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Mini-Review

The plant cell wall, a dynamic network of polysaccharides and 
glycoproteins of significant compositional and structural com-
plexity, functions in plant growth, development and stress 
responses. In recent years, the existence of plant cell wall integ-
rity (CWI) maintenance mechanisms has been demonstrated, 
but little is known about the signaling pathways involved, or 
their components. Examination of key mutants has shed light 
on the relationships between cell wall remodeling and plant 
cell responses, indicating a central role for the regulatory net-
work that monitors and controls cell wall performance and 
integrity. In this review, we present a short overview of cell wall 
composition and discuss post-synthetic cell wall modification 
as a valuable approach for studying CWI perception and sig-
naling pathways.
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Plant Cell Wall Composition and Functions

The plant cell wall is a unique, complex molecular network of 
different polysaccharides with a composition and structure 
that differs between plant species and can be modified during 
plant development and in response to stress.1 The flexible and 
expandable primary cell wall consists of cellulosic microfibrils 
(1,4-β-D-glucan), hemicellulosic polysaccharides such as β-(1-
3,1-4)-glucan, xyloglucan (XG), xylans, mannans and pectic 
polysaccharides such as homogalacturonan (HG), xylogalac-
turonan (XGA) and rhamnogalacturonans I and II (RGI and 
RGII).2,3 In addition, the primary wall contains different types of 
glycoproteins.4 In contrast to the primary cell wall, the second-
ary cell wall contains strengthening cross-linked racemic lignin 
macromolecules and lower amounts of pectins and xyloglucan.5 
Most plant cell wall polymers, except cellulose and some glucans, 
can be substituted with acetyl groups6 and HG and glucuronox-
ylan can also be methyl-esterified.7,8

The modern view of the plant cell wall is of a dynamic extra-
cellular complex that responds to external or internal cellular 
signals and forms a continuum with the plasma membrane and 
cytoskeleton.9 In addition to well established cell wall functions 
in maintaining and determining cell shape,10,11 resisting inter-
nal turgor pressure,12 controlling and directing cell and plant 
growth,13 contributing to plant morphology14 and regulating 
diffusion through the apoplast, the cell wall also has recently 
revealed signaling functions. In particular, mechanisms involved 
in cell to cell communication,15 cell wall integrity (CWI) main-
tenance,16-18 as well as perception and signaling in plant develop-
ment and defense,19-23 have attracted significant interest.

Expression of Cell Wall Enzymes or Their  
Inhibitors Cause Post-Synthetic Cell Wall  

Modifications that Affect Plant 
Growth and Development

Plant cell wall polysaccharide metabolism is regulated by the bal-
ance between biosynthesis and degradation; a shift in this bal-
ance can lead to dramatic changes in cell wall structure, function 
and, consequently, in plant growth.16 More than 2,000 genes are 
predicted to be involved in these processes.24,25 Although signifi-
cant progress has been made in functional characterization of 
these genes, using forward and reverse genetics,26-30 these studies 
are far from complete.

CWI can be affected either by manipulation of biosynthetic 
pathways or through post-synthetic modification of cell wall 
structure or composition. When biosynthesis of polysaccharides 
is disrupted by knocking down or mutating synthetic enzymes, 
plants react to this modification by activating compensatory 
mechanisms leading to the alteration of other cell wall compo-
nents. For example, some mutations in cellulose synthase encod-
ing genes (CesA) lead to increased lignin production31,32 or cause 
embryo-lethality.33-35 Mutations in pectin-related genes cause a 
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dwarf phenotype and affect cellular adhesion.36 Reduction of 
fucose in arabinogalactan, a cell wall specific protein, affected 
root cell elongation.37

Plants themselves express a broad variety of cell wall modi-
fying enzymes (CWMEs) in the apoplast to maintain proper 
wall plasticity and flexibility and to assist in wall remodeling 
and degradation during growth and development.38 In addi-
tion, CWMEs produced by microorganisms during host inva-
sion cause cell wall modifications that can initiate plant defense 
responses. Thus, heterologous expression of CWMEs can lead to 
a broad range of effects that could potentially mimic the plant’s 
responses to endogenous or external CWMEs.

For example, targeted modification of pectin structure and 
integrity by the overexpression of pectin modifying enzymes can 
provide insight into the role of different pectic polysaccharides in 
plant growth. Expression of rhamnogalacturonan lyase (eRGL) 
from Aspergillus aculeatus in potato plants resulted in a degrada-
tion of the RGI backbone and a decrease in both galactan and 
arabinan side-chains, leading to wrinkled tubers.39 The specific 
removal of RGI arabinan side-chains resulting from the expres-
sion in the apoplast of an endo-1,5-α-arabinanase of A. aculeatus 
caused the transgenic potato plants to have severe phenotypic 
changes including the inability to produce tubers.40 By contrast, 
the overexpression of a fungal (A. aculeatus) endo-galactanase in 
potato caused a reduction of galactan side-chains of RGI with a 
compensatory increase of uronic acids, without affecting tuber 
development.41 Although RGI galactan and arabinan side-chains 
have an, as yet unclear, role in planta, the RGI backbone must 
play an important role in the integrity and function of the cell 
wall, since its degradation by expression of hydrolases results in 
morphological changes.

Overexpression of an endopolygalacturonase (AnPGII) of 
Aspergillus niger in tobacco caused a significant reduction of 
pectic homogalacturonan partially compensated by an increase 
in rhamnose, galactose and arabinose in RGI; the resulting trans-
genic tobacco lines are drastically dwarfed,42 indicating homoga-
lacturonan integrity is a critical factor in plant growth.

Acetyl content depends on the plant organ and developmen-
tal stage43 and acetylation of plant cell wall polysaccharides also 
plays an important role in plant development. De-acetylation of 
pectins resulting from overexpression of mung bean acetylester-
ase in potato increased the mechanical strength of tubers due to 
a decrease in pectin-related cell wall elasticity. In these plants, 
the altered pectin acetylation can affect the interaction between 
pectin and cellulose chains.44 The overexpression of pectin acety-
lesterase 1 (PtPAE1) from cottonwood (Populus trichocarpa) in 
tobacco resulted in a reduction in acetyl groups of pectin but 
not in xylan and affected cell expansion and plant organ growth 
direction as well as altered pollen germination and, consequently, 
plant reproduction.45 In addition, expression of genes involved in 
cell wall acetylation was shown to be associated with secondary 
wall thickening.46

Methylation of cell wall polysaccharides can be involved in 
growth regulation and polysaccharide accessibility to glyco-
syl hydrolases.47,48 Arabidopsis plants overexpressing the endog-
enous PME3 exhibited a dramatic increase in PME activity and 

significantly longer roots; a pme3 knockout mutant showed the 
opposite phenotype.49 In aspen trees (Populus tremula ssp. trem-
uloides), upregulation of PtPME1 inhibited the apical elonga-
tion of wood fibers.50 In addition to transcriptional control, PME 
activity is regulated by endogenous inhibitor proteins (PMEIs), 
which were discovered in kiwi fruit and subsequently identified in 
Arabidopsis, pepper, broccoli, wheat and tomato.51-59 PMEIs func-
tion in apical meristem development, cell growth acceleration 
and pollen tube growth.47,53,54,60 Also, overexpression of AtPMEI 
in Arabidopsis significantly increases the level of pectin methyes-
terification and improves leaf and root growth.61,62 Methylation of 
xylan alters lignin structure but does not affects plant growth and 
wall degradability by cellulases.8,63

Post-Synthetic Modifications of the Cell Wall 
Affect CWI and Plant Disease Resistance

Pathogenesis involves plant cell wall alteration by CWMEs 
targeted to wall polysaccharides. It is well established that the 
plant susceptibility to pathogens depends on the cell wall com-
position and structure, which determine its recalcitrance to deg-
radation by CWMEs produced by pathogens.64 Moreover, plants 
have evolved the ability to sense cell wall damage and trigger 
defense responses leading to an improved resistance to disease.65 

Therefore, expression of endogenous or microbial CWMEs and 
their inhibitors in planta represents a useful tool to improve plant 
resistance to pathogens and to investigate the role of altered 
structure and integrity of wall polysaccharides in plant-pathogen 
interactions.

The manipulation of cell wall biosynthetic pathways or 
post-synthetic modifications of cell wall structure or composi-
tion can affect the defense against pathogens. For example, 
some Arabidopsis mutants in cell wall biosynthetic genes are 
affected in resistance to pathogens.66-68 Cel2, a putative β-1,4-
endoglucanase, which targets cellulose or hemi-cellulose, makes 
plants more susceptible to Botrytis cinerea when overexpressed 
in ripening inhibited tomato mutants, suggesting a role for cellu-
lose/hemicellulose integrity in plant susceptibility to pathogens.69 
Cellodextrins are the end products of cellulose degradation in 
plant cell walls.  Cellodextrins with a degree of polymerization ³ 
7 induce defense responses in grapevine,70 consistent with results 
indicating that cellulase from Tricoderma viride can release cel-
lodextrins which induce plant defenses.71

Depolymerization of xyloglucan has been proposed to play 
an important role during both cell wall expansion and pathogen 
invasion.72-74 Endo-β-1,4-xylanases are key enzymes in the deg-
radation of xylans and a number of endoxylanases are produced 
by microbial pathogens to break through the plant cell wall. Rice 
plants expressing a thermostable exogenous xylanase gene (ATX) 
exhibited upregulation of SOD, CAT and xylanase inhibitor 
(RIXI) genes, which could play roles in plant defense.75

Acetylation of cell wall polysaccharides affects plant responses 
to invading pathogens. For example, the Arabidopsis reduced wall 
acetylation 2 (rwa2) mutant exhibited reduced cell wall acetyla-
tion and increased resistance to the necrotrophic fungal patho-
gen Botrytis cinerea.76 Arabidopsis and Brachypodium plants 
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expressing a fungal Aspergillus nidulans acetylesterase (AnAXE) 
had reduced cell wall acetylation and increased resistance to B. 
cinerea and Bipolaris sorokiniana.19 Interestingly, the resistance 
to pathogens in dicot and monocot AnAXE-expressing plants 
was mediated by the activation of different defense responses 
indicating that different plants perceive reduced cell wall acetyla-
tion, but exploit different defense signaling pathways to respond 
to necrotrophic pathogens.19 For protection against invading 
pathogens, plants have evolved a surveillance system based on 
proteinaceous inhibitors of microbial CWMEs. To counteract 
hemicellulose degradation by microbial hemicellulases, plants 
produce inhibitors such as the Triticum aestivum xylanase inhib-
itor (TAXI), xylanase inhibitor protein (XIP) and xyloglucan 
endoglucanase inhibiting protein (XEGIP).58,77 These endog-
enous inhibitors, induced during pathogen infection, play a role 
in the inhibition of enzymes produced by microorganisms.58 The 
transient overexpression of pepper CaXEGIP1 in Arabidopsis, 
pepper and Nicotiana benthamiana leaves, triggered pathogen-
independent, spontaneous cell death.78 Transient overexpression 
of CaXEGIP1 in Arabidopsis enhanced resistance to biotro-
phic downy mildew pathogen Hyaloperonospora arabidopsidis. 
Comparative histochemical and proteomic analyses revealed that 
CaXEGIP1 overexpression induced defense-related genes as well 
as cell wall thickening and darkening. Together, these results 
suggest that pathogen-inducible CaXEGIP1 positively regulates 
cell death-mediated defense responses and resistance to patho-
gens in plants.78

Pectin is one of the first structures to be altered during patho-
gen invasion and accumulating evidence indicates that post-syn-
thetic alteration of pectic polysaccharides affects plant resistance 
to pathogen.79,80 Pectin degradation requires the combined action 
of several pectinases, of which the most extensively studied in 
terms of pathogen attack are the polygalacturonases (PGs). The 
expression of an attenuated version of endopolygalacturonase 
II from Aspergillus niger (AnPGII) in tobacco and Arabidopsis 
caused a reduction of galacturonic acid content due to HG break-
down and improved plant resistance to the fungal and bacte-
rial pathogens B. cinerea and Pseudomonas syringae.42,81 It was 
proposed that Arabidopsis and tobacco overexpressing microbial 
AnPGII accumulate oligogalacturonide (OG) fragments, which 
serve as damage associated molecular patterns (DAMPs) acting 
in signaling the presence of cell wall damage caused by pathogens 
and leading to induction of disease resistance. Consistent with 
this hypothesis, PG-expressing plants showed enhanced constitu-
tive defense responses, such as accumulation of UV-fluorescent 
metabolites, H2O2, β-1,3-glucanase and peroxidase and expres-
sion of defense-related genes.81 The size of OGs (usually between 
10 and 15 glycosides) and their degree of methyl- and acetyles-
terification are important features for their ability to trigger plant 
defense responses. The de-esterification of OGs by overexpres-
sion of a fruit-specific PME in wild strawberry was required to 
elicit defense-related gene expression and induce plant resistance 
to B. cinerea.82,83 Consistent with this, chemical methylesterifica-
tion of OGs greatly diminishes their ability to elicit biological 
responses.84,85 Treatment with OGs can protect wheat, a grass 
species with low pectin contents, against Blumeria graminis. 

Also, partially acetylated OGs are more efficient elicitors and 
induce additional defense responses, such as the increased accu-
mulation of phenolic autofluorescent compounds in papillae 
and a decreased formation of haustoria during fungal pathogen 
infection.86 The degree of methylesterification and acetylation 
of homogalacturonan is different in various plant species and is 
regulated during development. Therefore, PGs expressed in dif-
ferent plants could release OGs with different degrees of methy-
lesterification and acetylation capable of eliciting diverse specific 
biological responses.87

The loss of cell wall integrity can result in the activation of 
cell wall strengthening mechanisms. Potato tubers expressing an 
Erwinia carotovora pectate lyase exhibited increased resistance 
to Erwinia soft rot and increased phenol oxidase activity. These 
responses may be induced by active unesterified OG fragments, 
indicating a possible role of phenol biosynthesis and oxidation in 
the reinforcement of the cell wall against pathogens.88

Esterification of pectic polysaccharides can also affect their 
susceptibility to degradation by microbial enzymes.89,90 Genetic 
and molecular evidence indicates a critical role of pectin methy-
lesterification and acetylation in plant defense against pathogens. 
The expression of inhibitors of pectin methylesterase (PMEI), 
affecting the activity of endogenous PMEs, has been used as a 
strategy to increase the level of methylesterification in the cell 
wall. In Arabidopsis, the overexpression of AtPMEI-1 or AtPMEI-2 
causes increased post-synthetic pectin methylesterification and 
decreased susceptibility to B. cinerea and Pectobacterium caro-
tovorum.62,91 This strategy was effective also in wheat, where the 
ectopic expression of AcPMEI from kiwi reduced the susceptibil-
ity to Fusarium graminearum and B. sorokiniana. Interestingly, 
PMEI-expressing plants did not show induction of defense 
responses and their reduced susceptibility was due to the higher 
resistance of pectins to microbial hydrolases and to the reduced 
pathogen growth on highly methylated cell walls. The overex-
pression of different PMEI isoforms can affect plant-pathogen 
interactions through different mechanisms. For example, over-
expression of pepper CaPMEI1 in Arabidopsis improved plant 
resistance to P. syringae possibly due to the antimicrobial activity 
of the protein and the activation of the salicylic acid pathway, 
although a possible contribution of altered cell wall esterifica-
tion has not been excluded.52 Moreover, CaPMEI overexpressing 
plants exhibited higher drought and oxidative stress tolerance.52

Pectin acetylation can also affect plant resistance against 
invading pathogens. Recent work demonstrated that reduc-
tion of pectin acetylation increased Arabidopsis resistance to 
microbial pathogens.19,76 Arabidopsis plants expressing rhamno-
galacturonan acetylesterase from A. nidulans (AnRAE) exhib-
ited reduced pectin and xyloglucan acetylation and increased 
resistance to B. cinerea mediated by the activation of defense 
responses such as callose deposition, H2O2 accumulation and 
activation of defense-related genes.19 Since responses observed in 
these transgenic plants were similar to those usually induced by 
OGs, it was proposed that increased susceptibility of deacetylated 
pectin to endogenous and microbial PGs favors the accumula-
tion of active OGs eliciting constitutive and pathogen-induced 
defense responses. Polygalacturonase-inhibiting proteins (PGIPs) 
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produced by plants are the best-characterized inhibitors of micro-
bial pectic enzymes. PGIPs play a double function in protecting 
plants: they hinder pectin degradation by inhibiting microbial 
PG activities and also favor the accumulation of elicitor-active 
OGs.80,92,93 The expression of PGIPs reduced susceptibility to 
B. cinerea in Arabidopsis, tomato and grape and induced higher 
resistance to F. graminearum in wheat.21,94-96

Pectin lyases are produced by pathogenic bacteria and fungi to 
catalyze the β-elimination cleavage of methylesterified homoga-
lacturonan. A cell wall pectin lyase inhibitor protein that inhibits 
a pectin lyase from Rhizoctonia solani was identified in sugar 
beet.97 The level of expression of the inhibitor protein correlated 
with plant resistance to the pathogen but details on the inhibitor 
structure, its spatial and temporal regulation and its occurrence 
in plants were not reported.

A common plant response to fungal attack is the deposition of 
callose, a (1,3)-β-glucan polymer, at the sites of pathogen penetra-
tion. The role of callose in plant defense is believed to be depen-
dent on the infection strategy of the pathogen. Higher callose 
accumulation contributes to resistance against nectrophic fungal 
pathogens, but the role of callose in resistance against biotro-
phic pathogens is controversial.98,99 However, emerging evidence 
support the active role of callose synthesis in plant resistance to 
biotrophic microbial pathogens. Transgenic Arabidopsis plants 
expressing POWDERY MILDEW RESISTANT 4 (PMR4), 
which encodes a stress-induced callose synthase, showed a higher 
callose synthase activity and increased early callose deposition 
at the sites of pathogen penetration, resulting in prevention of 
haustoria formation and complete resistance to penetration by 
powdery mildews Golovinomyces cichoracearum and Blumeria 
graminis.100 PMR4 overexpressing leaf tissues showed altera-
tions in cell wall composition, decreases in fucose and galactose 
and an increase in glucose, which are not directly related to cal-
lose synthesis. The localized callose synthesis was proposed to 
be required for an early structural reinforcement of the cell wall 
supporting complete resistance to the fungal pathogens.

Cell Wall Integrity Perception

The modification of cell wall composition affects plant develop-
ment and responses to pathogens by two possible mechanisms: 
through changes in mechanistic properties and through initia-
tion of signaling pathways. For example, changes of sugar con-
tent in the plant cell can be sensed through hexokinases, which 
modify responsive gene expression.101-103 The concept of biologi-
cally active oligosaccharides, termed oligosaccharins, was first 
proposed by Albersheim and colleagues,3 and numerous stud-
ies have demonstrated a diversity of oligosaccharin structure and 
functionality, as described in several comprehensive reviews.104-106

The plant cell wall contains a large number of constitu-
ents that could potentially release signals recognizable by spe-
cific receptors. During pathogen attack, Damage Associated 
Molecular Patterns (DAMPs) have been described to function 
as such signals and the number of possible DAMPs is most 
likely large.107 Similarly, remodeling of cell walls in response 
to abiotic stresses such as drought and cold is also believed to 

be a source of oligosaccharins released during these processes, 
thus mediating transduction of signals between cell wall and 
cytoplasm.108,109

Changes in cell wall mechanical properties can also be involved 
in stress responses; this was strongly evidenced by demonstration 
of the relationship between cytoskeleton orientation and cellulose 
deposition.110 During water stress, microtubules are eliminated 
by proteolytic degradation (Wang et al., 2011) followed by cellu-
lose microfibril re-organization and activation of phospholipase-
D dependent signaling during osmotic adaptation.111-113

Release of DAMPs and CWI modifications can be per-
ceived by membrane receptors, communicated by trans-mem-
brane channels and can trigger internal cell signaling cascades 
to activate appropriate response genes. Thus, the large fam-
ily of receptor like kinases (RLKs), arabinogalactan proteins, 
the Mitogen-Activated Protein Kinase (MAPK) pathway and 
the Target of Rapamycin (TOR) pathway have been suggested 

Figure  1. Cell wall integrity signaling components mediate cellular 
responses upon pathogen attack. Pathogen invasion can be limited by 
a cell wall structure and composition that is resistant to degradation 
by cell wall modifying enzymes (CWMEs). Pathogens can be detected 
by the presence of cell wall fragments (i.e., oligogalacturonides; OGs) 
generated by CWMEs; these fragments can function as DAMPs and are 
perceived by Wall Associated Kinases (WAKs), Receptor Like Kinases 
(RLKs) and Plasma Membrane (PM) sensors. Downstream signaling 
pathways mediate defense responses (MAPKs, TOR, oxidative burst, 
hormone mediated pathways of Pathogen Related (PR), CW repair 
and peroxidases genes, PAL, phytoalexins activation and/or cell wall 
structural rearrangements such as cell wall repair (PMR4-mediated 
callose deposition) or cell wall reinforcement (lignin) and de novo 
synthesis of defensive compounds such as defense proteins including 
CWME inhibitors (PGIPs, XIP, XEGIP, PMEI).
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to be potential components of CWI perception mechanisms 
(Fig.  1).9,17,24 The MAPK pathway activates or suppresses gene 
expression via phosphorylation of appropriate transcription fac-
tors or receptors.24,114 Oligogalacturonides (OGs) released from 
pectins by microbial polygalacturonase elicit signals involved in 
plant innate immunity.115 OGs serve as DAMPs and are perceived 
by Wall Associated Kinase-like proteins, which have high affin-
ity to pectin and may act as pectin integrity sensors.18,116-118 RLKs 
belonging to the Catharanthus roseus (CrRLK)-like protein fam-
ily were implicated in CWI signaling mechanisms. Among these 
are THESEUS1 (THE1), HERCULES1 and FERONIA, which 
have been implicated in brassinosteroid-induced cell elonga-
tion.119,120 The THE1 plasma-membrane receptor-like kinase has 
been proposed to mediate the response of plant cells to pertur-
bations in cellulose content and may act as a cell-wall-integrity 
sensor.32 THE1 is also required for induction of ROS production 
and ectopic lignification in Arabidopsis roots in response to inhi-
bition of cellulose biosynthesis.28 Some RLKs have a lectin-like 
extracellular domain. Lectin receptor kinases may bind cell wall 
polysaccharides by mediating structural continuity between cell 
wall and membrane and sensing changes in integrity of the cell 
wall after pathogen attack.32,121

Recently, Wolf et al. proposed that brassinosteroid feedback 
signaling is part of a compensatory response that is activated to 
protect the plant against the loss of CWI caused by imbalanced 
pectin modifications.24 Another example is G-proteins that form 
highly conserved signaling complexes and participate in signal 
transduction during development and stress responses.122,123 TOR 
kinase is essential for Arabidopsis development and TOR path-
ways are involved in regulating cell wall development.124-127 In 
addition, arabinogalactan proteins, COBRA and extensin-like 
receptor kinases are examples of GPI-containing proteins that 
are attached to the plasma membrane and implicated in con-
necting intracellular and extracellular space, thus affecting cell 
wall development.17 These transmembrane receptor proteins are 
good candidates for transducing signals from the extracellular 
space to the cytoplasm. The high diversity of cell wall structural 
components and large numbers of potential receptors and trans-
ducers suggest the significant complexity of plant CWI mainte-
nance and signaling mechanisms, many of which have yet to be 
uncovered.

Outlook

The plant cell wall is a dynamic and highly complex structure, 
consisting of interdependent networks that constantly change 
during development and in response to environmental cues. 
Plant cells monitor the status of their cell walls with various types 
of sensors and receptors at the plasma membrane, some of which 
may interact with cell wall components, to coordinate mechani-
cal deformations or changes in cell wall structure and cellular 

responses. Although a number of plant responses to cell wall 
damage or modification have been described and the existence of 
CWI maintenance mechanisms in plants is indubitable, detailed 
transduction pathways involved in CWI signaling via a signal 
and receptor, leading to a specific output, are yet to be revealed. 
Most evidence about CWI signaling in plants comes from 
mutant studies where biosynthesis of various cell wall compo-
nents was compromised, causing wall structural damage or rear-
rangement. Post-synthetic modification of cell wall components 
via their partial remodeling by overexpressed cell wall modifying 
enzymes/inhibitors is another powerful approach to investigate 
CWI signaling mechanisms. Fine structural remodeling of par-
ticular polysaccharides via side chain cleavage, de-esterification 
or partial depolymerization leads to the initiation of specific sig-
naling pathways related to these particular modifications. This 
approach can assist in revealing putative components of signal-
ing pathways initiated in response to such highly specific cell 
wall modifications and thus allow us to dissect otherwise highly 
complex cell responses that occur during plant development or 
defense responses. Because of plant broad adaptability and cell 
wall complexity, we expect that the near future holds significant 
discoveries of many new receptors, signal transduction compo-
nents and transcriptional regulators involved in cell wall-sensing 
mechanisms and post-synthetic wall modifications.

Post-synthetic cell wall modifications will also find wide 
application in crop biotechnology and in bioenergy biomass 
feedstock improvement. Remodeling of particular cell wall com-
ponents directed toward increasing digestibility can improve 
biomass saccharification during biofuel production, reduc-
ing costs. However, such modifications can also have differ-
ent effects on plant growth and stress tolerance. Modifications 
that compromise cell wall mechanical properties can reduce 
plant resistance to biotic stresses, but other modifications can 
have the opposite effect by initiating defense mechanisms. 
Therefore, such modifications require an informed approach to 
be effective for feedstock improvement. Further detailed stud-
ies of post-synthetic modification by overexpression of cell wall 
modifying enzymes and their effects on plant responses will 
significantly contribute to improvement of crop productivity 
and sustainability.
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