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Introduction
Erlotinib (Tarceva; Genentech Inc, San Francisco, CA, USA) is 
an orally available, reversible human epidermal growth fac-
tor receptor (EGFR) tyrosine kinase inhibitor[1, 2].  It received 
approval from the US Food and Drug Administration in 
November 2004 for the second-line treatment of locally 
advanced or metastatic non-small cell lung cancer after the 
failure of at least 1 previous chemotherapeutic regimen[3, 4].  
Erlotinib was also approved by the United States for the treat-
ment of locally advanced, unresectable or metastatic pancre-
atic cancer in combination with gemcitabine[5].  In addition, 
clinical trials in a number of other solid tumors are also under-
way[6–8].  

Erlotinib is considered better tolerated and less toxic than 

cytotoxic drugs, with the most common adverse reactions 
in patients being rash and diarrhea[9].  However, erlotinib is 
frequently involved in clinical drug-drug interactions (DDIs).  
With 45 interactions reported before 2007, the DDI frequency 
of erlotinib was just second to that of ifosfamide and pacli-
taxel among all antineoplastic drugs[10].  Co-administration of 
erlotinib has been reported to enhance carboplatin exposure[11] 
and increase the serum concentration of phenytoin[12].  A case 
of rhabdomyolysis was reported due to the interaction of 
erlotinib with simvastatin[13].  International Normalized Ratio 
(INR) elevations and bleeding events associated with erotinib-
warfarin co-administration have been reported[4].  Because the 
drugs involved usually had narrow therapeutic indices, DDIs 
might impair the clinical safety of erlotinib.  

One of the major reasons for clinical DDIs has been rec-
ognized to be inhibition or induction of drug metabolism 
enzymes.  Erlotinib is extensively metabolized, predominantly 
by CYP3A4/5 and to a lesser extent by CYP1A2 and the 
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extrahepatic isoform CYP1A1[14].  As for the influence of erlo-
tinib on the catalytic activity of CYP3A, conflicting data have 
been published concerning its clinical consequences.  Li et al 
found that erlotinib stimulated CYP3A-mediated midazolam 
metabolism in liver and intestinal microsomes[15].  Neverthe-
less, in a cell-based CYP3A activity assay, erlotinib was shown 
to decrease the formation of 1’-hydroxymidazolam, showing 
the potency to inhibit CYP3A activity[16].  As for the phase II 
enzymes, erlotinib was shown to exhibit inhibition activity 
on human UDP-glucuronosyltransferase (UGT) 1A1[17].  The 
effects of erlotinib on other phase I CYP isoforms are still 
unknown.  Thus, the current data were insufficient to explain 
the widespread DDI cases.  Ascertaining the effect of erlotinib 
on major CYP isoforms will benefit the clinical safety evalua-
tion of erlotinib in combination with other drugs.  

The aim of this study was to ascertain the effect of erlo-
tinib on CYP3A activity and to investigate the amplitude and 
kinetics of erlotinib-mediated inhibition of seven major CYP 
isoforms in HLMs.  An in vivo magnitude of interaction will 
be extrapolated from the in vitro inhibition kinetic data to help 
explain the clinical DDIs associated with erlotinib.  

Materials and methods
Chemicals and reagents
Erlotinib (OSI-774, >99%) was purchased from Nanjing 
Ange Pharmaceutical Co, Ltd (Nanjing, China).  D-glucose-
6-phosphate, glucose-6-phosphate dehydrogenase, NADP+, 
corticosterone, phenacetin, acetaminophen, 7-hydroxycou-
marin, 4’-hydroxydiclofenac, sulfaphenazole, 8-methoxyp-
soralen, clomethiazole, montelukast, nifedipine, oxidized 
nifedipine, midazolam, 1’-OH-midazolam, troleandomy-
cin (TAO), 6-hydroxychlorzoxazone, 7-hydroxycoumarin, 
paclitaxel, 6β-hydroxytestosterone and furafylline were 
purchased from Sigma-Aldrich (St Louis, MO, USA).  Tes-
tosterone was from Acros Organics (Morris Plains, NJ, USA).  
Coumarin, diclofenac, dextromethorphan and ketoconazole 
were from ICN Biomedicals (Aurora, OH, USA).  Human 
liver microsomes (HLMs) were prepared according to the 
method described by Guengerich (1989) and other previous 
reports[18, 19].  Protein concentrations were determined using 
bovine serum albumin as a standard[20].  Millipore water (Mil-
lipore, Bedford, MA, USA) and HPLC grade methanol and 
acetonitrile (Tedia, Fairfield, OH, USA) were used throughout; 
other reagents were of the highest grade commercially avail-
able.

Probe substrate assays for major CYP isoforms
Probe reactions for CYP3A, CYP1A2, CYP2C8, CYP2A6, 
CYP2C9 ,  CYP2D6,  and  CYP2E1  were  t es tos terone 
6β-hydroxylation, phenacetin O-demethylation, paclitaxel 
6α-hydroxylation, coumarin 7-hydroxylation, diclofenac 
4’-hydroxylation, dextromethorphan O-demethylation and 
chlorzoxazone 6-hydroxylation activities separately.  Midazo-
lam 1’-hydroxylation and nifedipine oxidation reactions were 
also performed to examine the effect of erlotinib on CYP3A 
activity.  The basic incubation system contained 100 mmol/L 

potassium phosphate buffer (pH 7.4), a NADPH-generating 
system (1 mmol/L NADP+, 10 mmol/L glucose-6-phosphate, 
1 unit/mL of glucose-6-phosphate dehydrogenase and 4 
mmol/L MgCl2) and the appropriate concentrations of HLMs, 
the appropriate probe substrate and erlotinib (or a positive 
control inhibitor) in a final volume of 200 μL.  After a 3-min 
preincubation at 37 °C, the reaction was initiated by adding 
the NADPH-generating system and terminated by adding 
100 μL acetonitrile (10% trichloroacetic acid for CYP2A6) with 
internal standard.  The mixture was centrifuged at 20 000×g 
for 10 min, and an aliquot of supernatant was then transferred 
to a 0.3-mL auto-injector vial for HPLC or UFLC analysis.  
The incubation conditions, including substrate and protein 
concentrations and incubation times, have been reported[21, 22].  
The HPLC system (SHIMADZU, Kyoto, Japan) consisted of a 
SCL-10A system controller, two LC-10AT pumps, a SIL-10A 
autoinjector, and a SPD-10AVP UV detector or a RF-10AXL 
fluorescence detector.  HPLC separation was achieved using a 
C18 column (150 mm×4.6 mm ID, 5 μm, Shimadzu) at a flow 
rate of 1 mL/min.  A Shimadzu Prominence UFLCTM system 
with a Shim-pack XR-ODS (75.0 mm×2.0 mm ID, 2.2 μm, Shi-
madzu) analytical column was used.  The eluent flow rate was 
0.3 mL/min and the column temperature was maintained at 
40 °C.  Analysis conditions for the P450 isoforms are shown in 
Table 1.  All analytical methods were shown to be precise and 
accurate.  The intra- and inter-day precisions were less than 
15%, with accuracy in the range of 86.7%–112.5%[19, 21–23].  

Enzyme inhibition experiments
Marker assays for each CYP isoform were performed in 
the presence of 100 μmol/L erlotinib to evaluate its inhibi-
tory effect toward the seven major human CYP isoforms.  
The concentrations of positive control inhibitors used are 
as follows[21, 24, 25]: 1 μmol/L ketoconazole for CYP3A, 10 
μmol/L furafylline for CYP1A2, 10 μmol/L sulfaphenazole 
for CYP2C9, 5 μmol/L montelukast for CYP2C8, 2.5 μmol/L 
8-methoxypsoralen for CYP2A6, 10 μmol/L quinidine for 
CYP2D6 and 50 μmol/L clomethiazole for CYP2E1.  For 
CYP isoforms that were strongly inhibited, the concentra-
tions at which the enzymes were 50% inhibited (IC50 values) 
were determined using various concentrations of erlotinib 
for CYP3A and for CYP2C8.  Inhibition constant (Ki) values 
were determined by incubating various probe substrates (5–50 
μmol/L paclitaxel, 30–100 μmol/L testosterone or 5–50 μmol/L 
nifedipine) in the presence or absence of erlotinib.  Ki values 
were calculated by nonlinear regression using the equations 
for competitive inhibition (eq 1), noncompetitive inhibition (eq 
2), or mixed inhibition (eq 3)[17].

v=(VmaxS)/(Km (1+I/Ki)+S)                              (1)
v=(VmaxS)/(Km+S)(1+I/Ki)                               (2)
v=(VmaxS)/(Km+S)(1+I/αKi)                             (3)

Activation of midazolam metabolism by erlotinib
Midazolam was incubated in pooled HLMs (0.1 mg/mL) for 
10 min in the presence or absence of erlotinib.  To investigate 
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the concentration dependence of midazolam metabolism acti-
vation phenomena, various concentrations of erlotinib (1–20 
μmol/L) were incubated with midazolam at different concen-
trations (2–20 μmol/L).  1’-hydroxymidazolam was measured 
using a validated method based on UFLC as described in 
Table 1.  To further explore the potential mechanism of activa-
tion phenomena, kinetic data were fit to a two-site model[26], 

                                                                                                          (4)

where S is the substrate, B is the effector, Vmax and Km are the 
kinetic constants for substrate metabolism, KB is the binding 
constant for the effector, α is the change in Km resulting from 
the effector binding, and β is the change in Vmax from the effec-
tor binding.  For activation, α<1 and/or β>1.

Single point inactivation experiments 
Single point inactivation experiments were used as previously 
reported to determine NADPH-dependent and preincubation-
dependent inhibition by erlotinib[27].  Briefly, erlotinib was 
incubated with pooled HLMs (1 mg/mL) in the absence and 
presence of the NADPH-generating system for 30 min at 
37 °C.  For CYP3A and CYP2C8, the concentration of erlotinib 
utilized was ten times the concentration that gave 25% inhibi-
tion under conditions of reversible inhibition.  For other CYP 
isoforms, 50 µmol/L of erlotinib was used.  Moreover, mida-
zolam was also used as a probe substrate to perform single 
point inactivation experiments for CYP3A, and 50 μmol/L of 
erlotinib was used.  After incubation, an aliquot (20 μL) was 
transferred to another incubation tube (final volume 200 μL) 
containing an NADPH-generating system and probe sub-
strates whose concentrations were proximal to Km values.  Fur-
ther incubations were performed to measure residual activity.

Inactivation constant (KI and kinact ) assays
To determine the KI and kinact values for the inactivation of 
CYP3A, five concentrations of erlotinib (0, 5, 10, 20 and 50 
μmol/L) were incubated for 0 to 30 min with pooled HLMs (1 
mg/mL) at 37 °C.  After preincubation, an aliquot (20 μL) was 
transferred to another incubation tube (final volume 200 μL) 
containing an NADPH-generating system and different probe 
substrates for CYP3A to measure residual activity.  Substrate 
concentrations of four times the Km were selected to minimize 
the reversible inhibition caused by erlotinib.  The concentra-
tions used for different probe substrates were as follows: 400 
μmol/L testosterone, 20 μmol/L midazolam and 60 μmol/L 
nifedipine.  To determine the kobs (observed inactivation rate) 
values, the decrease in natural logarithm of the activity over 
time was plotted for each erlotinib concentration, and the kobs 

values were described as the negative slopes of the lines.  Inac-
tivation kinetic parameters were calculated using nonlinear 
regression of the data according to equation (5):

where [I] is the initial inhibitor concentration, kinact is the maxi-
mal inactivation rate constant and KI is the inhibitor concen-
tration required for half the maximal rate of inactivation.  The 
unbound KI (KI, u) was calculated according to equation (6), 
where fu, m is the free fraction of erlotinib in the microsomes.  
fu, m is predicted according to equation (7) as previously 
reported[28].  The terms are defined as follows: Cmic is the 
microsomal protein concentration used in the preincubation, 
and logP is the log of the octanol-water (pH 7.4) partition (P) 
coefficient of the erlotinib.  A concentration of 1 mg/mL was 
used for Cmic in this experiment, and LogP is approximately 

Table 1.  Analysis conditions for the relevant P450 isoforms.   

        CYPs	                              Internal standard                                                        
Mobile phase  gradient                                                           Detection                                          concentration (μmol/L)

 
	1A2 	 7-Hydroxycoumarin (30 μmol/L)	 Methanol (A): Phosphate buffer (pH=3.0, 50 mmol/L) (B)=34:66	 HPLC, UV 245 nm
	2A6	 –	 Acetonitrile (A): Acetic acid (0.1%, v/v) (B)=35:65 	 HPLC, Fluo Ex/Em: 
				    340 nm/456 nm
	2C9	 Coumarin (60 μmol/L)	 Acetonitrile (A): Phosphate buffer (pH=7.4, 100 mmol/L) (B)=32:68, 	 HPLC, UV 280 nm
			   0–9 min, 68%B–32%B	
	2D6	 –	 Acetonitrile (A): Phosphate buffer (pH=3.0, 50 mmol/L ) (B)=25:75	 HPLC, Fluo Ex/Em: 
				    235 nm/310 nm
	2E1	 Phenacetin (300 μmol/L)	 Acetonitrile (A): Acetic acid (0.5%, v/v) (B)=22:78, 1–10 min, 78%B–40%B 	 HPLC, UV 287 nm
	3A4 (Testosterone)	 Corticosterone (20 μmol/L)	 Methanol (A): Water (B)=52:48, 0–15 min, 48%B–30%B;  15–22 min,	 HPLC, UV 254 nm
			   30%B–20%B
 	3A4 (Nifedipine)	 –	 Methanol (A): Water (B)=50:50, 0–20 min, 50%B–45%B	 HPLC, UV 250 nm
	3A4 (Midazolam)		  Methanol (A): acetic acid (0.5%, v/v) (B)=40:60, 0–10 min, 60%B–20%B	 UFLC, UV 254 nm
	2C8		  Methanol (A): Water (B)=0–2 min, 88%B–44% B; 2–4 min, 44%B–38%B; 	 UFLC, UV 230 nm
			   4–9.5 min, 38%B–32%B	   

kobs =
  kinact×[I]                                                   (5)           KI+[I]

KI, u=KI×fu, m                                                      (6)

 fu, m=                   1                                             (7)
          (Cmic×100.56LogP–1.41)+1
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2.7, according to the literature[4].  Thus, fu, m is calculated to be 
44.2%.

Quantitative prediction of the DDI potential of erlotinib (AUCi/
AUC)
The equations (8) and (9) were utilized to predict the interac-
tion potential of erlotinib caused by reversible inhibition and 
TDI of CYP3A.  Equation (10) was used to predict the interac-
tion potential by reversible inhibition of CYP2C8.  All equa-
tions were adapted as reported[27, 29].

The terms are defined as follows: AUCi/AUC is the pre-
dicted ratio of in vivo exposure of the interacting drug with 
co-administration of erlotinib versus that in the control situ-
ation, fm(CYP3A)/fm(CYP2C8) is the portion of total clearance of 
the interacting drug to which CYP3A/CYP2C8 contributes, 
kdeg(CYP3A) is the first-order rate constant of in vivo degradation 
of CYP3A, kinact is the maximum inactivation rate constant, KI, u 
is the unbound KI, Ki is the reversible inhibition constant, and 
[I]in vivo is the in vivo concentration of erlotinib at the enzyme 
active site.  The general assumption is that only unbound 
drug is available for interaction with the enzyme active site.  
However, at present, there is no consensus on the in vivo pre-
cipitant concentration that should be used.  According to a 
recent publication, the reversible inhibition portion performed 
the best when the unbound portal vein concentration was 
used for [I]in vivo, while for irreversible inactivation and induc-
tion the unbound systemic concentration was the best.  Thus, 
in this research, the unbound portal vein concentration (0.16, 
0.18, and 0.31 μmol/L) was used for the reversible inhibi-
tion portion (for 50, 100, and 150 mg/d doses, respectively), 
while the unbound systemic concentration (0.07, 0.19, and 0.13 
μmol/L) was adopted to avoid over-prediction of irrevers-
ible inactivation[30].  The values for [I]in vivo were derived from 
references[17, 31].  A kdeg(CYP3A) of 0.000321 min-1 was adopted, 
in accordance with Obach et al[27].  The values of fm(CYP3A) and 
fm(CYP2C8) were arbitrarily set to be 0.1–1 to predict the DDI risk 

for all possible coadministered drugs[17].

Results
Inhibition of major CYP isoforms by erlotinib
Erlotinib with the concentration of 100 μmol/L inhibited the 
activities of CYP1A2, CYP2C9, CYP2A6, CYP2D6, CYP2C8, 
and CYP2E1 by 30.0%, 49.0%, 9%, 37%, 76%, and -7%, 
respectively.  For CYP3A, 100 μmol/L erlotinib inhibited 
69.3% and 71.6%, respectively, of the enzyme’s testoster-
one 6β-hydroxylation and nifedipine oxidation activities.  
However, erlotinib stimulated the midazolam 1’-hydroxy 
activity by 171%.  All positive control inhibitors strongly 
inhibited the corresponding probe reactions, with less than 
20% of control activity remaining upon inhibition.  Further 
kinetic analysis was conducted for CYP3A (testosterone 
6β-hydroxylation, nifedipine oxidation) and CYP2C8 (pacli-
taxel 6α-hydroxylation), whose activities were inhibited by 
more than 50%.  As shown in Figure 1, erlotinib inhibited 
testosterone 6β-hydroxylation in a concentration-dependent 
manner with an IC50 of 31.3±8.0 μmol/L.  Lineweaver-Burk 
and Dixon plots showed that the inhibition of CYP3A by 
erlotinib was well fitted to a competitive model of inhibition.  
The Ki value was calculated to be 14.1±4.3 μmol/L using a 
nonlinear regression equation (eq 1).  Erlotinib also inhibited 
the metabolism of nifedipine in a competitive manner with 
an IC50 of 20.5±5.3 μmol/L.  A Ki value of 4.3±0.9 μmol/L was 
obtained by nonlinear fitting.  The results demonstrated that 
erlotinib inhibited paclitaxel 6α-hydroxylation in a concen-
tration-dependent manner, with an IC50 of 6.17±2.0 μmol/L.  
Lineweaver-Burk and Dixon plots suggested that erlotinib also 
competitively inhibited CYP2C8.  The Ki value was calculated 
to be 5.8±1.9 μmol/L using a nonlinear regression equation (eq 
1).

Activation of midazolam metabolism 
As shown in Figure 2, using different concentrations of mida-
zolam (2–20 μmol/L), erlotinib stimulated the formation of 
1’-OH-midazolam.  At a constant concentration of midazolam, 
the formation of 1’-OH-midazolam increased with increasing 
amounts of erlotinib (1–20 μmol/L).  The two-site model fit-
ting results are listed in Table 2.  The data fit this model (Table 
2) well with an α=0.50 and a β=1.80, indicating a decrease 
in Km and an increase in Vmax, respectively[32].  These results 
showed the existence of activation.  

Time- and NADPH-dependent inhibitions 
When erlotinib was pre-incubated with HLMs for 30 min 
in the presence of NADPH, the percentage of inhibition on 
CYP3A by erlotinib increased significantly compared with 
that without NADPH (using testosterone and nifedipine as 

Table 2.  Kinetic parameter estimates derived from two-site model for midazolam metabolism in the presence of erlotinib.   

  Substrate	  Effector	                      Vmax	                         Km	                       KB	                       α	                       β	             R2

 
	Midazolam	 Erlotinib	 0.34 (0.03)	 2.63 (0.93)	 7.96 (5.9)	 0.50 (0.33)	 1.80 (0.27)	 0.93

AUCi =                    1                                                     (8)AUC      1 – fm(CYP3A)  +
    fm(CYP3A)

                                       1+ [I]in vivo

                                                 Ki

AUCi =                          1                                               (9)
AUC               fm(CYP3A)

                 + (1– fm(CYP3A))
              1 +   kinact × [I]in vivo

                     KI, u × kdeg(CYP3A)

AUCi =                    1                                                   (10)AUC      1 – fm(CYP2C8)  +
    fm(CYP2C8)

                                       1+ [I]in vivo

                                                 Ki
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probe substrates).  When midazolam was used as a probe 
substrate, interesting results were obtained (Figure 3).  When 
NADPH was not present during the preincubation process, 
erlotinib stimulated the metabolism of midazolam, but when 
NADPH was added to the preincubation, erlotinib showed an 
inhibitory effect on the activity of CYP3A.  Inactivation kinetic 
parameters were obtained using different probe substrates.  
As calculated from the observed inactivation plots (Figure 4), 
inactivation parameters (KI and kinact, respectively) for CYP3A 
were calculated to be 6.3 μmol/L and 0.035 min-1, 9.0 μmol/L 
and 0.045 min-1, 10.1 μmol/L and 0.058 min-1 for the probe sub-
strates midazolam, testosterone and nifedipine, respectively.  
The inhibition of other isoforms by erlotinib was not time and 
NADPH dependent (data not shown).  

In vitro-in vivo extrapolation of DDI magnitudes
For reversible inhibition of CYP2C8, adopting a Ki of 5.8 
μmol/L and unbound portal vein concentrations of 0.16, 0.18, 
and 0.31 μmol/L for 50, 100, and 150 mg/d doses, respec-
tively, the AUCi/AUCs were predicted to be 1.0027–1.0276, 
1.0030–1.0310 and 1.0051–1.0534 for an fm value between 0.1 
and 1.  For reversible inhibition of CYP3A (with the probe sub-
strate testosterone), using a Ki of 14.1 μmol/L and the same 
unbound portal vein concentrations as for CYP2C8, the AUCi/
AUCs were predicted to be 1.0011–1.0113, 1.0013–1.0128, and 
1.0022–1.0220 for an fm value between 0.1 and 1, for 50, 100, 
and 150 mg/d doses, respectively.  For the probe substrate 
nifedipine, using a Ki of 4.3 μmol/L and the same unbound 
portal vein concentration, the corresponding results of AUCi/

Figure 1.  Reversible inhibition of CYP3A and CYP2C8 by erlotinib.  A1: Inhibition by erlotinib of testosterone 6β-hydroxylation activity.  A2: Dixon plot 
of the inhibitory effect of erlotinib on testosterone 6β-hydroxylation (TS) activity.  A3: Lineweaver-Burk plot of the inhibitory effect of erlotinib on testo-
sterone 6β-hydroxylation activity.   B1: Inhibition by erlotinib of paclitaxel 6α-hydroxylation activity.  B2: Dixon plot of the inhibitory effect of erlotinib on 
paclitaxel 6α-hydroxylation activity.  B3: Lineweaver-Burk plot of the inhibitory effect of erlotinib on paclitaxel 6α-hydroxylation activity.  C1: Inhibition by 
erlotinib of nifedipine oxidation activity.  C2: Dixon plot of the inhibitory effect of erlotinib on nifedipine oxidation activity.  C3: Lineweaver-Burk plot of the 
inhibitory effect of erlotinib on nifedipine oxidation activity. 



404

www.nature.com/aps
Dong PP et al

Acta Pharmacologica Sinica

npg

AUCs were 1.0036–1.0372, 1.0040–1.0419, and 1.0068–1.0721 
for an fm value between 0.1 and 1, for 50, 100, and 150 mg/d 
doses, respectively.  For irreversible inactivation of CYP3A 
(using different probe substrates), unbound systemic concen-

trations of 0.07, 0.13, and 0.19 μmol/L were adopted to avoid 
over-prediction for three oral doses[17].  With a KI, u and a kinact 
of erlotinib for probe substrates midazolam, testosterone and 

Figure 2.  Activation of midazolam 1′-hydroxylation by 1−20 μmol/L 
erlotinib.

Figure 3.  Single point inactivation of CYP3A by erlotinib measured using 
midazolam, testosterone and nifedipine as probe substrates in HLM.  The 
concentrations for erlotinib were 50 μmol/L, 75 μmol/L and 75 μmol/L 
when using midazolam, testosterone and nifedipine as probe substrates, 
respectively.  The concentration of the positive control inhibitor TAO was 
250 μmol/L.  Each data point represents the mean±SD of duplicate 
incubations.

Figure 4 .  T ime- and concentrat ion-
dependent inactivation of CYP3A by erlo
tinib.  (A) At the indicated time points, the 
remaining CYP3A activity was measured by 
a midazolam 1′-hydroxylation (A1), testo
sterone 6β-hydroxylation (A2) or nifedipine 
oxidation (A3) assay.  Each point represents 
the mean of triplicate incubations.  The 
observed inactivation rate constants, kobs, 
were calculated from the slopes of the 
regression lines in A.  (B) The hyperbolic 
plot of kobs versus erlotinib concentration 
was used to calculate kinetic constants.
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nifedipine being 2.8 μmol/L and 0.035 min-1, 4.0 μmol/L and 
0.045 min-1 and 4.5 μmol/L and 0.058 min-1, respectively, the 
AUC was calculated to increase to 107.9%–372.6%, 109.1%–
606.2%, and 109.7%–839.9% for midazolam; 107.7%−345.3%, 
108.9%–555.6%, and 109.5%–765.9% for testosterone; 108.0%–
381.1%, 109.2%–622.0%, and 109.7%–862.9% for nifedipine.  

Discussion
Human CYP3A is one of the most important CYP isoforms 
involved in drug clearance and metabolized more than 50% 
of the drugs on the market[33].  Inhibition or stimulation of the 
catalytic activity of this enzyme could play a key role in clini-
cal DDIs.  In previous studies, conflicting data were obtained 
about the effects of erlotinib on metabolism of the substrate 
midazolam mediated by CYP3A[34].  Thus, rigorously ascertain-
ing erlotinib’s effect on CYP3A will provide important infor-
mation that may aid in the prevention of clinical DDIs.  In this 
study, our experimental results showed that DDI patterns via 
modulation of CYP3A by erlotinib are substrate dependent.  
Erlotinib stimulated the formation of 1’-hydroxymidazolam 
in HLMs.  However, it inhibited the reactions of testosterone 
6β-hydroxylation and nifedipine oxidation.  Erlotinib’s time-
dependent inhibition of CYP3A was not substrate dependent.  

The patterns of interaction between drug compounds and 
CYP3A were previously shown to be substrate dependent[35].  
For example, the flavonoid α-naphthoflavone, although well 
known to activate CYP3A4[36], may also inhibit the enzyme[37], 
depending on the CYP3A4 substrate.  In a recent report, 
substrate-dependent phenomena were found for ginsenosides’ 
effects on CYP3A[38].  Until now, the mechanism of substrate-
dependent modulation of CYP3A activity remained unclear.  
The relatively large active site cavity and the conformational 
flexibility of CYP3A were considered the major causes of these 
phenomena[39, 40].  CYP3A can bind multiple ligands simulta-
neously, resulting in changes in the affinity of the substrate-
binding site for different substrates[26].  This multiple ligand-
binding property may contribute to the complex substrate-
dependent effects, but whether conformational changes 
occurred simultaneously was unknown.  In the case of erlo-
tinib, further investigation was needed to explore the molecu-
lar and structural basis of these substrate-dependent effects.  

The substrate-dependent effects of erlotinib on CYP3A point 
to the need for greater attention to the safety of combined 
medications.  In the case of heteroactivation, the clearance of 
the interacting drug would increase.  Alternatively, if erlotinib 
inhibited the metabolism of the interacting drug, the AUC of 
the latter drug would increase.  In either case, a different DDI 
might occur and possibly cause harm to the patient.  When 
substrate-dependent effects may be present, it is prudent 
to employ a testing strategy using several probe substrates 
to evaluate the DDI potential[41, 42].  Moreover, CYP3A4 and 
CYP3A5 are the most abundant members of the CYP3A 
subfamily.  A recent study has shown significant differ-
ences between the heteroactivation potential of CYP3A4 and 
CYP3A5 for CYP3A-mediated carbamazepine 10,11-epoxida-
tion[43].  Inhibitors of CYP3A usually have different poten-

cies for inhibition of CYP3A4 and CYP3A5 in terms of both 
reversible and irreversible inhibition[44, 45].  Thus, the different 
expression levels of CYP3A4 and CYP3A5 may contribute to 
interindividual variability in erlotinib interactions.

The time-dependent inhibition of CYP3A was found to be 
substrate independent.  After preincubation, erlotinib showed 
enhanced inhibition activity for the midazolam 1’-hydroxyla-
tion, testosterone 6β-hydroxylation and nifedipine oxidation 
reactions (Figure 3).  The TDI parameters (KI and kinact) were 
6.3 μmol/L and 0.035 min-1, 9.0 μmol/L and 0.045 min-1 and 
10.1 μmol/L and 0.058 min-1, respectively, for the midazolam 
1’-hydroxylation, testosterone 6β-hydroxylation and nife-
dipine oxidation reactions.  When midazolam was used as 
the probe substrate, the following similar inactivation kinetic 
parameters were reported by Li et al[46]: kinact=0.09 min-1 and 
KI=22 μmol/L.  The discrepancy in parameters may be due to 
the differences between labs.  It should be noted that tyrosine 
kinase inhibitors such as dasatinib have been reported to 
inhibit CYPs via generation of reactive intermediates[47, 48].  
Recently, the bioactivation of erlotinib was also reported; in 
that study, reactive epoxide and quinone-imine electrophiles 
were detected, providing a possible mechanism for the time 
dependent inhibition of CYP3A[46].  

Based on the results shown above, the conflicting data 
about the effect of erlotinib on CYP3A can be explained as fol-
lows.  First, without preincubation the action of erlotinib on 
CYP3A was substrate dependent (Figure 3).  Erlotinib stimu-
lated the formation of 1’-hydroxymidazolam[15].  Second, the 
time-dependent inhibition of CYP3A was actually substrate 
independent (Figure 3).  In the cell-based CYP3A activity 
assessment method by Harmsen et al, the cells were cultured 
in medium containing erlotinib for two consecutive days 
before measurement of the formation of 1’-hydroxymidazo-
lam[16].  During the 2-d culture period, time dependent inhibi-
tion of CYP3A could occur, thus decreasing the formation of 
1’-hydroxy midazolam.

Using the kinetic information we obtained regarding the 
reversible and time-dependent inhibition of CYP enzymes, 
the in vivo DDI magnitude of erlotinib was extrapolated.  For 
the reversible inhibition of CYP3A and 2C8, even using a 
dose of 150 mg/d and an fm of 1, the increase in the AUC was 
predicted to be no more than 10%.  On the contrary, the AUC 
was predicted to increase significantly even with the lower 
oral dose and the smaller fm when adopting the TDI predic-
tion equation.  The DDI potential of erlotinib on phase II UDP-
Glucuronosyltransferases has been evaluated previously[17].  
The maximum increase in AUC was estimated to be less than 
50% for drugs predominantly cleared by UGT1A1, even at a 
dose of 150 mg/d.  Therefore, time-dependent inhibition of 
CYP3A might be one of the most important factors leading to 
clinical DDIs.  

Conclusion
In conclusion, our results demonstrate that the action of erlo-
tinib on CYP3A was substrate dependent.  It stimulated the 
metabolism of midazolam and inhibited the formation of 
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6β-hydroxy testosterone and oxidized nifedipine.  In contrast, 
the time-dependent inhibition of erlotinib on CYP3A was 
substrate-independent.  Moreover, the time-dependent inhibi-
tion of CYP3A was a possible reason for clinical DDIs related 
to erlotinib.  Cancer patients often receive multiple concur-
rent medications and should be carefully monitored for pos-
sible DDIs.  A better understanding of the modulatory effects 
of erlotinib on the major CYP isoforms could inform clinical 
safety evaluations of drug combinations.  
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