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Interleukin-17 and its expanding biological functions

Sheng Xu and Xuetao Cao

Interleukin-17 (IL-17) and IL-17-producing cells have been shown to play important roles in inflammation and the immune response.

IL-17 is believed to be mainly produced by T helper 17 (Th17) cells, a unique helper T-cell subset different from Th1 and Th2 cells.

Other subsets of T cells such as cdT and natural killer T (NKT) cells have also been found to produce IL-17 in response to innate stimuli.

IL-17 acts as a proinflammatory cytokine that can induce the release of certain chemokines, cytokines, matrix metalloproteinases

(MMPs) and antimicrobial peptides from mesenchymal and myeloid cells. This leads to the expansion and accumulation of neutrophils

in the innate immune system and links innate and adaptive immunity in vivo. Furthermore, increasing evidence indicates that IL-17

and IL-17-producing cells are involved in the pathogenesis of various diseases such as allergies, autoimmune diseases, allograft

transplantation and even malignancy. They may also play protective roles in host defense against infectious diseases and promote

induction of cytotoxic T lymphocyte (CTL) responses against cancer. Targeting of the IL-17 axis is under investigation for the treatment

of inflammatory disorders.
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INTRODUCTION

Interleukin-17A (IL-17A), discovered in 1993, is a prototypic member

of the newest subclass of cytokines, which differ from the known

cytokine families.1–3 It is recognized as an inflammatory cytokine

and exerts its function mainly on myeloid cells and mesenchymal cells

to induce the expression of granulocyte colony-stimulating factor (G-

CSF), IL-6 and certain kinds of chemokines, which in turn increase

granulopoiesis and recruit neutrophils to the infectious site.4

However, it was originally thought to be of minimal importance

because it lacked immediate effects on T and B cells.

Mosmann and Coffman introduced the concept of distinct types of

helper T cells in 1986, which was based on the types of cytokines that T

cells preferentially produce when they are stimulated5 (Figure 1).

When naive T cells are activated in the presence of IL-12, they differ-

entiate into T helper 1 (Th1) cells that produce large amounts of

interferon (IFN)-c and activate macrophages; these cells are respons-

ible for host defenses against intracellular pathogens. Cultured under

IL-4 conditions, naive T cells differentiate into Th2 cells, producing

IL-4, IL-5 and IL-13 and activating eosinophils; these cells are respons-

ible for host defenses against extracellular pathogens.5 More recently,

transforming growth factor (TGF)-b and IL-6 together were shown to

trigger the production of IL-17A from CD4 T cells, thus designating a

third helper T-cell subset as Th17 cells. Since then, IL-17A, the canon-

ical cytokine of Th17 cells, has attracted much more attention. In

addition to Th17 cells, several cell types are described as sources for

IL-17, including cdT, natural killer T (NKT), CD8 T and lymph tissue

inducer cells. IL-17 and IL-17-producing cells exert various functions

in host defense and pathological conditions. Here, we will summarize

the biological characteristics of IL-17 and its roles in allergic diseases,

autoimmune disorders, host defense and malignancy.

IL-17 AND ITS RECEPTORS

IL-17 is a proinflammatory cytokine that was identified almost two

decades ago. The gene encoding IL-17 was first described and cloned

by Rouvier1 from a murine cytotoxic T lymphocyte hybridoma cDNA

library in an attempt to screen for cytotoxic T lymphocyte (CTL)-

associated transcripts, and thus named CTLA-8 (CTL antigen-8).

Subsequently, the homologous T lymphotrophic viral Herpesvirus sai-

miri gene 13 was recognized to have 58% homology with CTLA-8.2

Human and rat homologs were identified later.3 Both have cytokine

like activity but no homology to other known cytokine families. At the

same time, a CTLA-8-binding receptor was cloned and shown to be

unique compared with other known cytokine receptors.2 Thus, these

factors represent a new cytokine family, and were designated IL-17

or IL-17A. Human IL-17 is a homodimeric glycoprotein consisting of

155 amino acids with a molecular weight of about 35 kDa.2

Homology-based cloning has revealed an additional five homologous

cytokines, termed IL-17B to IL-17F,4 which all form homodimers to

exert their biological functions.

Among the IL-17 family members, IL-17F has the highest homology

(60%) with IL-17A.6 The genes encoding IL-17A and IL-17F are

closely clustered on chromosome 1A4 in mouse and 6p12 in human.5

There are no reports of discordant expression of IL-17A and IL-17F,9

strongly implying similarity both in regulation and biological func-

tion. The function and regulation of IL-17F has been well reviewed

elsewhere by Chang and Dong.10 Recent studies have revealed that
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IL-17A and IL-17F can be secreted as homodimers as well as hetero-

dimers, and the IL-17A/F heterodimer is more potent than IL-17F but

less than IL-17A in inducing chemokine expression.7,8 The functions

of other members of this family remain poorly characterized, with IL-

17E (or IL-25) shown to be mainly a Th2-promoting cytokine.16

The IL-17 receptors also constitute a distinct family of cytokine

receptors; the family includes IL-17RA, IL-17RB, IL-17RC, IL-17RD

and IL-17RE,17 all of which are type I transmembrane proteins. IL-

17RA (or IL-17R) was the first described IL-17 receptor,2,19 and it

binds IL-17A with higher affinity than IL-17F in human. IL-17RA

appears to be ubiquitously expressed in hematopoietic tissues,2,18

various myeloid cells, epithelial cells, fibroblasts, endothelial cells,

epithelial cells and osteoblasts.11 Unlike other cytokine receptors, the

IL-17RA subunits are preassembled on the plasma membrane before

ligand binding, enabling it to respond rapidly and specifically to its

ligand.20 Although the precise receptor complex of IL-17A has not

been clearly elucidated, the IL-17A receptor consists of at least two

IL-17RA subunits and one IL-17RC subunit.13,14 IL-17F and IL-17A/F

also exert their activity via the IL-17RA and IL-17RC heteromeric

complex, although the binding affinity of IL-17F to IL-17RC is much

stronger than to IL-17RA.12 IL-17RC has several splice isoforms and

cannot induce signaling in the absence of IL-17RA.21 Depletion of IL-

17RA completely abrogates the activity of IL-17A and IL-17F in

mice.15 However, the way in which these receptors are paired to medi-

ate signal or whether there are unknown subunits that cooperate with

IL-17RA is not known. Thoroughly defining the cooperation of IL-17

family cytokines and their receptors is therefore important to fully

understand their biological functions and to allow their application

in clinical therapy.

SIGNAL TRANSDUCTION OF IL-17

Analysis of precise mechanisms for IL-17 signaling has been very dif-

ficult, as IL-17 is a unique cytokine with no homology to any other

known cytokine families. Early studies showed that IL-17 could acti-

vate the nuclear factor (NF)-kB pathway,2 but the proximal activator

of NF-kB was unknown for a long time. IL-17A induces proinflam-

matory gene expression just resembling TLR ligands, and TLRs are

preassembled before ligand binding, implying that they may share

some characteristics. Tumor-necrosis factor receptor-associated fac-

tor 6 (TRAF6), which is a key adaptor in the TLR- and IL-1R-signaling

cascades, was shown to be indispensable in IL-17A-mediated NF-kB

activation,22 as fibroblasts from Traf62/2 mice are unresponsive to

IL-17A stimuli. Nonetheless, the intermediate adaptor between IL-

17RA and TRAF6 remained unknown.

The key breakthrough occurred in 2003 by use of a bioinformatics

algorithm. A conserved ‘SEFIR’ (short for SEF/IL-17R) domain in the

cytoplasmic tail of all IL-17Rs was identified,23 which has similarity to

the ‘Toll/IL-1R (TIR)’ domain in TLRs and IL-1Rs and is critical for

the recruitment of myeloid differentiation factor 88, TIR domain-

containing adaptor protein-inducing IFN-b and other factors.

Deletion or point mutation of this domain in IL-17RA impairs the

activation of NF-kB by IL-17A.24 Further analysis revealed that SEFIR

lacks the BB-loop,23 the crucial specificity component of TIR domains,

perhaps explaining why it cannot engage TLR-associated adaptors24,25

and suggesting the existence of different intermediates. However, a

region called TIR-like loop is only found at the C-terminal of SEFIR of

IL-17RA.24 This may explain why IL-17RA functions as a common

subunit to all other IL-17Rs in the family. Subsequently, ACT1 (also

known as CIKS), an activator of NF-kB that previously linked to B cell-

activating factor and CD40L signaling, was found to contain a SEFIR

domain.23 It is recruited within minutes after IL-17A stimulation and

binds IL-17RA through SEFIR-dependent interactions.25,26 Moreover,

ACT1 contains a TRAF6-binding motif and thus has the ability to bind

TRAF6 and TGF-b-activated kinase 1 to deliver downstream signals,

resulting in activation of the canonical NF-kB pathway. Deficiency in

Act1 renders cells unresponsive to IL-17A,26 strongly suggesting its

Figure 1 Helper T-cell subsets in host defense and immune responses. After being activated by antigen-presenting cells, naive CD4 T cells undergo clonal expansion

and differentiate into different subsets of functional effector Th cells. IL-12 initiates the differentiation of Th1 cells, which is characterized by high production of IFN-c,

which act on macrophages and CTLs and are indispensable for cellular immunity and clearing intracellular pathogens. IL-4 triggers the differentiation of Th2 cells,

which is characterized by production of IL-4, IL-5 and IL-13, which act on B cells, eosinophils and mast cells, and are responsible for humoral immunity and clearing of

parasites. Recently, TGF-b plus IL-6 was demonstrated to initiate the programming of the third Th cell subset, Th17 cells, which are characterized by the production of

IL-17A/F, IL-21 and IL-22. Th17 cytokines can stimulate the expansion and recruitment of PMN, and are critical in autoimmune diseases such as MS and RA and in

host defenses against fungi and some extracellular pathogens. CTL, cytotoxic T lymphocyte; IFN, interferon; MS, multiple sclerosis; PMN, polymorphonuclear

leukocytes; RA, rheumatoid arthritis; TGF, transforming growth factor; Th, T helper.
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essential role in downstream signaling of IL-17RA. Consequently, the

ACT1/TRAF6/NF-kB pathway has now been elucidated and may be

the most important signal pathway of IL-17A (Figure 2).

ACT1 can also activate the mitogen-activated protein kinase path-

way. Generally, extracellular signal-regulated kinase is the most

strongly and rapidly phosphorylated mitogen-activated protein kinase

member following ACT1 activation, and these extracellular signal-

regulated kinases as well as p38 act to stabilize several mRNAs,

especially those encoding proinflammatory cytokines and chemo-

kines,29,31 through the inhibition of destabilizing proteins. Surpri-

singly, TRAF6 was shown to be dispensable in this process.27 CCAAT/

enhancer-binding protein (C/EBP) transcription factors, specifically

C/EBP-b and C/EBP-d, are involved in the induction of IL-6 express-

ion.28 ACT1 is required for the transcription of C/EBP-d but is not

essential for C/EBP-b.24 Additional mechanisms independent of

ACT1 have also been recently implicated in IL-17A signaling in human

airway epithelial cells. In this pathway, IL-17A activates Janus kinase-

mediated phosphatidylinositol 3-kinase and subsequently inactivates

glycogen synthase kinase-3b.30 Thus, the IL-17 signaling pathway is far

from been fully understood (Figure 2).

BIOLOGICAL FUNCTION OF IL-17 IN INNATE IMMUNITY

The biological functions of IL-17 have been extensively studied since

its discovery (Figure 3). Mesenchymal cells and myeloid cells were

shown to be the major targets of IL-17. Its target genes include

proinflammatory cytokines, hematopoietic cytokines, chemokines,

antimicrobial peptides and tissue-remodeling substances, depending

on the cell type and disease model. Its effects on neutrophil expansion

(through G-CSF) and chemotaxis (through CXC chemokines) are

considered its characteristic roles, though less is known of its direct

actions on lymphocytes.

Most experiments suggest that IL-17 induces tissue inflammation

mainly by stimulating expression of several proinflammatory cyto-

kines including IL-6, TNF-a, G-CSF, granulocyte–macrophage CSF

(GM-CSF)and others. IL-6 was the first identified gene target of IL-

17,2 and this mechanism has since been used as a bioassay for IL-17A.

IL-6 is also essential for the de novo differentiation of Th17 cells, which

suggests a positive feedback circuit induced by IL-17. In addition to

IL-6, IL-17 also induces production of other proinflammatory cyto-

kines, such as TNF-a and IL-1b,32 and, by targeting cyclooxygenase 2

and inducible nitric oxide synthase, can trigger an increase in pros-

taglandin E2 and NO in various cell types.35,36 Stimulation with IL-17

also induces the production or release of at least two different CSFs, G-

CSF and GM-CSF.33,34 Ectopic expression of IL-17 caused a strong

expansion of neutrophil lineage or neutrophilia through G-CSF, and

neutralization of IL-17 is associated with granulopenia defects and

susceptibility to infection.

In addition to inflammatory cytokines, another major group of IL-

17 target genes are chemokines, especially the CXC chemokines,

including CXCL1 (keratinocyte/growth-regulated oncogene-a),

Figure 2 Signal pathways of IL-17. The IL-17R complex is composed of two IL-17RA and one IL-17RC; both subunits encode SEFIR domains. After activation, the

intracellular IL-17 signaling includes ACT1-dependent and -independent downstream pathways. Left: the ACT1-dependent pathway: IL-17RA engages its SEFIR

domain to recruit the adaptor protein ACT1. ACT1 contains a TRAF6-binding motif and can bind TRAF6, TRAF3 and TAK1, which subsequently leads to activation of

the canonical NF-kB pathway. ACT1 is also required for the activation of MAPK p38, and this pathway leads to the stabilization of mRNAs, particularly those encoding

chemokines and cytokines. Right: the ACT1-independent pathway involves JAK1 and PI3K, followed by subsequent inactivation of GSK-3b. Both ACT1-dependent

and -independent pathways contribute to the activation of transcription factors C/EBP-b and C/EBP-d. ACT1, nuclear factor-kB activator 1; C/EBP, CCAAT/enhancer-

binding protein; GSK-3b, glycogen synthase kinase-3b; JAK1, Janus kinase 1; MAPK, mitogen-activated protein kinase; NF-kB, nuclear factor-kB; PI3K, phospha-

tidylinositol 3-kinase; SEFIR, SEF/IL-17R; TAK1, TGF-b-activated kinase 1; TRAF6, tumor-necrosis factor receptor-associated factor 6.
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CXCL2 (macrophage inflammatory protein 2), CXCL5, CXCL8 (IL-

8), CXCL10 (IFN-inducible protein 10), and others.5,31 These chemo-

kines potentially mediate the biological function of IL-17 by attracting

neutrophils in vivo. In mice, the key target chemokines are CXCL1 and

CXCL5,37–39 whereas CXCL8 may be the most important IL-17-

induced neutrophil chemokine in humans.40 Overexpression of

IL-17 in the lung leads to neutrophil infiltration mediated by both

chemotaxis and G-CSF-induced granulopoiesis.46 IL-17 can also

stimulate the expression of some CC chemokines such as CCL2

(monocyte chemotactic protein 1) and CCL20 (macrophage inflam-

matory protein 3a).41,42 Monocyte chemotactic protein 1 enables IL-

17 to cause accumulation of monocytes, but this mechanism remains

to be characterized. CCL20 is the ligand of CCR6, which is selectively

expressed by Th17 cells,43 indicating another positive feedback loop

for IL-17 by recruiting more IL-17-producing cells to inflammatory

sites. Additionally, it is interesting that the ability of IL-17 to induce

expression of chemokines and cytokines can be enhanced by costimu-

lation with TNF-a or IL-1b.28,44 We (data not published) and others45

have also demonstrated that IL-17 exhibits potent synergic function

when stimulated with TLR ligands such as lipopolysaccharide.

In addition to proinflammatory cytokines and chemokines, IL-17

also promotes expression of various antimicrobial peptides. For

example, b-defensin and some S100 proteins, which act as natural

antibiotics in the lung, skin and gut,48 are significantly induced by

IL-17 in epithelial cells,47,49 providing protection against a broad spec-

trum of microorganisms. Recent reports revealed that b-defensin can

function as a ligand for CCR6, linking innate and adaptive immunity

by recruiting dendritic cells (DCs) and T cells.52 Furthermore, acute

phase proteins such as lipocalin 2/24p3 are induced by IL-17.50,51

Lipocalin 2/24p3 exerts its antimicrobial function by binding to bac-

terial siderophores that are necessary for bacterial survival in vivo.53

Certain kinds of tissue remodeling-associated molecules may also

be induced by IL-17 stimulation. Elevated levels of IL-17 are found in

synovial fluids from patients with rheumatoid arthritis.54 IL-17 can

increase membrane expression of receptor activator of NF-kB ligand

in osteoblasts,55 which in turn promotes osteoclastogenesis and sub-

sequent bone destruction. In addition, Th17 cells themselves produce

higher levels of receptor activator of NF-kB ligand than other T-cell

subsets. Inflammatory cytokines such as TNF-a and IL-1b augment

the activity of IL-17 and further cause bone erosion. Overexpression of

Figure 3 Biological activities of IL-17. Th17, cdT, NKT, CD8 T, and LTi cells are cellular sources of IL-17. IL-17, in turn, can induce the production of various molecules

(including chemokines, cytokines, growth factors, antimicrobial peptides and tissue remodeling enzymes) in epithelial cells, endothelial cells, fibroblasts, osteoblasts,

macrophages and DCs. IL-17 can also exert its functions on B and T cells. For B cells, IL-17 can promote the survival and expansion of B cells and the differentiation of

B cells into antibody producing plasma cells. IL-17 can also inhibit IFN-c production by targeting T-bet expression. COX2, cyclooxygenase 2; DC, dendritic cell; G-CSF,

granulocyte colony-stimulating factor; GM-CSF, granulocyte–macrophage colony-stimulating factor; IFN, interferon; iNOS, inducible nitric oxide synthase; LTi, lymph

tissue inducer; MMP, matrix metalloproteinase; NKT, natural killer T; Th, T helper; TNF, tumor-necrosis factor.
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IL-17 at the articular site results in joint erosion, whereas IL-17-

deficient mice are protected from bone destruction.56 Matrix metal-

loproteinases (MMPs), including MMP1, MMP3, MMP9 and

MMP13, are also targets of IL-17. They play important roles in extra-

cellular matrix destruction and tissue damage and are essential in

tumor angiogenesis.

Besides these functions of IL-17 on non-lymph linage cells, IL-17

was recently also shown to regulate functions of lymphocytes. In a

mouse model of autoimmune BXD, exacerbated IL-17 secretion

caused spontaneous development of germinal centers before the pro-

duction of pathogenic autoantibodies. Blocking IL-17 signaling

disrupts germinal center formation and reduces humoral responses.60

IL-17 alone or in combination with B cell-activating factor promotes

human B-cell survival, proliferation and differentiation into immuno-

globulin-secreting cells. This process is dependent on the NF-kB-

activated transcription factor Twist-1.61 On the other hand, T cells

are not only the source but also a target of IL-17. IL-17 can modulate

Th1 cell polarization both in vitro and in vivo by directly acting on CD4

T cells to suppress T-bet expression.62

CELL SOURCES AND REGULATION OF IL-17

Although its mRNA was discovered in a CTL hybridoma, IL-17A was

originally associated with CD4 T cells, where IL-23 stimulates its pro-

duction from memory CD4 T cells.57 This led to the discovery of IL-

17-producing Th17 cells, a distinct helper T-cell subset different from

Th1 and Th2 cells.58,59 This Th cell linage was recognized as the major

source of IL-17 in vivo. Subsequently, three independent studies

demonstrated that a combination of TGF-b and IL-6 is required for

their de novo differentiation from naive T cells in mice.65–67 In addi-

tion, even induced regulatory T (Treg) cells could be reprogrammed

to the Th17 lineage in the presence of IL-6 plus TGF-b after 5 days.81

Retinoic acid-related orphan receptor-ct (ROR-ct) was identified as

the linage specific transcription factor for Th17 cells,69 as T-bet and

GATA-3 are the lineage specific transcription factors for Th1 and Th2

cells, respectively.70,71 Another ROR family member, ROR-a, had a

similar and redundant effect in promoting Th17 cell differentiation, as

mutation of both ROR-a and ROR-ct completely inhibited Th17 cell

generation in vitro and in vivo.74 Importantly, loss of STAT3, which is

downstream of IL-6 and IL-21 signals, markedly decreased ROR-ct

and ROR-a expression and impaired Th17 differentiation. By con-

trast, a hyperactive form of STAT3 facilitated IL-17 production in CD4

T cells.77,107 Other transcription factors are also involved in the full

differentiation of Th17 cells, including IFN regulatory factor 4 and

runt-related transcription factor 1.75,76 Further studies revealed that

IL-23 is not required for Th17 differentiation, but can promote the

growth, survival and effector function of this lineage.72,73 IL-21 can

substitute for IL-6, and constitutes an alternative pathway to generate

Th17 cells in IL-6-deficient mice.68 In addition, IL-21 can be secreted

by Th17 cells themselves, thus comprising an autocrine amplification

loop in Th17 cell differentiation. Th17 cells also produce a certain

amount of other cytokines such as IL-17F and IL-22. Development

of human Th17 cells is analogous to mice,79 although IL-1b rather

than IL-6 plays a more important role.78 Coexpression of the chemo-

kine receptors CCR4 and CCR6, which mediate cell homing to muco-

sal surfaces such as the lung and gut, appears to define human Th17

cells.80

Almost all of the Th17 polarizing cytokines such as IL-1b, IL-6,

TGF-b and IL-23 are induced in DCs activated by different kinds of

stimulation. Which subset of DCs or what kind of stimulation orches-

trates Th17 cell programming is still largely unknown. In vivo, the

IL-17 producing cells mainly exist in the lamina propria. A unique

subset of DCs that express high levels of CD70, which are selectively

present in the lamina propria but not in spleen or lymph node, have

been shown to be responsible for Th17 differentiation.63 However,

other CD1031 DC subsets in the lamina propria inhibit Th17 but

facilitate Treg generation in a retinoic acid-dependent mechanism.64

b-glucans, a component of fungus cell walls, preferentially induce

IL-23 over IL-12 from DCs,109 which specifically drives Th17

differentiation.

As Th17 cells and IL-17 have pathogenic properties due to the

induction of inflammatory pathways, the generation of Th17 cells is

tightly regulated. First, both Th1 and Th2 cytokines negatively regulate

Th17 development.58,59 Type I IFNs suppress the generation of Th17

through STAT1 signaling. Similarly, STAT5 signaling induced by IL-2

also inhibits differentiation of Th17 cells, while facilitating the induc-

tion of Treg cells.83 Other inhibitory molecules include IL-10, IL-27,

retinoic acid and the transcription factor Ets-1.82 Finally, Th17 cells

were shown to produce the inhibitory cytokine IL-10 with IL-17,

which prevents Th17-mediated immune pathogenesis.89

Although most of the recent studies have focused on IL-17 produced

by T-cell antigen receptor-ab1 Th17 cells, cdT cells have been shown

to be another potent producer of IL-17, especially during the early

innate immune responses. IL-23 alone can induce IL-17 from cdT cells,

while TGF-b plus IL-6 cannot.84 Two subsets of cdT cells were shown

to preferentially produce IL-17: Vc6Vd1 and Vc4Vd4.84–86 Recently,

Sutton et al. have shown that DCs, after activation by TLRs, could

secrete large amounts of IL-1 and IL-23, which could subsequently

induce innate IL-17 production from cdT cells without engagement

of T-cell antigen receptor signals.87 These IL-17-producing cdT cells

also share characteristic features with Th17 cells, such as expression of

CCR6, ROR-ct and the IL-23 receptor.88 They also express TLRs such

as TLR1 and TLR2, and thus can directly respond to pathogen pro-

ducts. When under inducing signals, cdT cells can be rapidly induced

to proliferate and produce innate IL-17 much earlier than the forma-

tion of adaptive Th17 cells. These cdT cells show no antigen specificity,

implying a different role to Th17 cells in the immune response. Our

unpublished data further show that the Th1 cytokine IFN-c negatively

regulates IL-17 production from cdT cells.

A variety of other T cells can also produce IL-17, including CD8 T

cells and NKT cells. IL-17 production from CD8 T cells appears to be

dependent on TGF-b plus IL-6.91 NKT cells constitutively express the

IL-23 receptor and ROR-ct and rapidly produce IL-17 in an IL-6-

independent manner.90 Furthermore, other innate immune cells such

as neutrophils and macrophages also produce IL-17.92,93 Recently,

lymph tissue inducer cells, which are essential in the formation of

lymph tissue and are now defined as a subset of natural killer cells,

also constitutively express ROR-ct and IL-17.94 The biological func-

tions of these IL-17-producing cells have yet to be fully determined.

IL-17 IN DISEASES

Roles of IL-17 in allergy

Accumulating data suggest that IL-17 or Th17 play important roles in

the development of various allergic diseases that have classically been

considered to be Th1- or Th2-mediated disorders. Allergic asthma is

classified into two types: atopic and non-atopic asthma. Atopic

asthma is a Th2-dominated chronic inflammatory disease in the lungs,

which is characterized by accumulation and activation of Th2 cells,

eosinophils and mast cells, and increased immunoglobulin E (IgE)

levels in the serum. Non-atopic asthma is characterized by accumula-

tion of IL-81 cells, neutrophils and mast cells without an increased
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serum IgE. IL-17 was reported to be increased in the lung, sputum,

bronchoalveolar lavage fluid (BALF) and serum in asthmatic patients,

and IL-17 levels correlated well with the severity of airway hypersensi-

tivity.113 However, the type of asthma was not clearly differentiated.

Immunization of a mouse with ovalbumin (OVA), fungal antigens

and cockroach antigens before challenge is a well-established model

for Th2-dominated atopic asthma. In IL-17-deficient mice or mice

with IL-17 neutralized, the airway hyperreactivity and pulmonary

eosinophilia induced by OVA plus aluminum were shown to be nor-

mal,114,115 although an increase in Th2 cytokines and decreased neu-

trophil infiltration was also observed. Repeated OVA immunization

without adjuvant in IL-17-neutralized mice also resulted in a normal

number of eosinophils in the BALF,117 though with reduced neutro-

phil influx. However, when a subcutaneous sensitization route was

used, IL-17RA-deficient mice had reduced Th2 cytokines and

impaired eosinophil recruitment.116 This was shown to be due to

reduced antigen-specific Th cells during the sensitization phase.

These disparate experimental outcomes may be due to different adju-

vants, immunization routes and mouse backgrounds. Nonetheless, it

is generally recognized that IL-17 makes little contribution to the

induction of Th2-mediated and eosinophil-dominated atopic asthma.

By contrast, IL-17 has been clearly shown to play a key role in

neutrophil-dominated non-atopic asthma. DO11.10 or OT II trans-

genic mice exhibited neutrophil- rather than eosinophil-dominated

airway inflammation and airway hyperreactivity after OVA inhalation

without prior sensitization. Th1 and Th17 cells were increased in the

BALF, but neutralizing IFN-c did not affect neutrophil recruit-

ment.119 IFN-c-deficient OT II mice even showed increased neutro-

philila,118 suggesting a protective role of IFN-c in this model.

Nonetheless, the neutrophilia was profoundly suppressed in IL-17-

deficient OT II or DO11.10 mice,118 and adoptive transfer of

DO11.10 Th17 cells also resulted in recruitment of neutrophils to

the lung.7 These observations revealed that IL-17 or Th17 cells are

responsible for the airway inflammation in a mouse model of non-

atopic asthma.

Contact hypersensitivity (CHS) has long been regarded as a

delayed-type hypersensitivity reaction; recently, however, they have

been discriminated. CD8 T cells were shown to be the effector cells

in CHS, while CD4 T cells only contribute to delayed-type hypersensi-

tivity responses. Chemically induced CHS developed normally in IFN-

c- and IFN-cR1-deficient mice,120,121 indicating that IFN-c is not

essential for CHS. However, the responses are impaired in IL-17-defi-

cient mice.114 Furthermore, IL-17-producing CD8 T cells rather than

T cytotoxic type 1 cells are suggested to be involved in the process.122

Th clones established from allergic CHS patients can also produce IL-

17. Thus, IL-17 may, at least partially, contribute to the development

of CHS.

Roles of IL-17 in autoimmune diseases

The concept of Th17 or IL-17 immunity emerged from studies in two

models of autoimmune diseases: experimental autoimmune encepha-

lomyelitis (EAE), a well-established model for human multiple scler-

osis, and collagen-induced arthritis (CIA), which models human

rheumatoid arthritis. These were thought to be Th1 cell-mediated

diseases, as IL-12p40 deficiency dramatically attenuated disease sever-

ity. However, mice treated with anti-IFN-c or mice deficient in IFN-c

or IFN-cR1 also developed aggravated EAE and CIA. This paradox was

resolved when Cua123 and Murphy124 both independently used p35

(IL-122/2)-, p19 (IL-232/2)- and p40 (IL-122/2/IL-232/2)-deficient

mice to induce EAE or CIA. IL-23-deficient (p192/2) mice showed

dramatically attenuated disease development, indicating that IL-23

rather than IL-12 is critically linked to the pathogenesis of EAE and

CIA. Exacerbated IL-17 producing CD4 T cells were also observed in

the central nervous system in the EAE model.125 Further studies

revealed that neutralization of IL-17 or IL-17 deficiency rendered

the mice resistant to EAE induction126 and impaired joint inflam-

mation.127,128 Adoptive transfer of pathological Th17 cells, but not

Th1 cells, from established EAE mice also re-established EAE in recipi-

ent mice.125 Taken together, these data clearly suggested a central role

of IL-17 or Th17 cells in autoimmune disease development. Recently,

IL-17 production from cdT cells was also suggested to play an import-

ant role in EAE induction.87 cdT cells provide the early source of

innate IL-17, which could facilitate later adoptive Th17 cell generation

by induction of IL-6 and IL-23 secretion. Consistent with these obser-

vations, IL-17 expression has also been reported to be upregulated in

the cerebrospinal fluids from multiple sclerosis patients and in the

synovial fluid of rheumatoid arthritis patients.129,132 Additionally, T

cells derived from these patients produced more IL-17 than healthy

controls.

The roles of IL-17 or Th17 in experimental autoimmune uveitis130

and experimental autoimmune myocarditis131 may be similar to that

in EAE. However, the conditions in another autoimmune disease—

inflammatory bowel disease, are more controversial. IL-17 levels were

found to be increased in the inflamed gut of patients with Crohn’s

disease and ulcerative colitis.133 The major sources of this IL-17 are

CD31 T cells and CD681 macrophages. In chemically induced experi-

mental colitis models, IL-17RA-deficient mice show resistance to col-

itis induced by intrarectal administration of trinitrobenzenesulfonic

acid.134 Additionally, administration of an IL-17RA/IgG1 fusion pro-

tein in wild-type mice significantly attenuated trinitrobenzenesulfonic-

induced colonic inflammation and prevented weight loss.135 These

data suggest a non-redundant role of IL-17A or IL-17F in this model.

Another chemical dextran sulfate sodium-induced colitis model

showed reduced pathology in IL-17F-deficient mice but a more severe

disease in IL-17A-deficient mice,136 indicating a protective role for IL-

17A and a pathogenic role for IL-17F. Naive CD4 T cell transfer can

also establish inflammatory bowel disease in lymphopenic mice. In this

model, adoptive transfer of Th17 cells resulted in more significant gut

inflammation than with Th1 cell transfer.137 Administration of an anti-

p19 monoclonal antibody prevented active colitis and reduced inflam-

matory cytokines in the gut.137 Adoptive transfer of naive CD8 T cells

into Rag2/2 mice caused proliferation and IL-17 and IFN-c produc-

tion from these cells, resulting in severe colitis. Lack of IL-17 or IFN-c

both attenuated the disease.138 Thus, IL-17 definitely orchestrates

pathogenesis of inflammatory bowel disease, either by facilitation of

or resistance to inflammation, depending on the different models used.

Roles of IL-17 in host defense

Components from various pathogens can induce IL-17 production

from various cell types, especially Th17 cells and cdT cells, implying

an indispensable role of IL-17 in host defense against infectious dis-

eases. IL-17 exerts its protective function mainly through the effective

recruitment and expansion of neutrophils mediated by CXC chemo-

kines and G-CSF induction.11 In addition, chemokines induced by IL-

17 can recruit other immune cells to the infection site, which may

provide another protection mechanism as well. Antimicrobial mole-

cules such as b-defensin, S100 and others can enhance host defense

at the mucosal site. Recent advances expanded our understanding of

the broad effects of IL-17 in protection against various bacteria,

fungi and virus infection.102 However, enhanced inflammation is a
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double-edged sword, and under certain infectious conditions, IL-17

may not provide protection, but it could also function to exacerbate

the pathogenic process. Thus, the exact role of IL-17 in host defenses

may depend on the pathogen species.

Emerging evidence supports the concept that IL-17 plays a protect-

ive role in extracellular bacterial infections. The first clues were gen-

erated in a respiratory Klebsiella pneumonia model.15,95 Although IL-

12 and IFN-c signaling have been shown to be critical for K. pneu-

monia infection, mice deficient in IL-17 signaling showed impaired

neutrophil recruitment and reduced bacterial clearance in the lung.

Overexpression of IL-17 by a recombinant adenovirus in IL-17-defi-

cient mice reversed the disease phenotype resulting in elevated che-

mokines, cytokines and increased neutrophil recruitment.96 These

conclusions can be extended to gut infection with Citrobacter roden-

tium, as IL-23 rather than IL-12 is required for host defense in the early

phase, and Th17 cells in the lamina propria are indispensable for

protection.66,97 Although IL-22 produced by Th17 cells was shown

to be more protective than IL-17, IL-17RA-deficient mice also showed

higher susceptibility to infection by porphyromonas gingivalis, an

anaerobic periodonatal pathogen of the oral mucosa.99

The biological functions of IL-17 in intracellular infections are

not well understood. Mycobacterium is the most commonly studied

model for host defense against intracellular infection. IL-17RA2/2,

IL-17A2/2 and IL-232/2 mice are no more susceptible than their

wide-type controls to Mycobacterium tuberculosis infection,97,100,101

suggesting protection mainly by the IL-12–IFN-c axis and the Th1

pathway. However, the induction of IL-17 after Salmonella typhi-

murium infection may contribute to neutrophil recruitment and

host defense.98 The absence of IL-17 signals increased bacterial dis-

semination from the intestine. In addition, the mice were protected

from respiratory infection with Mycoplasma pneumonia in the pres-

ence of IL-17 signals.104 We (unpublished data) and others105

revealed that intraperitoneal infection with Listeria monocytogens

could induce IL-17 production, with cdT cells being the main

source of IL-17, which was secreted 1 day post-infection.

Deficiency of IL-17 substantially reduced bacterial clearance assoc-

iated with decreased neutrophil infiltration. These studies show that

in models in which neutrophils are involved in protection, IL-17

may be critical for the full induction of immune responses and

influx of neutrophils leading to bacterial control, but it may have

no role in other models of intracellular infection.

Accumulating data suggest that IL-17 or Th17 cells may be pref-

erentially induced in fungal infections and may play important roles in

orchestrating host defenses against these fungi. Candida albicans is one

of the most studied models. It is a commensal pathogen in the oral

cavity and gastrointestinal tract but can cause pathogenic disease in

immunodeficient individuals. Interestingly, IL-17-producing mem-

ory CD4 T cells in humans were found to have a high frequency of

Candida-specific T-cell antigen receptors,80 suggesting a preferential

induction of IL-17 by this fungal infection. Higher susceptibility to

mucocutaneous Candida infections is observed in patients with hyper-

IgE syndrome, which results from a mutation in the STAT3 gene locus

and has reduced numbers of Th17 cells.107 In mice, IL-17 signals, but

not IFN-c or Th1 cells, are highly protective in oral C. albicans infec-

tion.106 In pulmonary defenses against Aspergillus fumigatus, the IL-

23–IL-17 axis has also been shown to be required for clearance of the

pathogen.108 b-glucans, a component of fungus cell walls, recognize a

C-type lectin receptor Dectin-1 on DCs and macrophages and pref-

erentially induce IL-23 over IL-12 production,109 resulting in Th17

differentiation and IL-17 secretion from cdT cells. Viral specific Th17

cells are also found in HIV and cytomegalovirus infection in humans,

suggesting a role for IL-17 in viral infections.110

Nonetheless, IL-17 or Th17 cells are not always protective in patho-

gen infection, as uncontrolled production of IL-17 may exaggerate

damage in infected tissues. For example, Helicobacter pylori infection

in the stomach induces robust IL-17 production and infiltration of

neutrophils in the gastric mucosa, which leads to pathogenic inflam-

matory responses and gastritis.103 In addition, Bordetella pertussis, a

Gram-negative bacteria in the respiratory system, may preferentially

induce IL-23 and inhibit IL-12 production,111 resulting in severe

inflammation, respiratory destruction and persistent cough. In

chronic granulomatous disease, heightened IL-17 production causes

lethal lung pathology.112 These findings indicate that the early induc-

tion of IL-17 during pathogen infection is protective. However, in

chronic infectious diseases, IL-17 appears to be dispensable for pro-

tection, and uncontrolled IL-17 production may even results in patho-

logy rather than protection.

Roles of IL-17 in malignancy

Rudolph Virchow postulated that chronic inflammation may facilitate

carcinogenesis and tumor growth in the 1800s. IL-17 is associated with

chronic diseases, suggesting a role in promoting carcinogenesis and

tumor growth. Indeed, human cervical cancer and murine fibrosar-

coma cells transfected with IL-17 show significantly increased tumor

formation in vivo in nude mice and C57BL/6 mice;139,140 however,

IL-17 has no direct effect on tumor proliferation in vitro. Exogenous

IL-17 expression in vivo can stimulate the secretion of vascular

endothelial growth factor, prostaglandin E1 and prostaglandin E2 in

murine fibroblasts and other cells, thus enhancing tumor angiogen-

esis.141 In addition, IL-17 can stimulate MMP expression, leading to

the extracellular matrix destruction that is necessary for angiogenesis.

Consistent with this, the growth of B16 melanoma and MB49 bladder

carcinoma cells is reduced in IL-17-deficient mice,142 and increased

numbers of intratumoral IL-17-producing cells correlate with poor

survival in hepatocellular carcinoma patients.147 IL-17 can induce IL-6

production, which in turn upregulates prosurvival and proangiogenic

genes in tumor cells.142 In another study, IL-17 derived from CD81 T

cells was shown to exert an antiapoptotic function directly on breast

cancer cells.148 These studies together suggest that IL-17 promotes

cancer via its antiapoptotic and angiogenic activities.

However, the growth of IL-17-transfected P815 and J558L cells in

immunocompetent mice was inhibited more significantly than mock

controls.143 This phenomenon is abrogated in nude mice, suggesting

that T cells contribute to the antitumor action of IL-17. Adoptive

transfer of in vitro generated tumor-specific Th17-polarized cells can

eradicate large established melanomas.144 Dong’s group145 elucidated

the mechanism of this action, showing that Th17 cells induce express-

ion of chemokines in the tumor site that recruit CD8a1 DCs and

generate more tumor antigen-targeted CTLs. The growth of MC38

colon adenocarcinomas was also suppressed in wild-type mice com-

pared with mice deficient in IL-17A.146 These studies showed an

opposite role of IL-17; specifically, they suggest an antitumor effect

through promoting effector CTL generation.

Thus, IL-17 plays multifactorial roles in tumor immunity. The pro-

survival effect on tumor growth or antitumor effects might depend on

the immunogenicity of the tumor, the immune status of the host and

the phase of the disease. We postulate that in the acute phase of tumor,

IL-17 may exert antitumor activity via the stimulation of tumor spe-

cific CTLs; however, when the disease reaches a chronic stage, the
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angiogenic activity of IL-17 begins to emerge, and the balance of CTL

formation and angiogenesis determines the outcome of tumors.

Roles of IL-17 in transplantation

Allograft transplantation is the best available treatment option for

many end-stage diseases of solid organs. However, the long-term suc-

cess of this procedure is limited due to allograft rejection. Allograft

rejection has been shown to be driven by Th1 subsets, but contradict-

ory results have been obtained. Loss of IFN-c in rodent heart and

kidney transplant recipients results in accelerated graft rejection and

increased parenchymal necrosis.149,150 Recent data suggest that IL-17/

Th17 cells may be the ‘missing piece’ in this process, especially during

acute rejection. In humans, increased IL-17 protein levels have been

detected in rejected renal allografts but undetectable in renal trans-

plant tissue without signs of rejection.151 In a rat renal allograft model,

IL-17 mRNA expression appeared on day 2 after operation, peaked at

day 5 and then declined, becoming undetectable by day 9.151 In cardiac

allograft transplantation, neutralization of IL-17 by an IL-17RA/IgG-

Fc fusion protein prevented acute rejection and prolonged both non-

vascularized and vascularized heart graft survival.153,154 By contrast,

IL-17 antagonism does not appear to prevent ensuing chronic graft

vascular diseases.155 More recently, IL-17 has been implicated in the

rejection of lung transplants. Elevated IL-17 is found in BALF from

patients with acute lung allograft rejection compared with those with-

out rejection.156 In addition, a population of collagen type V-specific T

cells expressing IL-17 was predisposed to obliterative bronchiolitis in

human lung transplants.157 Together with studies in liver153 and cor-

neal152 transplantation, these data reveal a disease-promoting role of

IL-17 or Th17 cells in the early stage of allograft rejection. IFN-c is a

negative regulator of Th17, and IFN-c deficiency may lead to increased

IL-17 production and neutrophil infiltration. These observations may

explain why IFN-c-deficient mice show accelerated allograft rejection.

Allogeneic bone marrow transplantation (BMT) is a potentially

curative therapy for various hematopoietic malignancies. Graft versus

host disease (GVHD) is the major complication of allogeneic BMT

and causes significant morbidity and mortality. Both Th1 and Th2

cells are involved in the pathology of GVHD. Significant numbers of

alloreactive CD41 donor T cells expressing IL-17 have been found in

the lymphoid organs of recipients of an allogeneic bone marrow trans-

plant.158 Although recipients of IL-172/2 CD4 T cells developed

GVHD at a slower rate than recipients of wild-type CD4 T cells, these

mice eventually succumbed to GVHD, and there was no difference in

overall survival by day 90 after BMT. This suggests that IL-17 only

mediates acute GVHD but does not influence the latent phase.

However, another group observed a protective role of IL-17.159 An

absence of donor IL-17 leads to augmented Th1 differentiation and

exacerbated acute GVHD. Thus, the real function of IL-17 in GVHD

remains largely unknown due to a limited number of reports in this

field.

PERSPECTIVES AND IMPLICATIONS

Since the identification of Th17 cells, much attention and progress has

been achieved in the understanding of the developmental and bio-

logical functions of the cytokine IL-17, the canonical product of Th17

cells. It is clear that IL-17 exerts a complicated role in allergenic dis-

ease, host defense, autoimmune diseases, malignancy and transplanta-

tion rejection. The impact of the Th17 pathway is likely to be more

profound than previously thought. The findings in preclinical animal

models have supported therapeutic approaches targeting the IL-17A

pathway, although these were limited to autoimmune disorders. In

principle, there are three strategies for modulating the IL-17 pathway:

blocking upstream of the pathway, blocking downstream of IL-17 or

neutralizing IL-17.

With respect to targeting IL-17, clinical trials are now being per-

formed or planned to evaluate an anti-IL-17A monoclonal antibody in

psoriasis, Crohn’s disease and rheumatoid arthritis.162 Additional

approaches being considered to inhibit IL-17 include using a soluble

IL-17RA/Ig fusion protein to block IL-17 ligands, using monoclonal

antibodies to block IL-17RA or IL-17RC, or a combination of the two.

We can also target upstream of IL-17 production, perhaps by inhib-

iting IL-23 or IL-6 signals and thus reducing IL-17 production.

Monoclonal antibodies against the p40 subunit are being tested in

phase-II clinical trials for patients with Crohn’s disease160 or psori-

asis,161 and have proven to be efficacious. All-trans retinoic acid and its

analogs can be tested to block IL-17 production in vivo in humans, as

this inhibits Th17 but facilitates Treg generation in mouse models. In

addition, using small molecules to inhibit the intracellular signaling

pathways of IL-17 is another approach to inhibit its biological activity.

The key adaptor ACT1 may be the best target, but these molecules have

not been identified.

In conclusion, we should always keep in mind the limitations of

targeting IL-17 in clinical therapy. The link between IL-17 targeting

and neutropenia is important, as this may affect the host defenses

against some pathogens. At least in mice, inhibition of IL-17 has been

associated with increased mortality from bacterial lung infections.

Cellular immunity has also been shown to be hindered by neutraliza-

tion of IL-17. Thus, IL-17 sits at the center of many diseases that

integrate innate and adaptive immune responses, and the efforts

to decrease the risk of infectious complications will allow effective

therapies for treating inflammatory disorders.
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