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Classical flux balance analysis pre-
dicts steady-state flux distributions 

that maximize a given objective func-
tion. A recent study, Schuetz et al.,1 
demonstrated that competing objectives 
constrain the metabolic fluxes in E. coli. 
For plants, with multiple cell types, ful-
filling different functions, the objectives 
remain elusive and, therefore, hinder the 
prediction of actual fluxes, particularly 
for changing environments. In our study, 
we presented a novel approach to predict 
flux capacities for a large collection of 
metabolic pathways under eight different 
temperature and light conditions.2 By 
integrating time-series transcriptomics 
data to constrain the flux boundaries of 
the metabolic model, we captured the 
time- and condition-specific state of the 
network. Although based on a single 
time-series experiment, the comparison 
of these capacities to a novel null model 
for transcript distribution allowed us to 
define a measure for differential behavior 
that accounts for the underlying network 
structure and the complex interplay of 
metabolic pathways.

Genome-scale models of photosynthetic 
organisms have increased in quality and 
coverage of processes to include light 
usage and secondary metabolism.3,4 These 
advances pave the way for applications to 
aid crop breeding and plant metabolic 
engineering. In a recent study, we pre-
sented a constraint-based optimization 
approach that integrates transcriptomics 
time-series data to elucidate pathways 
involved in abiotic stress responses.2 Here, 
we present the difference of this approach 
to the classical analysis of differential gene 
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expression, elaborate on the presented 
concepts of metabolic sustainer and met-
abolic modulator, and provide further 
insights on the proposed optimality indi-
ces. Finally, we discuss the implications 
of the proposed quantities in discerning 
design principles of metabolic networks.

The classical analysis of differential 
gene expression tests for difference in tran-
script abundances with respect to a chosen 
reference state, usually under ambient 
conditions.5 Yet, this reference state does 
not necessarily reflect the transcriptional 
state encountered in plants in a natural 
environment, where biotic and abiotic 
stress factors shape the plants’ cellular 
state. Therefore, the question arises: Can 
this selected reference state be regarded 
as “normal?” By introducing a novel null 
model for transcript allocation/distribu-
tion, we used a theoretical, yet unbiased 
reference state to elicit differential behav-
ior in the context of a given genome-scale 
metabolic model.

We determine differential behavior on 
the pathway level by characterizing flux 
capacities of selected sets of reactions, 
so-called metabolic functions. These 
flux capacities describe the maximum 
flux thought a pathway in dependence 
of the transcript-based flux boundaries 
and were further analyzed with respect 
to the null model for transcript distribu-
tion. Under the null model, we then pre-
dicted maximum fluxes that are expected 
to arise by chance, while accounting for 
the underlying network structure and 
overall transcript abundance. The result-
ing null distribution of flux capacities 
allowed determining z-scores for every 
metabolic function. In such a way, the 
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through a pathway under consideration is 
affected by the state of the remaining net-
work. For instance, if a metabolic function 
of interest has large dependency on the 
network, an overexpression of the involved 
genes is expected to show little molecu-
lar phenotypic difference, meaning little 
increase in the flux through the respec-
tive reactions. The priority index can be 
used for ranking of candidates for meta-
bolic engineering strategies to improve the 
plants performance under abiotic stresses. 
Further investigations could aim at deter-
mining if overexpression of pathways of 
highest priorities under a given conditions 
lead to a more efficient adjustment to the 
adverse condition. This could be tested by 
monitoring several factors, such as sur-
vival or growth rate. Finally, the efficiency 
index can be used to point at a relation 
between the differential regulation of cer-
tain genes and its ultimate impact on the 
flux through the respective pathway.

A striking example for the different 
aspects of optimality included the methio-
nine degradation functions at 32° and 
darkness. While we observed a constant 
increase in priority of those two metabolic 
functions, they showed a decreasing effi-
ciency, indicating that the reallocation 
of the transcriptional setup could not be 
used to its full efficiency. It should be 

indicates an increased pathway usage to 
cope with the adverse condition. Typical 
modulators are the pathways involved in 
auxin biosynthesis, which are downregu-
lated in all but 21/32° and darkness. It is 
well-known that auxin triggers stretch-
ing growth to reach possible light sources 
under light-limited conditions.7

It is interesting to see that each con-
sidered pathway exclusively falls into one 
of two classes: A metabolic function that 
serves as a sustainer of the metabolic state 
in one condition and is not classified as a 
modulator in another. It still remains to be 
elucidated if this behavior it typical only 
for light and temperature variations or if 
it persists even over a larger range of envi-
ronmental conditions.

Further insight into network organi-
zation is given by the proposed optimal-
ity indices. Metabolic control analysis8 
has already shown that control of fluxes 
is distributed among the enzymes of the 
network rather than a distinct feature 
of a single pathway component. Yet, the 
approaches applicability is limited to 
small, well-investigated pathways, since it 
relies on the knowledge of kinetic parame-
ters and maximal enzyme activities. Here, 
the introduced dependency index accounts 
for the large-scale network structure, by 
determining the extent to which the flux 

model allowed us to investigate data from 
single time-series experiments. Given 
multiple conditions, we focused on the 
metabolic functions that were found dif-
ferential in at least one, but not all con-
sidered conditions. The later comparison 
was performed under the assumption that 
a pathway that shows differential behavior 
in all or none of the considered conditions 
does not have the potential of providing 
condition-specific information.

Based on the null distributions of flux 
capacities and the resulting z-scores, we 
defined two classes of pathways, as illus-
trated in Figure 1. Sustainers, i.e., differ-
entially up-regulated metabolic functions, 
show increased flux capacities in compari-
son to the null model. Since they do not 
carry a large flux under all considered con-
ditions they are not part of the “high-flux 
backbone.”6 In contrast, modulators, i.e., 
differentially down-regulated metabolic 
functions, exhibit decreased flux capacity 
in comparison to the null model. Their 
down-regulation under certain conditions 
is likely related to regulatory processes 
downstream of the pathway. A prominent 
example for a sustainer is the photorespi-
ration pathway. In combinations of ambi-
ent or high-temperature and ambient 
light or low-light/darkness, the metabolic 
function shows differential behavior and 

Figure 1. Schematic representation of the concept of metabolic modulators and metabolic sustainers. Shown is a metabolic function in its pathway 
context. It consists of 3 reactions with upper flux boundaries constrained by the transcript data. The red arrow denotes the respective flux capac-
ity through the metabolic function. (Left) if the flux capacity has a z-score above 2 with respect to the distribution of the null model, the pathway is 
termed sustainer. (Right) if the flux capacity has an average z-score below −2 with respect to the distribution of the null model, the pathway is termed 
modulator.
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tested in future experiments if pathways 
with a high priority and low dependency 
and/or high efficiency are more suscep-
tible to metabolic engineering strategies 
that those with a high dependency and/or 
low efficiency.

To conclude, the presented approach 
gives novel insights into network orga-
nization and temporal pathway usage. 
Identifying metabolic functions that are 
involved in acclimation and their char-
acteristics with respect to the optimality 
indices may serve as a useful tool in meta-
bolic engineering.
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