New York, NY, USA.  Computational mutagene-
sis is a technique used to determine the contribution of specific 
residues to the function of a protein by mutating the residues 
to alanine[47, 48] to understand the structural and energetic 
characteristics of the hotspots.  The mutated systems were not 
minimized, and it was assumed that no local rearrangements 
occur with the mutation.  The residues that interacted with 
BMS-248360 were mutated to alanine, and we subsequently 
analyzed the binding free energy.  

Binding free energy calculation
Prime/MM-GBSA was used to predict the free energy of bind-
ing between the receptor and the set of ligands.  The binding 
free energy (ΔGbind) was calculated using the default param-
eters of Prime software, Schrodinger, LLC, New York, NY, 
USA[27, 49, 50].  

3D-QSAR model generation
PHASE 3.3, implemented in the Maestro 9.2 software pack-

age (Schrodinger, LLC, New York, NY, USA)[51, 52], was used 
to generate the 3D-QSAR models of the imidazole series as 
dual inhibitors of AT1R and ETA.  A set of 24 imidazole com-
pounds (Table 1) was selected from the available literature[10] 
and used in the present study.  The alignment was achieved 
using the top-ranked docking pose from Glide XP and QPLD 
for each inhibitor.  QPLD showed a better correlation with the 
experimentally determined activity; we therefore used QPLD-
generated conformations to generate the 3D-QSAR models 
using the default parameters.  In the partial least-squares (PLS) 
regression analysis, a leave-n-out (LNO) validation was per-
formed.  Then, non-cross validated analysis was performed to 
obtain the final QSAR model.  PHASE provides a standard set 
of six pharmacophore features: hydrogen bond acceptors (A), 
hydrogen bond donors (D), hydrophobic groups (H), nega-
tively ionizable (N), positively ionizable (P), and aromatic ring 
(R)[51].  In this study, we performed 3D pharmacophore screen-
ing using the two top-ranked hypothetical pharmacophores, 
AARRR and AARRH, representing the chemical features of 
dual AT1R and ETA inhibitors.  Using these pharmacophores, 
we searched chemical databases and retrieved molecules with 
novel and desired chemical features from the ChemBridge 
database (www.ChemBridge.com).  The compounds retrieved 
from the database were subjected to structure-based screen-
ing.  Glide provides three different levels of docking precision: 
HTVS (high throughput virtual screening), SP (standard preci-
sion) and XP (extra precision).  We carried out our calculations 
using HTVS first, and then used the SP and XP modes to fur-
ther refine the good ligand poses.  Then, finally we docked the 
screened compounds using the more precise docking protocol, 
QPLD.

Enrichment studies
The Schrodinger decoy set was used to validate the pharma-
cophore hypotheses, virtual screening (VS) and QPLD.  This 
decoy set was downloaded as a 3D SD file from the Schro-
dinger Website and consists of 1000 drug-like compounds 
(with an average molecular weight of 400 Daltons) and 27 
active compounds from the published literature[15].  For our 
validation, 100 drug-like compounds were randomly selected 
from the Schrodinger decoy set and mixed with 27 active mol-
ecules.  QPLD calculation is a time-consuming process, so we 
reduced our decoy set to 127.  We used this method to evalu-
ate the ability of our hypothetical pharmacophores and dock-
ing study to discriminate and separate the active compounds 
from the inactive compounds in our larger set of molecules.

Results and discussion
ETA sequence alignment and model generation 
A sequence similarity search was performed using NCBI 
BLASTp, a conventional alignment tool for protein sequences.  
Sequence similarity is the main criterion for selecting a 
template for homology modeling.  The sequence similarity 
between the ETA protein and other known GPCR proteins is 
very low (<30%), but we selected the templates from the GPCR 
superfamily that had high resolution and maximum sequence 
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coverage with the target sequence.  Therefore, in addition to 
sequence similarity, we used 7-TM architecture as another 
criterion.  The amino acid sequence of ETA (427 amino acids) 
shows a significant percentage of identity with the thermosta-
bilized adenosine A2A receptor [3PWH: 70/306 (23%)] and the 
β2-adrenergic receptor [3KJ6: 84/384 (22%)].  Even though the 
target-template sequence similarity falls in the twilight region 
(<30%), it is still possible to obtain a probable model of ETA 
based on these templates because all these proteins belong to 
the class A GPCR superfamily with a topology of seven trans-
membrane helices.  Sequence-structure alignment has been 
reported to be superior to sequence-sequence alignment for 
the purpose of homology modeling; therefore, the former was 
used for our model building.  The multiple sequence align-

ment of the ETA sequence with 3KJ6 and 3PWH is shown in 
Figure 1, and conserved residues in the binding site region are 
shown in Supplementary Figure 1.  

Several studies have reported that homology modeling 
based on multiple templates improves the quality of the mod-
eled proteins, including GPCR[18–21].  Therefore, in this study 
we used multiple templates to generate the ETA model.  Ten 
models were generated based on the human adenosine A2A 
Receptor (3PWH) and the β2-Adrenergic Receptor (3KJ6) using 
the multiple templates protocol of modeller 9.10 software 
(Accelrys Inc, San Diego, CA, USA).  Loop refinements were 
carried out using Prime software (Schrodinger, LLC, New 
York, NY, USA).  The modeled proteins were energy mini-
mized using the OPLS 2005 force-field.  

Table 1.  Compounds selected (imidazole series) for 3D-QSAR study and their measured biological activity and predicted activity. 

Compound                                                                                                                                                              AT1R                                               ETA

      No            R1                      R2                             R3                                      R4                            Actual                Predicted            Actual            Predicted
                                                                                                                                                                 activity          activity               activity       activity 
 
   1 Bu Cl CONH2 – 7.62 7.992 6.381 7.094
   2 Pr Cl CONH2 – 7.678 8.031 7.398 7.308
   3 Pr Et CONH2 – 8.155 8.12 7.26 7.290
   4 Pr Et CONMe2 – 7.292 7.382 7.26 7.298
   5 Pr Et CONHMe – 7.886 8.151 7.796 7.228
   6 Pr Cl CO2Me – 7.638 8.287 6.337 6.975
   7 Pr Cl COMe – 7.398 7.608 7.398 7.083
   8 Pr CH2CH2CH2CH2C(=O) H  8.097 8.12 6.979 7.260
   9 – – – 6.444 6.481 9 8.635

 10 – – – Methyl 8.698 8.35 7.886 8.044
 11 – – – Fluoro 7.796 7.551 7.699 7.968
 12 – – – Cyanomethyl 7.796 7.833 7.824 8.349
 13 – – – Hydroxymethyl 7.523 7.637 7.854 8.016
 14 – – – Ethoxymethyl 8.301 8.157 7.699 7.587
 15 – – – Methoxymethyl 8.398 7.727 7.69 7.675
 16 – – CONH2 Methoxymethyl 9.222 8.879 8.398 7.860
 17 – – CONH2 Methyl 8.699 8.037 8.301 7.308
 18 – – CONH2 Ethoxymethyl 8.523 8.192 7.699 7.702
 19 – – CONH2 Chloro 7.456 7.742 6.155 6.949
 20 – – CONH2 Ethyl 8.886 8.419 8.155 8.176
 21 – – CONH2 2-Fluoroethoxymethyl 8.699 8.56 8.097 7.550
 22 – – CONHMe H 8.097 8.528 8.155 8.151
 23 – – CONHMe Methyl 8.398 8.528 8.301 7.500
  24  – – CONHMe Ethoxymethyl 7.854 7.541 7.656 8.168
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Validation of the predicted structure
The overall stereo-chemical qualities of the ten generated 
models were assessed by PROCHECK (Hinxton, Cambridge, 
United Kindgom).  One model was selected based on the best 
Ramachandran plot characteristics.  The Ramachandran plot 
of the best model showed 81.6% of the residues in the most 
favorable region, 15.1% in the additional allowed region, 2.0% 
in the generously allowed region and 1.3% in the disallowed 
region.  These results revealed that the majority of the amino 
acids are in a phi/psi distribution that is consistent with a 
right-handed α-helix and suggested that the model is reliable 
and of good quality.  The G-factors, indicating the quality of 
the covalent, dihedral and overall bond angles, were -0.92, 
-1.96, and -1.28, respectively.  The overall main-chain and side-
chain parameters, as evaluated by PROCHECK, were all very 
favorable.  The Ramachandran plot characteristics confirmed 
the quality of the predicted model.  The model selected was 

again subjected to MD simulation for further refinement of the 
structure.  

Molecular dynamics simulations
Molecular dynamics can be used to explain protein structure-
function problems, such as folding, conformational flexibility 
and structural stability.  In the simulations, we monitored the 
backbone atoms and the Cα-helix of the modeled protein.  The 
RMSD values of the modeled structure (ETA) and 1ZV0 (AT1R) 
protein backbone atoms were plotted as a time-dependent 
function of the MD simulation.  The results support our mod-
eled structure; they show constant RMSD after 25 ns of the 
simulation process for ETA, and there is less deviation in the 
RMSD for AT1R after 6 ns.  The time dependence of the RMSD 
(Å) of the backbone atoms of the modeled protein (ETA) and 
the 1ZV0 (AT1R) protein over the course of 30 ns of simulation 
is shown in Figures 2A and 2B.  The graph clearly indicates 

Figure 1.  Multiple structure sequence alignment between template crystal structures (3PWH and 3KJ6) and the ETA sequence.  In the sequences, 
an asterisk (*) indicates an identical or conserved residue, a colon (:) indicates conserved substitutions, and a period (.) indicates semi-conserved 
substitutions.  
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that there is a change in the RMSD from 1.0 Å to 3.0 Å in the 
ETA homology model during the first 20 ns, but after 20 ns, the 
RMSD reaches a plateau.  The RMSD values of the backbone 
atoms in the system tend to converge after 25 ns, showing 
fluctuations of approximately 0.5 Å.  The low RMSD and the 
simulation time indicate that, as expected, the 3D structural 
model of ETA represents a stable folding conformation.  The 
RMSD of the AT1R protein was also analyzed; there was a con-
stant deviation of the RMSD within 2 Å after 4 ns.  This result 
confirms that the theoretical 3D structure of the AT1R protein 
(Pdb id: 1ZV0) is good enough for further study.  
 
Prediction and comparison of the active sites of AT1R and ETA

Taking into account the structural flexibility of the GPCR pro-
tein, we first evaluated the active sites of the modeled proteins 
in terms of shape, sterics, and electronic properties.  From the 
contact scores (0.956 for AT1R and 0.923 for ETA), the strength 
of van der Waals contacts with the receptors also emerged; 
this is an important feature of each active site.  The exposure 
and enclosure values are measures of the degree of opening 
of an active site to the solvent; these values are almost the 
same in both proteins (Table 2).  However, the value of don/
acc is much less in AT1R compared to that in ETA.  This find-
ing reveals that the intensities of hydrogen bond donor and 
acceptor regions are lower in AT1R.  The overall scores (site 
score) are almost the same in both of the proteins.  This result 

provides further information regarding the active sites of the 
AT1R and ETA proteins and will facilitate the design of potent 
dual inhibitors.  

QM/MM docking of AT1R and ETA with the dual inhibitor BMS-
248360
A QM/MM docking study was performed with BMS-248360, 
a dual AT1R and ETA inhibitor, to further optimize the protein 
structures (Figures 3A and 3B).  N1 and O2 from oxazole form 
a hydrogen bond with the –NH2 group of Gln257 of AT1R, and 
N4 near the oxosulfane oxide forms a hydrogen bond with 
the –OH group of Tyr113.  Two benzene rings of BMS-248360 
form Π–Π stacking with Phe204, Phe249, Tyr253, and His256, 
respectively.  In ETA , O1, and O3 from the oxosulfane oxide 
form hydrogen bonds with the –NH2 groups of Gln165 and 
–NH2 group of Asn137, respectively.  O5 from 3,3-dimethyl-
pyrrolidin-2-one forms a hydrogen bond with the –NH2 region 
of Gln165.  

The binding free energy was also calculated using the MM/
GBSA approach for the proteins in complex with BMS-248360; 
the free energy was -121.44 kcal/mol for AT1R and -120.21 

Table 2.  Comparison of active site of AT1R and ETA protein using SiteMap (Schrodinger, LLC). 

 Protein           Site score             Size                  Volume                 Exposure         Enclosure   Contact            Phobic  Philic      Don/acc
 
 AT1R 1.063 310 1117.837 0.597 0.753 0.956 1.081 0.904 0.654
 ETA 1.114 322 1061.242 0.580 0.756 0.923 1.347 0.652 1.087

Exposure/enclosure, properties measuring the degree of opening of active site to the solvent; contact, measure of site point interaction via vdW 
contacts; don/acc, property related to the sizes and intensities of H-bond and acceptor regions; SiteScore: an overall score based on previous 
properties.

Figure 2.  The RMSD of backbone atoms of the ETA (A) and AT1R proteins (B) 
from a 30 ns MD run.  

Figure 3.  Binding modes of AT1R (A) and ETA (B) with the dual inhibitor 
BMS-248360.
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kcal/mol for ETA.  To explore the role of important amino 
acid residues in the ligand-protein interaction, we applied a 
computational mutagenesis (alanine scanning) to replace these 
residues with alanines.  The results from our energetic analy-
sis of the mutant complexes are shown in Table 3.  In the ETA/
BMS-248360 complex, the N137A and Q165A mutations were 
not favorable for ΔGbind, increased this parameter from -120.21 
kcal/mol to -104.95 kcal/mol and -99.20 kcal/mol, respec-
tively.  The mutation increased the ΔGBind Covalent, the ΔGBind 

Lipo and the ΔGBind SolvGB by 10.38 kcal/mol, 4.97 kcal/mol and 
17.409 kcal/mol, respectively. However, the ΔGBind Coulomb, the 
ΔGBind Hbond, and the ΔGBindvdW were lower in the N137A mutant 
by 12.37 kcal/mol, 0.05 kcal/mol and 4.996 kcal/mol, respec-
tively. For the Q165A mutant, the ΔGBind Coulomb, the ΔGBind Covalent, 
the ΔGBind Hbond and the ΔGBind Lipo were increased, but the ΔGBind 

SolvGB and the ΔGBindvdW were slightly decreased.  This finding 
shows that N137 and Q165 are important residues for ligand 
binding.  In the AT1R/BMS-248360 complex, the Y113A, 
Q257A, and N294A mutations are not favorable for the ΔGbind, 
the ΔGBind Coulomb, the ΔGBind Covalent, the ΔGBind Hbond, the ΔGBind Lipo, 
the ΔGBind SolvGB, and the ΔGBindvdW, based on our energetic anal-
ysis, but the N294A mutant slightly reduced the ΔGBind Coulomb 
and the ΔGBind SolvGB.  This result clearly shows that Y113, Q257, 
and N294 are important residues for ligand binding.

Glide extra-precision docking (XP), quantum polarized ligand 
docking and molecular mechanics-generalized born surface area 
(MM/GBSA) rescoring
To study the molecular basis of interactions between the imid-
azole compound series and AT1R and ETA and to analyze the 
affinity of this binding, all the ligands were docked into the 
active site using Glide XP (Table 4 and Table 5).  The correla-
tion between experimentally determined biological activity 
and the binding free energy was 0.291 for AT1R (Supplemen-
tary Figure 2) and 0.232 for ETA (Supplementary Figure 3).  
Because XP docking predicts a very low correlation between 

experimental biological activity and the predicted binding 
free energy, we performed further study using QM-polarized 
docking.  We assumed that this docking method would give 

Table 3.  Relative binding free energies (kcal/mol) between wild and mutant ETA/BMS-248360 and AT1R/BMS-248360 complex. 

                                                                                                                   ETA/BMS-248360 complex
                                           ΔGBind

a                  ΔGBind Coulomb
b              ΔGBind Covalent

c                ΔGBind Hbond
d                 ΔGBind Lipo

e               ΔGBind SolvGB
f             ΔGBindvdW

g

 
 WT -120.21 10.18   4.34 -0.97 -71.07   5.77 -66.08
 N137A -104.95  -2.20 14.72 -1.02 -66.10 23.18 -71.08
 Q165A   -99.20 17.50 13.54 -0.64 -63.25   2.01 -66.18
 
                                                                                                                           AT1R/BMS-248360 complex
 
 WT -121.44 32.18 14.14 -1.19 -63.37 -16.00 -80.91
 Y113A -113.42 35.53 13.89 -0.78 -65.84 -17.76 -75.69
 Q257A -115.70 37.07 13.82 -0.85 -66.60 -18.05 -79.54
 N294A -120.89 28.40 13.77 -1.17 -67.39 -14.14 -78.04

WT, Wild Type.  aMMGBSA free energy of binding; bContribution to the MMGBSA free energy of binding from the Coulomb energy; cContribution to the 
MMGBSA free energy of binding from covalent binding; dContribution to the MMGBSA free energy of binding from hydrogen bonding; eContribution 
to the MMGBSA free energy of binding from lipophillic binding; fContribution to the MMGBSA free energy of binding from the van der Waals energy; 
eContribution to the MMGBSA free energy of binding from the generalized Born electrostatic solvation energy.

Table 4.  Docking and MM/GBSA free energy calculation result of 
imidazole series against AT1R.

Com-                              Glide XP                               QPLD
pound        Docking          Prime           Docking         Prime              QM/MM 
No               score        MM/GBSA         score        MM/GBSA           Energy
                                         ΔGbind                                                          ΔGbind                     (kcal/mol)
                                     (kcal/mol)          (kcal/mol)
 
   1 -5.26 -75.56 -6.89 -64.13 -2440.50
   2 -6.34 -76.61 -7.05 -74.00  -2401.45
   3 -6.29 -81.32 -6.77 -85.62 -2022.18
   4 -5.96 -73.55 -6.03 -72.35 -2100.38
   5 -7.05 -77.10 -6.74 -78.74 -2061.32
   6 -6.44 -75.23 -5.83 -73.97 -2459.14
   7 -6.09 -74.83 -6.17 -73.06 -2384.35
   8 -5.32 -79.96 -6.23 -72.43 -2043.00
   9 -7.38 -67.69 -7.07 -76.72 -2443.96
 10 -5.99 -77.08 -5.68 -86.48 -2082.07
 11 -6.32 -77.41 -5.64 -78.47 -2141.73
 12 -5.77 -80.75 -6.56 -79.96 -2173.85
 13 -5.09 -75.18 -5.67 -76.67 -2156.88
 14 -6.08 -58.90 -6.46 -86.97 -2235.04
 15 -6.46 -87.60 -6.67 -88.34 -2195.94
 16 -6.25 -91.41 -7.20 -92.19 -2174.10
 17 -6.34 -67.28 -6.56 -88.70 -2060.23
 18 -6.62 -89.29 -7.09 -87.73 -2213.40
 19 -6.23 -50.66 -5.84 -74.39 -2478.51
 20 -6.06 -90.77 -7.11 -89.02 -2099.26
 21 -6.04 -86.25 -6.68 -88.56 -2311.77
 22 -6.15 -82.19 -5.99 -88.61 -2213.07
 23 -5.72 -84.53 -6.20 -88.61 -2099.25
 24 -6.08 -72.01 -6.34 -78.40 -2252.21
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a more accurate prediction of the electrostatic interactions[46], 
which help to increase the docking accuracy.  All 24 imidaz-
ole series compounds were docked inside the active sites of 
AT1R and ETA using QPLD.  The binding mode of inhibitors 
predicted using Glide XP docking was almost identical to that 
predicted by QPLD.  The top five poses per molecule were 
submitted for rescoring using the MM/GBSA process.  The 
correlations between the MM/GBSA result and experimental 
activity (0.603 and 0.508 for AT1R and ETA (Figure 4), respec-
tively) were better than the correlations between the docking 
scores and the experimental activity.  The MM/GBSA rescor-
ing of QPLD showed better correlation with the biological 
experimental activity than the MM/GBSA scoring from Glide 
XP docking calculation.  Therefore, this docking method gives 
more accurate treatment of electrostatic interactions, which 
helps to improve the docking accuracy.  We used the QPLD 
docked ligand conformation to generate the 3D-QSAR model.  

Analysis of 3D-QSAR validation 
Reliable predictions can only come from statistically valid 
QSAR models.  Several statistical parameters can be used to 
evaluate the robustness of a QSAR model, including leave-n-
out cross validation of the training set (R2), leave-n-out cross 

validation of the test set (Q2), the standard deviation (SD), 
the Root Mean Square Error (RMSE), and the variance ratio 
(F).  High R2 is an important condition for a predictive QSAR 
model.  The best QSAR model will be chosen based on its pre-
dictive ability, so in addition to high R2, the best model should 
also have high Q2.  For AT1R, we obtained a good R2 value for 
the training set (0.72), excellent predictive power with a Q2 
of 0.69, an RMSE of 0.254, a standard deviation (SD) of 0.38, 
an F variance ratio of 35.7, a Pearson R correlation (between 
the predicted and observed activity for the test set) of 0.85, 
and  an r2

pred of 0.66.  Plots of the predicted vs actual pKi for 
the training and test sets are shown in Figure 5A.  For ETA, we 
obtained an R2 value for the training set of 0.971, excellent pre-
dictive power with a Q2 of 0.84, an RMSE of 0.11, a SD of 0.04, 
an F variance ratio of 159.1, a Pearson R correlation (predicted 
and observed activity for the test set) of 0.92, and an r2

pred of 
0.70.  Plots of the predicted vs actual pKi for the training and 
test sets are shown in Figure 5B.  

Analysis of 3D-QSAR model
Additional insight into the inhibitory activity can be gained 
by visualizing the QSAR model in the context of the most and 
least active compounds.  The contribution maps obtained from 
our result shows how 3D-QSAR methods can identify features 
that are important for the interaction between each ligand and 
its target protein.  Such maps allow the identification of those 
positions that require a particular physicochemical property 
to enhance the bioactivity of a ligand.  A pictorial representa-

Table 5.  Docking and MM/GBSA free energy calculation result of 
imidazole series against ETA.

Com-                              Glide XP                               QPLD
pound        Docking          Prime           Docking         Prime              QM/MM 
No               score        MM/GBSA         score        MM/GBSA           Energy
                                         ΔGbind                                                          ΔGbind                     (kcal/mol)
                                     (kcal/mol)          (kcal/mol)
 
   1   -9.91 -69.01 -7.15 -63.59 -2403.67
    2 -10.64 -79.62 -7.15 -74.74 -2403.67
   3 -10.81 -78.41 -6.13 -71.39 -2024.44
   4   -9.87 -65.88 -7.01 -73.10 -2102.61
   5   -9.96 -82.48 -6.35 -83.52 -2063.51
   6   -9.92 -70.35 -6.87 -67.40 -2461.39
   7   -9.01 -79.18 -6.22 -75.28 -2386.58
   8   -8.89 -72.03 -6.18 -70.50 -2045.24
   9   -6.95 -95.25 -7.99 -93.49 -2446.21
 10   -8.31 -88.90 -6.37 -88.83 -2084.34
 11   -6.96 -79.07 -7.56 -86.17 -2143.92
 12   -7.41 -84.99 -7.45 -87.80 -2176.02
 13   -8.02 -81.05 -8.04 -86.36 -2159.09
 14   -8.43 -78.41 -6.60 -84.83 -2237.26
 15   -7.53 -76.52 -6.47 -85.79 -2198.15
 16   -9.80 -88.43 -6.97 -89.33 -2176.25
 17   -9.03 -88.99 -6.56 -88.72 -2062.40
 18   -8.14 -78.33 -7.39 -83.73 -2215.31
 19   -7.21 -85.58 -7.00 -66.75 -2480.72
 20   -7.50 -86.65 -7.01 -75.99 -2101.73
 21   -8.10 -55.09 -7.21 -59.67 -2314.04
 22   -7.89 -85.64 -7.43 -87.66 -2215.26
 23   -7.75 -88.68 -6.55 -88.97 -2101.50
 24   -8.10 -80.69 -6.81 -90.30 -2254.40

Figure 4.  Experimental activity vs predicted ΔGbind of AT1R (A) and ETA (B) 
from the QPLD pose.  
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tion of the contours generated for AT1R is shown in Figures 
6A–6B; the contours generated for ETA are shown in Figures 
6C–6D.  In these representations, the blue cubes indicate favor-
able regions, while red cubes indicate unfavorable regions for 
activity.

Figures 6A and 6B (AT1R) compares the most significant 
favorable and unfavorable features that arise when the QSAR 
model is applied to the most active compound (16) and the 
least active compound (9) for AT1R inhibition.  In the con-
text of compound 16, the blue cubes are observed near the 
(2,3-dimethylcyclopenta-1,3-dien-1-yl)sulfuramidous acid and 

the N17 region.  However, a red cube is still observed near 
the ethyl group of the H-imidazole region.  In the context of 
the least active compound (9), red cubes are observed near 
N-(3,4-dimethyl-1,2-oxazol-5-yl)benzenesulfonamide, N17 
of tetrahydro-H-benzimidazole and the trimethylpyrrolidi-
none region.  However, blue cubes are still observed near the 
tetrahydro-H-benzimidazole region, which may be a result of 
the addition of cyclooctanone to the H-imidazole region.  The 
activity of the molecule is greatly influenced by the substitu-
tion of methoxymethyl group in C4 of the benzene ring.  The 
further addition of cyclooctanone to the H-imidazole region 

Figure 6.  Pictorial representation of the cubes generated using the QSAR model.  Blue areas indicate favorable regions, while red areas indicate 
unfavorable regions for the activity.  The QSAR model visualized in the context most active compound, 16 (A), and the least active compound, 9 (B), 
against AT1R.  The QSAR model visualized in the context of the most active compound, 9 (C), and the least active compound 19 (D), against AT1R.  

Figure 5.  Graph of actual versus predicted pKi of the training set and the test set using the atom-based QSAR model from PHASE for AT1R (A) and ETA (B).
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may increase the activity in the most active compound.  
Figures 6C and 6D (ETA) compare the most significant favor-

able and unfavorable features that arise when the QSAR model 
is applied to the most active compound (9) and the least active 
compound (19) for ETA inhibition.  In the context of compound 
9, blue cubes are observed in the region of the pyrazole and 
the trimethylpyrrolidinone.  However, red cubes are observed 
near the benzene ring.  In the context of compound 19, red 
cubes are observed near the 5-[(aminooxy)methyl]-4-ethyl-
2-propyl-1H-imidazole benzene ring and in the (3,4-dimethyl-
1,2-oxazol-5-yl)sulfuramidous acid region.  However, blue 
cubes are also observed in the two methyl groups of N-(3,4-
dimethyl-1,2-oxazol-5-yl)benzenesulfonamide.  This finding 
indicates that the substitution of cyclooctanone in the H-imid-
azole and trimethylpyrrolidinone increased the activity of the 
molecule.  

From our 3D-QSAR study, we observed that the substitu-
tion of cyclooctanone and trimethylpyrrolidinone is impor-
tant for the activity of the compound against the ETA protein.  
However, in the case of AT1R, the substitutions of trimethyl-
pyrrolidinone reduce the activity of the compounds, and the 
substitution of the methoxymethyl group on R4 influences the 
activity of the molecule.  The addition of aminooxy methane 
and the ethyl group on H-imidazole also increases the activity.  
The sizes and intensities of the H-bond donor and acceptor 
region are comparatively small in AT1R compared to those in 
the ETA protein (Table 2).  This difference may explain why the 
addition of trimethylpyrrolidinone reduces the activity against 

AT1R protein but increases the activity against ETA.

Binding mode analysis of the most active compound (compound 
16) and the least active compound (compound 9) against AT1R
Molecular docking studies were performed to understand the 
binding mode and mechanism of binding between the most 
active compound (16) (Figure 7A) and the least active com-
pound (9) and AT1R (Figure 7B).  To obtain information for 
further structure optimization, we used Quantum Polarized 
Ligand Docking.  The –C=O from –CONH2 (R3) of compound 
16 forms a hydrogen bond with N294, and the –NH2 group 
from –CONH2 also forms two hydrogen bonds with S115 and 
D74, respectively.  Two benzene rings from the major scaffold 
have Π-Π stacking with H256 and F249, respectively.  The 
O1 from the oxosulfane oxide group of compound 9 forms a 
hydrogen bond with the –OH group of Y113 of AT1R, and N1 
from the imidazole near cycloheptanone interacts with the 
–COOH group of D74 of AT1R.  Dimethyl-dihydro-oxazole 
and the benzene ring near oxosulfane oxide have Π–Π stack-
ing with H256 and F204, respectively.  Molecular docking also 
reveals that the substitution of –CONH2 forms a greater num-
ber of hydrogen bonds, which may enhance the activity of 
the molecule, and the substitution of trimethylpyrrolidinone 
may reduce the activity of the molecule.  This result further 
confirms that the substituted bulky group (trimethylpyrrolidi-
none) in R4 cannot fit inside the active site of AT1R, and there-
fore, the activity of the molecule decreases.  

Figure 7.  The binding mode of AT1R and its inhibitors.  (A) The most active compound, 16, and (B) the least active compound, 9.  The binding mode of 
ETA and its inhibitors (C) the least active compound, 19, and (D) the most active compound, 19.
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Binding mode analysis of the most active compound (compound 
9) and the least active compound (compound 19) against ETA

In the most active compound against ETA (9) (Figure 7C), the 
O5 from 3,3-dimethylpyrrolidin-2-one (R4) forms a hydrogen 
bond with the NH2 of Q165 in ETA.  Imidazole participates 
in Π–Π stacking with W240.  In the case of the least active 
compound against ETA (19) (Figure 7D), O1 and O2 of the 
oxosulfane oxide group form hydrogen bonds with the NH2 of 
Gln165 and the NH2 of Asn137, respectively.  From this dock-
ing result, we also observed that there was Π–Π stacking for 
the most active compound and that this may play an impor-
tant role in the activity of the molecule.  We also observed that 
the substitution of trimethylpyrrolidinone does not affect the 
activity of the molecule, and this substituted compound is 
able to fit inside the active site of ETA.  This docking study also 
revealed that the substitution of trimethylpyrrolidinone (R4) 
may influence the activity of the molecule.

Pharmacophore- and structure-based screening 
Pharmacophore models containing five sites were generated 
using the selected molecules for this study (24 imidazole series 
compounds)[15], which were reported as dual inhibitors of both 
AT1R and ETA.  The common hypothetical pharmacophores 
with three and four features were rejected for the study based 
on the molecule occupancy of the pharmacophoric features.  
The best two hypothetical pharmacophores, AARRR and 
AARRH, were selected based on the scoring function for fur-
ther pharmacophore-based screening (Figure 8).  The selected 
hypothetical pharmacophore consists of two hydrogen bond 
acceptors (A) and three aromatic rings (R) for the first hypoth-
esis, and the second hypothetical pharmacophore consists of 
two hydrogen bond acceptors (A), two aromatic rings (R) and 
one hydrophobic group (H).  

A database search retrieved all the positive hits and filtered 
out the inactive compounds.  The interpretation of how the 
pharmacophore maps onto the positive hits may provide 
insight into the structural requirements for dual inhibition of 
AT1R and ETA and can act as a guide for the further refinement 
of the molecules to design a better molecule with good absorp-
tion, distribution, metabolism, and excretion (ADME) proper-
ties.  The generated pharmacophore model screened against 
the ChemBridge chemical databases of 511,324 compounds.  
The compounds that possessed fitness scores higher than 1.500 
(2873 compounds) were subjected to high-throughput virtual 
screening (HTVS) against AT1R and ETA separately.  After 
HTVS, SP docking and XP docking, which are considered 
to be more precise modes of docking simulation, were per-
formed.  We identified 46 compounds targeting AT1R and 33 
compounds targeting ETA that were able to effectively bind to 
their active site through this docking procedure.  Further, we 
re-docked (using XP flexible docking) these 46 compounds tar-
geting ETA and 33 compounds targeting AT1R; this approach 
identified 17 compounds that are able to effectively bind to 
the active site of both proteins.  The selection of compounds 
was based on the glide score, glide energy, emodel, binding 

free energy and conformation of binding, which are similar 
to those of the known compounds.  It has been reported that 
ensemble rescoring[53–55] increases the percentage of correctly 
docked poses.  Therefore, we used ensemble rescoring to iden-
tify the potential dual inhibitors.  Henriksen et al also applied 
ensemble rescoring in identifying lead molecules using virtual 
screening[56].  They found that 19 out of 41 predicted com-
pounds were active in an enzyme assay and that 14 of these 
compounds were active in subsequent whole cell assays.  

Next, we subjected these 17 dual-inhibitory compounds 
to quantum polarized ligand docking, which we found to be 
more accurate for this study, and we identified 5 compounds 
that bind very effectively and close to the binding mode of the 
most active known compounds with good docking score and 
good binding free energy.  The 2D structures of the five iden-
tified compounds are shown in Figure 9.  The binding mode 
and docking scores are shown in Table 6 and Table 7.  The 
binding modes of the five lead compounds inside the binding 
pocket of AT1R and ETA are shown in Supplementary Figures 
4 and 5, respectively.  

Figure 8.  The two top-ranked pharmacophore models with the pharma-
cophore distance (Å).  
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Enrichment of the virtual screening protocol 
In a virtual screening process, the best hypothesis or docking 
calculation should distinguish the active compounds from the 
inactive ones.  A decoy set, composed of 27 known dual inhib-
itors of AT1R and ETA and 100 decoy molecules from Schro-
dinger, was used to validate whether the use of the hypotheti-
cal pharmacophores (AARRH and AARRR), VS, and QPLD 
could discriminate the active compounds from the inactive 
compounds.  The result was analyzed using a set of parame-
ters such as the hit list (Ht), number of active percent of yields 
(%Y), percent ratio of actives in the hit list (%A), enrichment 
factor (E), false negatives, false positives, and goodness of hit 
score (GH) (Supplementary Table 1 and 2)[57, 58].  We observed 

that all the GH values were between 0.6 and 0.8, which indi-
cates that the quality of the pharmacophore models and VS are 
acceptable.  Based on our overall validations, we can assume 
that both the pharmacophore hypothesis and the docking 
calculation were able to predict most of the compounds in 
the same order of magnitude and that it can discriminate the 
active inhibitors from the inactive or low-activity compounds.  
Because QPLD has better GH values, we assumed that this 
docking protocol would be able to discriminate the active 
inhibitors from the inactive ones.  Therefore, we propose that 
our virtual screening protocol can effectively discriminate the 
most suitable dual inhibitors of AT1R and ETA.  

Table 6.  Docking score and predicted activity of ETA protein. Predicted 
activity was calculated using the equation Y=-9.470x–5.020, where 
Y is the activity and x is the ΔGbind. The equation was derived from the 
correlation equation of experimentally predicted activity and ΔGbind of the 
compounds studied for QSAR analysis.

Compound          Docking             QM/MM                MM/GBSA       Predicted
   name            score                 Energy                 (kcal/mol)          activity
                                                     (kcal/mol)
 
 Lead 1 -7.52 -1216.96 -78.18 7.45
 Lead 2 -9.31 -1651.27 -76.15 7.25
 Lead 3 -7.51 -1839.31 -88.57 8.47
 Lead 4 -7.96 -4134.87 -84.92 8.11
 Lead 5 -7.42 -1321.34 -71.75 6.83

Table 7.  Docking score and predicted activity of AT1R protein. Predicted 
activity was calculated using the equation Y=-10.26x–1.717, where Y 
is the activity and x is the ΔGbind. The equation was derived from the 
correlation equation of experimentally predicted activity and ΔGbind of the 
compounds studied for QSAR analysis. 

Compound          Docking             QM/MM                MM/GBSA       Predicted
   name            score                  Energy                 (kcal/mol)          activity
                                                     (kcal/mol)
 
 Lead 1 -8.00 -1216.95 -60.37 5.85
 Lead 2 -5.98 -1651.27 -64.82 6.31
 Lead 3 -7.85 -1839.33 -85.01 8.45
 Lead 4 -7.32 -4138.87 -88.23 8.79
 Lead 5 -7.30 -1321.34 -74.50 7.34

Figure 9.  The chemical structure of five leading molecules that may be potential dual inhibitors of AT1R and ETA.
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Analysis of identified compounds using QSAR model generated 
against AT1R
We superimposed our QSAR model generated on the most 
active compound with the five identified compounds (Supple-
mentary Figure 6).  In lead 1, blue cubes were observed on the 
6H-benzo[c]chromen-6-one regions of the compound, and the 
–C=O from 6H-benzo[c]chromen-6-one formed a hydrogen 
bond with Val179 of AT1R.  Therefore, this functional group 
may be important for the activity against AT1R.  In lead 2, blue 
cubes were observed near the triazole and the benzene ring, 
but unfortunately, there were no interactions in this region.  
In lead 3, blue cubes were observed on ethyl formate, and the 
benzene ring attached to it had Π–Π stacking with Trp253 of 
AT1R.  Ethyl formate has a high electron-withdrawing capac-
ity and may influence the activity of the molecule.  In lead 4, 
the blue cubes were observed near the pyrrolidine-2,5-dione 
region, and O11 formed H-bonds with Tyr113 of AT1R.  The 
bromobenzene near pyrrolidine-2,5-dione also formed Π–Π 
stacking with Trp253.  In lead 5, blue cubes were observed 
on the indole, and the –NH from the indole formed a H-bond 
and Π–Π stacking with Tyr292.  Therefore, the indole of lead 
5 may be an important functional group for the activity of the 
molecule.

Analysis of identified compounds using QSAR model generated 
against ETA

In the context of lead 1, blue cubes were observed on methoxy-
benzene, and this benzene formed Π–Π stacking with Tyr50 
(Supplementary Figure 7).  A hybrid of red cubes and blue 
cubes were observed near the 6H-benzo[c]chromen-6-one.  The 
O from cyclohexane formed an H-bond with Gln86 of ETA, and 
the benzene ring formed Π–Π stacking with Tyr186.  Because 
6H-benzo[c]chromen-6-one influenced the activity of the 
leads against both AT1R and ETA, this may be a particularly 
important substitution for the dual inhibitory activity.  In lead 
2, blue cubes were observed on the benzodioxole group, and 
red cubes were observed on the fluorobenzene group.  There-
fore, the substitution of benzodioxole may be an important 
substitution for the activity against ETA.  In lead 3, blue cubes 
were observed on ethyl formate, but unfortunately, there was 
no interaction with this substitution.  However, ethyl formate 
is an important substitution for the activity of this lead com-
pound against AT1R; the substitution of ethyl formate may be 
an important substitution for dual inhibitory activity.  In lead 
4, blue cubes were observed on naphthalene; this could be an 
important substitution for the activity against ETA.  In the con-
text of lead 5, blue cubes were observed on the ethyl group, 
and a mix of red cubes and blue cubes was observed near the 
indole substitution.  The –NH from the indole group formed 
an H-bond with Gln86 of ETA.  The indole group is an impor-
tant substitution for both the proteins; thus, this substitution 
could be important for dual inhibitory activity.

Conclusion
In summary, a structurally reasonable and energetically 
reliable model of ETA was built using the multi-template 

homology modeling technique and a subsequent stepwise 
refinement procedure by molecular dynamics simulation; the 
known inhibitors were then docked into the active site of the 
initial model.  With this refined ETA model and the structure of 
AT1R, retrieved from PDB, we performed QPLD docking with 
the known dual inhibitor BMS-248360 to further optimize the 
model structure.  We found that Tyr113, Gln257, and Asn294 
from AT1R formed hydrogen bonds with BMS-248360 and that 
Asn137 and Gln165 from ETA formed hydrogen bonds with 
BMS-248360.  Further, we subjected these structures to Glide 
XP docking and QPLD with dataset compounds.  The QPLD 
docking result showed better correlation with the experimen-
tal activity for both the proteins.  We generated a 3D-QSAR 
model from this conformation, with good correlations of 
R2=0.72 and Q2=0.69 for AT1R and R2=0.97 and Q2=0.84 for 
ETA.  Further, the visualization of the 3D-QSAR model in the 
context of the molecules under study provided details of the 
relationship between structure and activity; our model there-
fore provides explicit indications for the design of better ana-
logues.  The substitution of methoxymethyl and cyclooctanone 
may increase the activity of the molecule against the AT1R 
protein.  In the case of the ETA protein, the substitution of 
cyclohexone and trimethylpyrrolidinone is important for the 
activity of the compound.  From this study, we also observed 
that the addition of trimethylpyrrolidinone to compound 9 
significantly reduced its activity against AT1R but significantly 
increased its activity against ETA due to the larger size and 
greater intensities of the H-bond donor and acceptor regions.  
Pharmacophore-based screening, followed by subsequent 
Glide SP, XP, and QPLD calculation, identified five potential 
leading molecules that could be potential dual inhibitors for 
both AT1R and ETA.  The results from this study may provide 
some insights into the development of novel potent dual ETA 
and AT1R antagonists.  
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