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The nitrogen-fixing bacteria, called rhizobia, are able to infect 
the roots of leguminous plants and induce the formation of 
root nodules. Within the root nodule, the bacteria can convert 
atmospheric nitrogen into ammonia, a biological form that can 
be directly used by the plant. Over the past decade, tremendous 
progress has been made in our understanding of the nodulation 
signaling pathway in legumes.1 It has become increasingly evi-
dent that the root nodule symbiosis has co-opted the signaling 
pathway that mediates the ancestral mycorrhizal symbiosis, a 
widespread mutualistic association between mycorrhizal fungi 
and the vast majority of land plants.1-5 As such, most, if not all, 
legume genes required for root nodule symbiosis are already 
present in non-legumes, and these non-legume genes have been 
shown to function similarly to their legume counterparts.2,6 
These discoveries have reignited an old dream of plant biologists, 
i.e., to transfer the nitrogen-fixing symbiosis to cereals and other 
non-leguminous crops.4,7

Despite being unable to induce nodulation, rhizobia have 
been shown to be able to infect and colonize the roots of non-
legumes such as rice (Oryza sativa).8-10 This so-called “endo-
phytic” interaction also can promote plant growth, even though 
the exact mechanisms for such positive responses are not well 
understood.9,11 Characterization of the infection and coloniza-
tion processes of the rice-rhizobial association revealed that the 
bacteria primarily enter the plant tissue through root hairs and/
or crack entry located near the sites of newly emerging lateral 
roots.10 Similar infection strategies are also used by the rhizobia 
to enter the roots of the non-legume Paraponia and the water-tol-
erant legume Sesbania rostrata, both of which can nodulate with 
rhizobia.12-16 Intriguingly, similar to what occur in legumes, both 
root hair curling and infection thread-like structures were also 
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observed on the rice roots inoculated with rhizobia.10 However, in 
contrast to the root nodule symbiosis, in which bacteria colonize 
intracellularly, bacteria mainly reside in the intercellular spaces 
within the rice roots.10

Given the seeming similarity of the infection processes, one 
fascinating question is whether the crack entry or root hair infec-
tion of rice by rhizobia requires the common symbiosis (Sym) 
genes that are essential for infection of plant cells by mycorrhi-
zal fungi and rhizobia in legumes.2 To address this question, we 
examined the infection and colonization phenotypes of wild-type 
plants and the symbiosis-defective mutants representing three dif-
ferent common Sym genes. These mutants include the retrotrans-
poson Tos17 insertion lines Os-dmi3 (NF8513) and Os-cyclops 
(NC2794) and the T-DNA insertion line Os-castor (C04353). 
All these rice mutants have been shown to be impaired in mycor-
rhizal symbiosis.17-20 Of the 3 common Sym genes (for review 
see the ref. 2), Os-CASTOR encodes a nuclear-localized potas-
sium channel protein; Os-DMI3 codes for a Ca2+/calmodulin-
dependent protein kinase (CCaMK); and Os-CYCLOPS encodes 
a protein that interacts with and phophosphorylated by DMI3.21

We inoculated wild-type and mutant plants with the GFP-
tagged Rhizobium leguminosarum bv. trifolii strain R4 under 
hydrophobic conditions following the protocol described by 
Perrine-Walker et al.10 We examined the early infection processes 
48 h post inoculation as well as the late colonization events 21 d 
post inoculation using an Olympus FV1000 confocal microscope. 
Infection of rice roots could be readily observed 48 h post inocu-
lation for both wild-type and mutant plants, with GFP-labeled 
bacteria present in the root hairs or attaching to the cracks of 
emerging lateral roots (Fig. 1). At 21 d post inoculation, we could 
observe the spreading of GFP-labeled bacteria into intercellular 
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Figure 1. infection and colonization of rice roots of wild-type and mutant plants by GFP-tagged Rhizobium leguminosarum bv. trifolii strain r4. (A) 
infection and colonization of rice roots of the wild-type genotype, nipponbare, showing root hair infection (left), crack entry followed by intercellular 
colonization (right), and root hair infection followed by the colonization of the intercellular space between the epidemics and the underlying cortex 
(middle). (B–D) infection and colonization of rice roots of mutants Os-castor (B), Os-dmi3 (C) and Os-cyclops (D). For each panel, root hair infection 48 
h post inoculation was shown on the left and the intercellular colonization of rhizobia observed 21 d post inoculation was shown on the right. three 
independent experiments were performed, and at least 25 plants per genotype were tested for each experiment.
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confined to the infection threads until they reached the nodule 
primordium, in rice roots the whole root hairs were infected, sug-
gesting that the infection thread-like structure observed in rice 
roots are different with infection threads in legume roots.10 In 
this case, the rhizobia may enter into the plant tissue through the 
killing of adjacent epidermal cells or root hairs.22

In summary, rice knockout mutants for DMI3 (CCaMK), 
CASTOR, and CYCLOPS, which are defective in mycorrhizal 
symbioses were all successfully colonized by the GFP-tagged 
Rhizobium leguminosarum bv. trifolii strain R4. Thus, our data 
suggest that common Sym genes are not required for infection 
and endophytic colonization of rice roots by nitrogen-fixing 
rhizobia. This conclusion appears to be supported by the obser-
vation that the Sym plasmids are not required for intercellular 
colonization of rice roots by rhizobia.22 One caveat of our study, 
however, is that we only used one bacteria strain and it is not clear 
if there exists strain specificity in the requirement of common 
Sym genes in endophytic rice-rhizobial associations.
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spaces of rice root tissues forming short or long lines of GFP-tagged 
cells (Fig. 1). There were no distinguishable differences observed 
between the wild-type and mutant plants. Thus, our experiments 
suggest that the common Sym genes are not involved in the infec-
tion and endophytic colonization of rice roots by rhizobia.

Intracellular invasion through infection thread formation 
in root hairs is a common strategy that rhizobia use to enter 
the roots of legumes; however, many legumes also retain more 
primitive intercellular infection strategies to cope with adverse 
conditions that prevent intracellular invasion.16 The best stud-
ied example is the semi-aquatic legume Sesbania rostrata, in 
which both intercellular and intracellular infection strategies are 
adopted.15,16 Under waterlogged conditions, bacteria colonize epi-
dermal fissures at lateral root bases and trigger cortical cell death 
for infection pocket formation. The infection pockets function 
to facilitate initial intercellular and later intracellular infection 
thread progression toward the nodule primordium. In this case 
the common Sym genes were not required for the initial infection 
pocket formation but are essential for root hair infection and for 
later nodule organogenesis.13,15 Our observation that the bacte-
ria can colonize the intercellular spaces of both wild-type and 
mutant rice roots appears to be consistent with that reported in 
Sesbania rostrata. However, a perplexing question remains: if the 
infection of rice root hairs resembles infection thread formation 
in legumes, why common Sym genes are not required for this 
process? One possibility is that the linear arrangement of bacte-
ria in root hairs is structurally different from infection threads 
observed in legumes. In contrast to legumes where bacteria are 
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