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Sedentary plant-parasitic nematodes maintain a biotrophic 
relationship with their hosts over a period of several weeks and 
induce the differentiation of root cells into specialized feed-
ing cells. Nematode effectors, which are synthesized in the 
esophageal glands and injected into the plant tissue through 
the syringe-like stylet, play a central role in these processes. 
Previous work on nematode effectors has shown that the apo-
plasm is targeted during invasion of the host while the cyto-
plasm is targeted during the induction and the maintenance of 
the feeding site. A large number of candidate effectors poten-
tially secreted by the nematode into the plant tissues to pro-
mote infection have now been identified. This work has shown 
that the targeting and the role of effectors are more complex 
than previously thought. This review will not cover the prolific 
recent findings in nematode effector function but will instead 
focus on recent selected examples that illustrate the variety 
of plant cell compartments that effectors are addressed to in 
order reach their plant targets.
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Plant parasitic nematodes are obligate parasites that cause bil-
lions of dollars of crop losses annually.1 Although different spe-
cies infect a variety of plant organs most species are restricted 
to roots. The most intensively studied are the sedentary root 
endoparasites; the root-knot nematodes (RKN) and cyst nema-
todes (CN), which are the most damaging species worldwide. 
An intriguing aspect of RKN and CN infection is the ability of 
these obligate parasites to hijack plant cell fate and induce the re-
differentiation of root cells, generally in the elongation zone, into 
specialized feeding cells, called giant-cells in the case of RKN 
and syncytia in the case of CN. These cells are enlarged, mul-
tinucleate and metabolically hyperactive cells that provide the 
nutrients required ensuringcompletion of the parasite life cycle.2 
Although there are superficial similarities between the feeding 

structures induced by RKN and CN, they have entirely differ-
ent ontogenies and are thought to have evolved independently. A 
remarkable feature of parasitism by RKN and CN is the ability of 
these parasites to maintain a long-lasting biotrophic interaction 
with the host (up to 6 weeks) that allows withdrawal of nutrients 
from the cytoplasm of living plant cells until the progeny are 
produced. Plant-endoparasitic nematode interactions therefore 
provide a fascinating model for the study of fundamental aspects 
of plant cell differentiation and plant defense suppression by the 
pathogen.

Our understanding of the molecular mechanisms that under-
lie plant-nematode interactions is expanding and we are begin-
ning to decipher the means by which the pathogen manipulates 
host plant cells. Effector proteins, secreted into host tissues by the 
nematode, are one of the key components of the molecular dialog 
leading to successful infection. Effectors can be defined as the 
molecules secreted by the pathogen that alter host-cell physiology 
to promote infection in susceptible hosts.3 These effectors, or the 
modifications they induce in plant cell structures or functions, 
can be perceived by the plant thus triggering defense responses.3 
Nematode effectors can be secreted from the hypodermis ontothe 
cuticle surface or can be produced in specialized secretory organs. 
Effectors secreted through the stylet are the most studied in 
RKN and CN.4,5 These effectors are produced by unicellular 
esophageal glands, secreted into the esophagus by exocytosis and 
delivered into the plant tissue through the stylet which acts as a 
syringe and injects these esophageal secretions into the host tis-
sue. The stylet is also used to withdraw nutrients from the feed-
ing cell cytoplasm.

The recent proliferation of reviews on nematode effec-
tors demonstrates thedynamism of this field of research. These 
reviews highlight the sophisticated means developed by nema-
todes to manipulate plant cell physiology and plant defenses.4-10 
This review will not cover the prolific recent findings in nema-
tode effector functions but will instead focus on recent examples 
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that illustrate the variety of plant cell compartments that effec-
tors are addressed to in order to reach their plant targets.

Apoplasm

Cell wall modifying and degrading enzymes such as cellulases 
and pectate lyases were the first nematode secreted proteins to 
be localized in planta during infection. These enzymes are pro-
duced in the nematode subventral gland cells and have been 
immuno-localized at the stylet orifice of migrating juveniles and 
along the migratory path of the CN Heterodera glycines and the 
RKN Meloidogyne javanica and M. incognita. These studies, in 
combination with work confirming the biochemical activity of 
the enzymes, provide convincing evidence for a role in disrup-
tion of the plant cell wall during root invasion.11-13 An improved 
immuno-cytochemical method has recently been developed that 
preserves both the plant and the pathogen tissues; this method 
has subsequently been used to show that more proteins than pre-
viously thought are secreted into the apoplasm during infection.12 
In addition, new roles for effectors secreted into the apoplasm 
are emerging. For example, a RKN calreticulin (Mi-CRT) was 
shown to be abundantly secreted into the apoplasm by M. incog-
nita sedentary stages during induction and maintenance of the 
giant cells.14 The role of Mi-CRT as a suppressor of host innate 
immunity was recently demonstrated15 but its mode of action is 
still to be determined. The venom allergen-like effector Gr-VAP1 
from the CN Globodera rostochiensis was shown to interact with 
an allelic form of the apoplastic papain-like cysteine protease Rcr3 
of tomato and perturb its active site, thereby increasing plant sus-
ceptibility to the nematode.16 However, in resistant tomato plants 
this modification of Rcr3 is perceived by the transmembrane Cf2 
receptor which triggers a hypersensitive response.16 Interestingly, 
the same allelic form of Rcr3 is also a virulence target for the leaf 
mold fungus Cladosporium fulvum, providing the first evidence 
for a common target for a nematode and a fungus pathogen and 
showing that plants have acquired defense mechanisms able to 
respond several pathogens during evolution.16

Cytoplasm

After migration is complete, the nematode perforates the cell 
wall of selected plant cells with its stylet to form the feeding site. 
Electron micrographs have clearly shown that the stylet comes into 
contact with the plasma membrane. An aperture is formed and 
dense materials subsequently accumulate in the plant cytoplasm, 
suggesting that some stylet secretions are injected directly into 
the cytoplasm of the feeding cells.17 In this regard, the nematode 
stylet may in some ways be considered as functionally analogous 
to the type II or type III secretion systems of pathogenic bacteria 
that inject directly effectors into host cells.18 However, the direct 
observation of nematode secretions in the plant cell cytoplasm 
is technically challenging due to the low quantity of nematode 
secreted proteins present in the enlarged feeding cells. In addi-
tion, the inability to transform plant parasitic nematodes makes 
it impossible to use reporter fusions to trace nematode secretions 
in vivo. However, several lines of evidence indicate that some 

stylet secretions are targeted to the plant cell cytoplasm, includ-
ing the heterologous expression in plants of effector-reporter 
fusion proteins or the identification of candidate plant targets 
that are localized in the cytoplasm. Of course, such indirect evi-
dence needs to be considered with circumspection. For example, 
protein overexpression might lead to accumulation of secretory 
material in the cytoplasm that does not reflect the actual destina-
tion of proteins secreted by the nematode. In addition, the yeast 
two hybrid systems generally used to identify effector targets 
are optimized for cytoplasmic proteins. However, much effort 
is put into to confirming these results using other tools such as 
protein-protein interaction assays in vitro or in planta and confir-
mation that the candidate target proteins are actually expressed 
in infected plant tissues. In the case of the Hs4F01 annexin-like 
effector from Heterodera schachtii, a proposed role for this effec-
tor in the cytoplasm was confirmed by the complementation of 
AnnAt1 Arabidopsis annexin mutants, showing that Hs4F01 is 
able mimic host annexin function in plant cells to regulate stress 
responses during infection.19 Several plant targets identified for 
nematode effectors and located in the cytoplasm are related to 
plant defense. The Hs10A06 effector of H. schachtii interacts with 
plant spermidine synthase in the cytoplasm in order to modu-
late salicylic acid signaling and antioxidant machinery, thereby 
modulating the plant cell defense response.20 The CN G. pallida 
and G. rostochiensis secrete so-called SPRYSEC proteins that con-
tain a SPRYmotif is their peptide sequence. Some of these effec-
tors are able to interact with plant NB-LRR-resistance proteins 
in the cytoplasm. For example, the effector SPRYSEC-19 of G. 
rostochiensis interacts with the LRR domain of SW5F, a member 
of the tomato SW5 gene cluster that contains several resistance 
genes to pathogens.21 Surprisingly, co-expression of SPRYSEC-19 
and SW5F in tobacco or tomato leaves did not trigger a defense-
related programmed cell death. Conversely, the SPRYSEC effec-
tor GpRBP1 from G. pallida induced programmed cell death 
when co-expressed with the CC-NB-LRR nematode resistance 
protein Gpa2 from potato in Nicotiana benthamiana leaves.22 The 
complexity of the interplay between SPRYSEC effectors and plant 
resistance genes was further highlighted when SPRYSEC-19 was 
shown to suppress Gpa2-GpRBP1 mediated programmed cell 
death.23 In some cases, the nematode effectors play a role in the 
cytoplasm in the region of the plasma membrane. Co-localization 
studies in vivo by bimolecular fluorescence complementation 
have shown that the effector Hs19C07, which is secreted by the 
CN H. schachtii, interacts with the transmembrane auxin influx 
transporter LAX3 at the plasma membrane,24 most probably to 
manipulate auxin influx and allow the differentiation of the feed-
ing cell as previously anticipated.25

Trafficking between Apoplasm and Cytoplasm

As afore mentioned, electron micrograph images suggest that the 
nematode is capable of secreting effectors directly into the host 
cytoplasm and show the stylet orifice in contact with the host 
plasma membrane, rather than being deeply inserted into the 
host cytoplasm. In addition, nematodes clearly access the cyto-
plasm during feeding. On the other hand, a number of nematode 
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effectors have been localized in the apoplasm of infected plants, 
raising the possibility that nematode effectors could be translo-
cated from the apoplasm to the cytoplasm of plant cells. Some 
pathogen effectors, notably effectors from oomycetes and fungi, 
are first secreted by the pathogen and subsequently translocated 
into the cytoplasm of infected cells.3 In oomycetes, translocation 
is mediated by conserved RXLR and LXLFLAK motifs, although 
the precise mechanism by which this occurs is still a matter of 
debate.26,27 In fungi, translocation motifs have been identified 
that show no conservation in sequence or structure.28 Yet, no 
functional evidence for the translocation of nematode effectors 
from the apoplasm to the cytoplasm has been found. A search 
for conserved motifs in nematode effectorsthat took into con-
sideration the physico-chemical properties of amino-acids identi-
fied several potential motifs that were discriminative of effectors 
as compared with secreted proteins unrelated to parasitism. The 
motif L L I I S and several variants with similar physico-chemical 
properties, including length variants, were highly represented 
in effectors but absent from control proteins.29 These motifs are 
located within the 30 first amino acids at the N-terminal of the 
proteins, but systematically absent from the signal peptides of 
control proteins. It is feasible that they could be related to effector 
secretion from the nematode and/or targeting to the final plant 
cell compartment.

Strikingly, several studies have shown the remarkable ability of 
some nematode effectors to traffic from the cytoplasm to the apo-
plasm. The CLE-like peptides secreted by the CN H. glycines share 
similarity with CLAVATA3 (CLV3)/ESR hormon peptides that 
control the fate of meristematic cells in plants. Several lines of evi-
dence including complementation and infection assays on plants 
deficient for CLE signaling have shown that the nematode CLE-
like effectors target plant receptors expressed in syncytia to mimic 
CLV3 signaling.30 During infection the CLE-like effectors are first 
introduced into the cytoplasm before being re-directed to the apo-
plasm. This secretion is independent of the plant cell ER secretory 
pathway and is mediated by a variable region of the protein imme-
diately upstream of the CLE domain.31 It has been suggested that 
the nematode CLE-like effectors interact with plant cell receptors 
to re-direct signaling pathways active in roots and trigger devel-
opmental cascades required for feeding cell differentiation.30 A 
second example of a nematode effector being re-directed from the 
cytoplasm to the apoplasm was provided by the nematode effector 
Hs CBP which is similar to Cellulose Binding Proteins (CBP) and 
targets the pectin methylesterase protein 3 (PME3) in Arabidopsis 
thaliana. However, it is not yet known whether PME3 can act as 
a carrier for Hs CBP in order to mediate its export from the host 
plant cytoplasm to the apoplast and the cell wall.9

Nucleus

Many in the plant-nematode community investigate subcellu-
lar localization of effectors using heterologous expression inside 
plant cells, particularly transient expression in the model plant 
N. benthamiana.32-34 The first direct evidence for nuclear target-
ing of a nematode effector was obtained by immunolocalization 
of effector Mi-EFF1 from M. incognita on sections of infected 

tomato roots.33 As is the case for other plant-pathogen interac-
tions, the targeting of plant cell nucleus by effectors suggests 
that manipulation of host transcription is an important strategy 
developed by the nematode to counteract plant defense responses. 
Plant nematodes will also need to induce changes in host gene 
expression in order to induce the formation of a feeding structure 
and nuclear effectors may be important for this process. Effectors 
may manipulate host transcription or may directly target essen-
tial nuclear host components for the benefit of the pathogen. For 
example, the RKN effector 16D10 has been shown to interact 
with putative SCARECROW transcription factors.35

Trafficking from Cytoplasm to Nucleus

Ten years ago, an ubiquitin extension protein (Hs-UBI1) was 
identified as a H. schachtii effector that is composed of an 
N-terminal signal peptide, a ubiquitin domain and a 22 aa 
C-terminal extension protein with no similarity to any known 
protein. Heterologous expression in tobacco cells suggested that 
after secretion from the dorsal esophageal gland of the nema-
tode and injection into the plant cell cytoplasm, the C-terminal 
domain was cleaved and targeted to the nucleolus.36 More 
recently, it was shown by immunolocalization that a ubiquitin 
carboxyl extension protein (GrUBCEP12) is similarly secreted 
from the dorsal esophageal gland in G. rostochiensis.37 Transient 
expression studies in N.benthamiana leaves showed that the 
effector is processed in the cytoplasm into free ubiquitin and a 
12 aa CEP12 peptide. Fusion constructs that carried the CEP12 
peptide were localized in the cytoplasm and in the nucleus of 
transfected plant cells. Interestingly, additional functional assays 
in planta showed that the ubiquitin domain of GrUBCEP12 
seemed to control the 26S proteasome activity by regulating the 
expression of a 26S subunit whereas GrCEP12 suppressed plant 
cell death triggered by the Gpa2/RBP-1 and Rx2/CP resistance/
avirulence proteins.37 The mode of action of the CEP12 peptide 
and whether it has any activity in the nucleus, are still to be 
determined. Another CN effector, Hs32E03, is located in the 
nucleus following transient expression in plant cells.32 Studies are 
underway to identify candidate targets for this effector and these 
suggest that the effector binds to a cytoplasmic protein before 
trafficking to the nucleus.9

Conclusions

Expanding information on the identification and functional anal-
ysis of nematode effectors have shown a wide variety of proteins 
secreted and the variety of their plant targets. It is now widely 
accepted that nematode effectors, in particular stylet secretions, 
play key roles in the manipulation of plant physiology that allow 
the nematode to get the most from its host. To promote parasite 
development, these effectors may participate in the formation 
of feeding structures and the suppression of plant defenses. The 
diversity in nematode effector functions is highlighted by the 
diversity of their destination sub-cellular compartments in plant 
cells (sum-up in Fig. 1). These findings have raised new appeal-
ing questions, such as understanding how nematode effectors 
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transit between plant cell compartments to reach their respective 
targets and succeed in fine tuningof plant physiology networks.
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Figure 1. Nematode effectors are targeted to a variety of plant cell compartments. Effectors secreted in 
the apoplasm have been identified that are involved in plant cell wall disruption during root invasion, 
increased virulence or increased plant susceptibility. Effectors injected into the cytoplasm (2) have a vari-
ety of plant targets (3), including trans-membrane proteins (4). They can be directed to the nucleus (5), 
or the apoplasm (6).Whether some effectors are re-directed to the plant wall is still to be determined (7).
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