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Novel ferrocenyl derivatives exert anti-cancer effect 
in human lung cancer cells in vitro via inducing G1-
phase arrest and senescence
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Aim: To investigate the effects of 7 novel 1-ferrocenyl-2-(5-phenyl-1H-1,2,4-triazol-3-ylthio) ethanone derivatives on human lung cancer 
cells in vitro and to determine the mechanisms of action. 
Methods: A549 human lung cancer cells were examined.  Cell viability was analyzed with MTT assay.  Cell apoptosis and senescence 
were examined using Hoechst 33258 and senescence-associated-β-galactosidase (SA-β-gal) staining, respectively.  LDH release was 
measured using a detection kit.  Cell cycle was analyzed using a flow cytometer.  Intracellular ROS level was measured with the 2′,7′-
dichlorodihydrofluorescein probe.  Phosphorylation of p38 was determined using Western blot.
Results: Compounds 5b, 5d, and 5e (40 and 80 µmol/L) caused significant decrease of A549 cell viability, while other 4 compounds 
had no effect on the cells.  Compounds 5b, 5d, and 5e (80 µmol/L) induced G1-phase arrest (increased the G1 population by 22.6%, 
24.23%, and 26.53%, respectively), and markedly increased SA-β-gal-positive cells.  However, the compounds did not cause nuclear 
DNA fragmentation and chromatin condensation in A549 cells.  Nor did they affect the release of LDH from the cells.  The compounds 
significantly elevated the intracellular ROS level, decreased the mitochondrial membrane potential, and increased p38 phosphoryla-
tion in the cells.  In the presence of the antioxidant and free radical scavenger N-acetyl-L-cysteine (10 mmol/L), above effects of com-
pounds 5b, 5d, and 5e were abolished.
Conclusion: The compounds 5b, 5d, and 5e cause neither apoptosis nor necrosis of A549 cells, but exert anti-cancer effect via induc-
ing G1-phase arrest and senescence through ROS/p38 MAP-kinase pathway.
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Introduction
Lung cancer is not only one of the most common malignant 
human tumors but also a leading cause of death worldwide[1].  
There are two major types of lung cancer, small cell lung can-
cer (SCLC) and non-small cell lung cancer (NSCLC).  Accord-
ing to American Cancer Society (ACS) statistics, NSCLC 
accounts for approximately 85% to 90% of lung cancer cases.  
NSCLC consists of three subtypes, squamous cell carcinoma, 
adenocarcinoma and large-cell carcinoma; however, approxi-
mately 40% of lung cancers are adenocarcinomas.  A549 is a 

lung adenocarcinoma cell line that has been well characterized 
and is frequently used for molecular cancer biology research.  
Uncontrolled proliferation is a key feature of cancer cells, and 
therefore, inhibition of proliferative pathways is an effective 
approach for cancer therapy[2–4].  

1,2,4-Triazoles and their condensed derivatives have been 
investigated due to their wide range of bioactivities, including 
antimicrobial[5–8], analgesic-anti-inflammatory[9], antifungal[10], 
herbicidal[11], insecticidal activity[12], anticancer[13, 14], and antig-
enotoxic activity[15].  It is known that the incorporation of a 
ferrocene fragment into a molecule of an organic compound 
often produces unexpected biological activity, likely due to 
different membrane permeation properties and anomalous 
metabolism.  Many ferrocenyl compounds display interest-
ing cytotoxic, anti-tumor, antimalarial, antifungal and DNA-
cleaving activities[16, 17].  Recently, several new ferrocenyl-
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substituted heterocyclic compounds have been reported to 
be potential pharmaceuticals[18–22].  To find more bioactive 
molecules, including effective anti-cancer reagents, we previ-
ously reported the synthesis of novel 1-ferrocenyl-2-(5-phenyl-
1H-1,2,4-triazol-3-ylthio)ethanone derivatives and performed 
X-ray crystal structure and optical property analyses of these 
compounds[23].  The structures of these derivatives (5a–g) are 
shown in Figure 1.  However, the bioactivity of these com-
pounds was unknown.  

As part of the ongoing study in our laboratory on the dis-
covery and development of anticancer reagents[24–27], we are 
interested in studying the anti-cancer mechanisms of small 
molecules.  A better understanding of the molecular mecha-
nisms of cytotoxic drug action has shed light on lung cancer 
treatments.  Novel agents that target specific intracellular 
pathways related to distinct properties of cancer cells con-
tinue to be developed.  In addition, the study of the molecular 
mechanisms of mitochondrial damaging agents in lung cancer 
cells will aid in the development of drugs related to mitochon-
drial damage for the treatment of lung cancer.  The production 
of reactive oxygen species (ROS) by the mitochondria is con-
sidered to be a major factor in the process of senescence[28].  

Cellular senescence is broadly defined as permanent and 
irreversible growth arrest, and it is characterized by a spe-
cific cellular morphology and gene expression pattern[29].  
Senescence, as a stress response, is a potent anti-cancer pro-
gram.  The signaling events underlying senescence have been 
involved in invasion, metastasis, and proliferation, all of which 
are directly linked to tumorigenesis.  Therefore, cancer cell 
senescence has become a new frontier for drug development.  
Herein, we report the growth inhibitory effect of 1-ferrocenyl-
2-(5-phenyl-1H-1,2,4-triazol-3-ylthio)ethanone derivatives in 
A549 cells via the induction of senescence.  In this study, we 
found that ferrocenyl derivatives induced senescence in A549 
NSCLC cells by reducing mitochondrial membrane potential 
and elevating ROS levels.  Furthermore, ferrocenyl derivatives 
increased intracellular ROS and induced senescence in A549 
cells via the p38 MAP-kinase signaling pathway.

Materials and methods
Reagents and chemicals
RPMI-1640 was purchased from Gibco Co (Carlsbad, CA, 
USA).  Bovine calf serum was purchased from Beijing Ding-

Guo Biotechnology Co(Beijing, China).  DMSO was supplied 
by Shanghai Sangon Biological Engineering Technology and 
Services Company (Shanghai, China).  N-acetyl-L-cysteine was 
obtained from Sigma-Aldrich (St Louis, MO, USA).  

Cell culture
A549 lung cancer cells were cultured in RPMI-1640 medium 
supplemented with 10% (v/v) bovine calf serum and 80 U/ml 
penicillin/streptomycin at 37 °C in 5% CO2.  The cells were 
seeded in 96-well plates or the indicated dishes at a density of 
6250 cells/cm2.

Cell viability assay
As previously reported, cells were seeded in 96-well plates 
and treated with compounds 5b, 5d, and 5e (80 µmol/L) for 
48 h, respectively.  Cell viability was determined by MTT 
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) assays, 
according to the method of Price and McMillan[30].  Light 
absorption was measured at 570 nm using a Spectra MAX 190 
microplate spectrophotometer (GMI Co, USA).

Flow cytometric analysis of cell cycle distribution 
Cells were treated with compounds 5b, 5d, and 5e (80 µmol/L) 
for 48 h, respectively.  Then, the cells were harvested, fixed 
with 70% ethanol, and stained with 50 μg/mL propidium 
iodide (PI) containing 10 µg/mL RNase A at 4 °C for 1 h.  The 
stained cells were analyzed using a FACSCalibur flow cytom-
eter (BD Bioscience, USA).  The cell cycle distribution was ana-
lyzed with ModiFit software (BD Bioscience, USA).  

Hoechst 33258 staining
Cells were plated in 24-well plates at a density of 1.25×104 
cells/cm2 24 h before treatment with 0.1% DMSO (v/v, as a 
control) or compounds 5b, 5d, and 5e (80 µmol/L), respec-
tively.  Forty-eight hours after treatment, the living cells were 
stained with 10 μg/ml Hoechst 33258 for 20 min.  The cells 
were gently washed with PBS and photographed using an 
Olympus (Japan) BH-2 fluorescence microscope.  

Senescence-associated-beta-galactosidase (SA-β-gal) staining
A549 cell senescence was identified by senescence-associated 
β-gal staining[31].  After 60 h treatment with 5b, 5d, and 5e 
(80 µmol/L), cells were rinsed twice with PBS, fixed for 5 min 
in a solution containing formaldehyde and glutaraldehyde, 
and then rinsed with PBS.  One milliliter of staining solution 
was added to each well, and the cells were incubated over-
night at 37 °C.  The cells were rinsed with PBS and observed 
by phase-contrast microscopy.  The percentage of positively 
stained cells was calculated by counting cells in random visual 
fields, and at least 2000 cells were counted for each sample.

LDH assay
Cell culture medium was collected after 48 h treatment 
with 0.1% DMSO (control) or compounds 5b, 5d, and 5e (80 
µmol/L).  The LDH assay was performed using a Lactate 
Dehydrogenase (LDH) kit (Nanjing Jiancheng Co, China), 

Figure 1.  Structures of compounds 5a–g.
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according to the manufacturer’s instructions.

Intracellular ROS assay
The levels of intracellular ROS were detected in cells treated 
with or without compounds 5b, 5d, and 5e (80 µmol/L) using 
a fluorescent probe, 2’,7’-dichlorodihydrofluorescin (DCHF, 
Sigma, USA), which can be oxidized into fluorescent 2’,7’-
dichlorofluorescin (DCF) by intracellular ROS.  Fluorescence 
was monitored by laser scanning confocal microscopy (Leica, 
Germany).  The amount of ROS was quantified as the relative 
fluorescence intensity of DCHF per cell in the scanned area.

Mitochondrial membrane potential (MMP) measurement
Mitochondrial membrane potential was estimated by 
measuring the fluorescence of JC-1 aggregates, which are 
formed as a function of inner mitochondrial membrane 
potential[32, 33].  The formation of JC-1 aggregates and their 
fluorescence directly correlate with an increase in membrane 
potential.  After treatment with 0.1% DMSO (control) or 
compounds 5b, 5d, and 5e (80 µmol/L), the cells were plated in 
24-well plates and incubated with 4 μg/mL JC-1 for 20 min at 
37 °C in a humidified incubator.  Then, the cells were washed 
2 times with PBS, and the fluorescence (red fluorescence: 
excitation, 543 nm and emission, 600 nm; green fluorescence: 
excitation, 488 nm and emission, 535 nm) ratio was detected.  
We randomly selected each region of interest (ROI) and 
zoomed in on the same frames.  The data are presented as the 
relative ratio of red/green fluorescence intensity values.  

Western blot analysis 
Western blotting and quantification of the relative protein 
were performed as described previously[34].  Briefly, after 
treatment with the indicated compounds, cells were lysed in 
protein lysis buffer [1% SDS, 25 mmol/L Tris-HCl (pH 7.5), 
4 mmol/L EDTA, 100 mmol/L NaCl, 1 mmol/L PMSF, 10  
mg/ml leupeptin and 10 mg/ml soybean trypsin inhibitor].  
The protein concentration of the lysates was determined using 
the Coomassie brilliant blue protein assay.  A549 cell protein 
extracts (20 μg) were loaded on 9% SDS polyacrylamide gels, 
subjected to electrophoresis, and transferred to a nitrocellulose 
membrane.  The membranes were incubated with anti-p38 
(Cell Signaling, Beverly, MA, USA) or anti-GAPDH antibodies 
(Santa Cruz Biotechnology, Dallas, TX, USA) (1:1000 dilution), 
and the indicated proteins were detected with a horseradish 
peroxidase-conjugated IgG.  The band intensity was quantified 
using Quantity One software (Bio-Rad, USA) and normalized 
to GAPDH levels.

Statistical analyses
The data are presented as the mean±SEM and were analyzed 
by SPSS (Statistical Package for the Social Sciences) software.  
The figures were processed with Adobe Photoshop software.  
The mean values were derived from at least 3 independent 
experiments.  Differences with a p<0.05 were considered sta-
tistically significant.

Results
Compounds 5b, 5d, and 5e inhibited A549 lung cancer cell 
proliferation
To examine the anti-cancer activity of 1-ferrocenyl-2-(5-phe-
nyl-1H-1,2,4-triazol-3-ylthio)ethanone derivatives, we moni-
tored the morphological changes of A549 cells after treatment 
with compounds 5a–g using a phase contrast microscope.  We 
observed no morphological changes, even after treatment with 
an 80 µmol/L dose of each compound for 48 h.  However, cell 
viability was decreased in response to compounds 5b, 5d, and 
5e (Figure 2A).  The results of the MTT assay revealed that 
compounds 5b, 5d, and 5e inhibited the growth of A549 cells 

Figure 2.  (A) Morphology of A549 cells after treatment with compounds 
5b, 5d, and 5e (80 μmol/L) for 48 h, as obtained using a phase contrast 
microscope (×200).  (B) Viability of A549 cells after treatment with 
compounds 5b, 5d and 5e (80 μmol/L) for various times (6, 12, 24, and 
48 h).  (C) Viability of A549 cells after treatment with 10, 20, 40, and 
80 μmol/L compounds 5b, 5d, 5e for 48 h (bp<0.05, cp<0.01 vs control 
group; n=3).



963

www.chinaphar.com
Li Y et al

Acta Pharmacologica Sinica

npg

(Figure 2B).  None of the other compounds showed an effect 
on A549 cell growth (data not shown).

Compounds 5b, 5d, and 5e induced G1-phase arrest
It is well known that the regulation of critical events in the 
cell cycle may be a useful strategy for anti-tumor therapy[35, 36].  
We previously reported that novel ferrocenyl pyrazolo[1,5-a]
pyrazin-4(5H)-one derivatives possess significant anti-tumor 
activity and induce cell cycle arrest[37].  To detect whether 
compounds 5b, 5d, and 5e induce cell cycle arrest in A549 
cells, we performed flow cytometric analysis.  Treatment with 
compounds 5b, 5d, and 5e (80 µmol/L) for 48 h induced A549 
G1-phase arrest in A549 cells (Figure 3).  After treatment with 
compounds 5b, 5d, and 5e (80 µmol/L) for 48 h, the G1 popula-
tions were enhanced by 22.6%, 24.23%, and 26.53% compared 
to the control, respectively.  This increase in the G1-phase 
cell population was accompanied by a decrease in the S- and 
G2-phase cell populations.  

Compounds 5b, 5d, and 5e induced senescence in A549 lung 
cancer cells 
To detect whether compounds 5b, 5d, and 5e caused apop-
tosis, necrosis or senescence in A549 cells, we performed 
Hoechst 33258 staining, LDH assays and senescence-asso-
ciated-beta-galactosidase (SA-β-Gal) staining, respectively.  
DNA fragmentation, chromatin condensation, cell shrinkage, 
and membrane blebbing are well-known characteristics of 
apoptotic cells.  Hoechst 33258 staining revealed that nuclear 
DNA fragmentation and chromatin condensation did not 
occur in the cells treated with 5b, 5d, and 5e (80 µmol/L) for 

48 h (Figure 4A).  The LDH assay showed no significant dif-
ference (p>0.05) in the LDH level between cells in the control 
group and cells treated with compounds 5b, 5d, and 5e (80 
µmol/L) for 48 h (Figure 4C).  Furthermore, these compounds 
did not cause necrosis in A549 cells.  The classical method for 
detecting senescence is to test for SA-β-Gal activity in cells 
using the substrate, X-Gal (5-bromo-4-chloro-3-indoly-β-D-
galactoside)[31].  In SA-β-Gal-stained A549 cells, senescent cells 
were stained blue.  Compounds 5b, 5d, and 5e (80 µmol/L) 
significantly increased the quantity of SA-β-gal positive cells 
compared to controls, as shown in Figure 4B and 4D (p<0.001).  

Compounds 5b, 5d, and 5e promoted p38 phosphorylation, 
elevated ROS, and decreased MMP expression
Reactive oxygen species (ROS) are a natural byproduct of the 
normal metabolism of oxygen, and they play important roles 
in the signaling of cellular senescence.  The main metabolic 
source of ROS is the mitochondrial electron-transport chain, 
and the accumulation of intracellular ROS can cause mitochon-
drial dysfunction, resulting in reduced mitochondrial mem-
brane potential (MMP).  To understand the possible mecha-
nisms by which compounds 5b, 5d and 5e induce senescence 
in A549 cells, we measured the levels of intracellular ROS.  
Compounds 5b, 5d, and 5e (80 µmol/L) significantly increased 
the levels of ROS in A549 cells (Figure 5A and 5C).  To further 
understand the effect of intracellular ROS accumulation, we 
measured the MMP level, which is also a main characteristic 
of cellular senescence.  Upon treatment with compounds 5b, 
5d, and 5e (80 µmol/L) for 48 h, the MMP in A549 cells was 
dramatically reduced compared to the control group (Figure 

Figure 3.  Effects of compounds 5b, 5d, and 5e on the cell cycle distribution of A549 cells.  Cells were exposed to compounds 5b, 5d, and 5e (80 μmol/L) 
for 48 h.  The values are expressed as the percentage of the cell population in the G1-, S-, and G2-phases of the cell cycle.  A, Control; B, 5b; C, 5d; D, 5e.
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5B and 5D).  
ROS can induce senescence via several signaling pathways, 

the most important of which is the p38 MAP-kinase path-
way[38, 39].  To determine the mechanism by which compounds 
5b, 5d, and 5e induce senescence, we examined the p-p38 
and p38 levels by Western blotting.  As shown in Figure 6, 
compounds 5b, 5d, and 5e promoted p38 phosphorylation.  
To further investigate the relationship between ROS and p38 
MAP-kinase in compounds 5b-, 5d-, and 5e-induced senes-
cence, we treated A549 cells with N-acetyl-L-cysteine (NAC), 
an antioxidant and free radical scavenger that reduces ROS 
levels[40].  After incubation with 10 mmol/L NAC, compounds 
5b, 5d, and 5e (80 µmol/L) failed to elevate ROS levels (Figure 
7A and 7D).  Along with the decrease in ROS levels, the MMP 
returned to its basal level (Figure 7B and 7D).  As shown in 
Figure 7C, compound 5b-, 5d-, and 5e-induced senescence 
of A549 cells was dramatically suppressed in the presence of 
NAC.  Moreover, NAC also inhibited the induction of p38 
phosphorylation in response to these compounds (Figure 8).  

 

Discussion
Here, we studied the biological effects of several recently syn-
thesized, novel 1-ferrocenyl-2-(5-phenyl-1H-1,2,4-triazol-3-
ylthio)ethanone derivatives to determine their mechanism of 
action in A549 cells.  Our results revealed that compounds 5b, 
5d, and 5e inhibited growth and induced senescence in A549 
lung cancer cells.  Tumorigenesis relies on a balance between 
senescence and immortalization.  Senescence is prevalent in 
pre-malignant tumors, and progression to malignancy requires 
evading senescence.  Recently, it was reported that the activa-
tion of senescence may represent a key target for therapeutic 
intervention and the eradication of cancer[41, 42].  Nevertheless, 
for many years, the role of senescence in opposing tumor 
growth in vivo was underestimated.

Accumulating evidence indicates that senescence plays an 
important role in the natural physiological response to tumor 
development[43].  Multiple pieces of evidence reveal that sig-
naling events underlying the senescent phenotype, includ-
ing, but not limited to, invasion, metastasis[44], proliferation[45] 

Figure 4.   (A) Detection of apoptosis by Hoechst 33258 staining of A549 cells treated with 5b, 5d, and 5e (80 μmol/L) for 48 h (n=3).  Microscopic 
photographs (×400) were taken under a fluorescence microscope (Nikon).  (B) Senescence-associated beta-galactosidase (SA-β-Gal) activity in A549 
cells treated with 5b, 5d, and 5e (80 μmol/L) for 48 h.  Microscopic photographs (×400) were taken with a phase contrast microscope (Nikon).  (C) 
Effects of compounds 5b, 5d, and 5e (80 μmol/L) on the release of LDH from A549 cells at 48 h (p>0.05 vs control group, n=3).  (D) Percentage of SA-
β-Gal-positive cells (cp<0.01 vs control group; n=3).
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immortalization[46] and immune modulation[47], are critical 
for tumorigenesis.  Nardella and Cairney et al proposed that 
these intrinsic senescence pathways can be used to specifi-
cally enhance senescence for the potential eradication of dis-
ease through targeted approaches[43, 47].  Therefore, cancer cell 
senescence has become a new frontier for drug development.  
Our results show that compounds 5b, 5d and 5e inhibit growth 
by inducing a strong G1-phase arrest and senescence in lung 
cancer A549 cells.  These data suggest that these novel ferroce-
nyl derivatives represent useful tools for further investigating 
the role of cellular senescence and developing drugs for cancer 
therapy.  

Since 1956, when the free radical theory of aging was pro-
posed[48], numerous cell culture, invertebrate, and mammalian 
models have provided support for this theory[49], which sug-
gests that intracellular ROS are the main reason for cellular 
senescence.  ROS are a natural byproduct of normal oxygen 
metabolism, and they play important roles in the signaling of 
cellular senescence.  The main metabolic source of ROS is the 
mitochondrial electron-transport chain, and the accumulation 

Figure 5.  (A) Effects of compounds 5b, 5d, and 5e (80 μmol/L) on the level of ROS in A549 cells at 48 h.  Fluorescent micrographs show the relative 
intensity of ROS.  (B) Effects of compounds 5b, 5d, and 5e (80 μmol/L) on the mitochondrial membrane potential (MMP) at 48 h.  (C) The relative 
amount of ROS in A549 cells.  (D) Relative MMP was quantified as the ratio of red/green fluorescence intensity per cell (bP<0.05, cP<0.01 vs control 
group; n=3).

Figure 6.  (A) Western blot assay of p-p38 and p38 in A549 cells treated 
with 5b, 5d, and 5e (80 μmol/L) for 48 h.  (B) The relative ratio of p-p38/
p38 (bp<0.05, cp<0.01 vs control group; n=3).
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of intracellular ROS can cause mitochondrial dysfunction, 
resulting in reduced MMP[49, 50].  The accumulation of mito-
chondrial ROS increases the vulnerability of the mitochondrial 
genome, which impairs mitochondrial energy metabolism, 
leading to mitochondrial dysfunction[51].  In addition, it is 
known that changes in the intracellular ROS levels can induce 
biochemical signaling processes that control basic cellular 
functions, including senescence[52].  MMP is an important 
mediator of key cellular processes, and it is also a critical regu-
lator of cellular senescence.  MMP is also a highly sensitive 
indicator of the energetic state of mitochondria and the health 
of cells[53].  

Our results show that elevated intracellular ROS decreased 
MMP, and the phosphorylation of p38 may be responsible for 
compound 5b-, 5d- and 5e-induced senescence in A549 cells.  
Taken together, our findings suggest that compounds 5b, 5d 
and 5e may be useful tools for investigating cellular senes-
cence and promoting senescence as a cancer therapy.
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