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Discovery of structurally diverse and bioactive 
compounds from plant resources in China
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This review describes the major discoveries of structurally diverse and/or biologically significant compounds from plant resources 
in China, mainly from the traditional Chinese medicines (TCMs) since the establishment of our research group in 1999.  In the past 
decade, a large array of biologically significant and novel structures has been identified from plant resources (or TCM) in our laboratory.  
The structural modification of several biologically important compounds led to more than 400 derivatives, some of which exhibited 
significantly improved activities and provided opportunities to elucidate the structure-activity relationship of the related compound 
class.  These findings are important for drug discovery and help us understand the biological basis for the traditional applications of 
these plants in TCM.
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Introduction
Natural products have long been used by humans, especially 
in the healthcare industry, providing us products from food 
supplements to chemical therapeutics to biological probes 
and beyond.  Natural products from both plants and microbes 
have had great success in past drug discovery programs[1, 

2].  Structural novelty and biological significance are the two 
major innovative elements of natural products chemistry and 
are also key issues for drug development.  The identification 
of natural compounds with novel structures and important 
biological activities, especially those possessing new carbon 
skeletons, has been the main challenge in the fields of natural 
products, organic synthesis and pharmacology.  Traditional 
Chinese medicines (TCM) medications are proven reservoirs 
of novel lead structures, including the well-known examples 
of artemisinin (an antimalarial)[3] and huperzine A (for AD 
treatment)[4, 5].  China has rich medicinal plant resources, and 
approximately 11 000 species have been documented, only 
approximately 30% of which have been chemically studied.  
We therefore view TCM plants as a promising resource for 
lead structures that deserve further investigation.  In depth 
chemical and pharmacological studies of TCM plants will also 

provide starting points for TCM development and standard-
ization.

In the past decade, chemical studies conducted in our 
research group have led to the isolation more than 2700 struc-
turally diverse compounds from 125 plants (most with appli-
cations in TCM or folk medicine), of which 650 compounds 
were new structures, and 63 compounds featured unprece-
dented carbon skeletons or possessed unique structural motifs.  
The biosynthetic origins of most of these compounds with 
new carbon skeletons or unique structural motifs were pro-
posed.  Biological tests on these isolates via collaboration with 
the pharmacological research groups both in our institute and 
in outside organizations revealed that 182 compounds were 
active in the tested assays, and a number of them showed 
significant bioactivities associated with fatal human diseases.  
The structural modification of a few of the most promising 
bioactive compounds or drug leads produced more than 400 
derivatives, 58 of which showed obviously improved activity.  
These studies also demonstrated the structure-activity rela-
tionship of the related compound classes.  The major research 
findings are summarized here.

Structurally diverse and novel alkaloids
Daphniphyllum alkaloids (Figure 1): The genus Daphniphyllum 
is mainly distributed in the southern Asia, with 10 species 
growing in China.  Some of these species have long been used 
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in TCM for the treatment of various disorders.  Daphniphyllum 
alkaloids possessing highly complex and polycyclic features 
have been a challenging topic in natural products and organic 
synthesis.  Since we published the first chemical studies on 
D subverticillatum in 2003, a total of 194 structurally complex 
alkaloids have been isolated from 9 species of Daphniphyl-
lum in our research group, 72 of which were novel structures.  
Among the novel compounds, 14 of them had new skeletons 
or possessed rearranged carbon frameworks[6–21].  Some alka-
loids showed strong cytotoxic activity[16].  

Daphnipaxinin (1)[8], the first diamino Daphniphyllum alka-
loid, was isolated from D paxianum.  The structure of 1 was 
determined by spectroscopic methods, and its absolute config-
uration was assigned by CD spectrum.  A series of structurally 
related Daphniphyllum alkaloids with an unusual degraded 
skeleton of C-22-noryuzurimine-type (2–5)[15, 16] were identi-
fied from D longeracemosum and D yunnanense.  Compound 
4 showed strong cytotoxic activities, with IC50 values of 3.0 
and 0.6 μmol/L against the tumor cell lines P388 and A549, 
respectively[16].  The discovery of daphnilongeranin A (6)[15], 
the first seco-10,17-longistylumphlline alkaloid from D longer-
acemosum, suggested that the hypothetical biosynthetic route 
proposed for daphnicyclidine A should be reconsidered.  The 

chemical investigation of D yunnanense also afforded the first 
C22-nor,10,17-seco-yuzurimine-type alkaloid, daphniyunnine 
B (7)[16], which represents the most degraded compound in the 
Daphniphyllum alkaloid class.

A series of Daphniphyllum alkaloids possessing cage-like 
skeletons were isolated from the seeds of D paxianum[11] 
and D macropodum[18].  Compounds 8–11 are the representa-
tives of these cage-like Daphniphyllum alkaloids; in particu-
lar, paxdaphnine A (11) is the first identified 1,19-bisnor-
Daphniphyllum alkaloid with a highly caged skeleton and a 
constrained Ring-A by the formation of C2–C8 and C1–C9 
bonds, whose absolute configuration was determined by X-ray 
diffraction of its iodide derivative.  Two structurally relevant 
alkaloids, paxdaphnidine A (12), bearing a unique pentacyclic 
framework, and paxdaphnidine B (13), possessing an uncom-
mon tetracyclic skeleton, were isolated from the twigs and 
leaves of D paxianum[9].  Deoxycalyciphylline B (14) and deoxy-
isocalyciphylline B (15) were the major alkaloids with a unique 
fused hexacyclic skeleton from the stem of D subverticillatum[8].  
Their structures were assigned based on spectroscopic meth-
ods and chemical evidence, and that of 14 was confirmed by a 
single crystal X-ray diffraction determination.  

Recently, angustimine (16), featuring an unprecedented 

Figure 1.  Alkaloids isolated from Daphniphyllum genus.
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skeleton, and angustifolimine (17), a rare diamino Daphniphyl-
lum alkaloid, were isolated from D angustifolium[6].  Calyci-
numines A (18) and B (19) were isolated from D calycinum[7].  
Compound 18 is the first example of C-22-nor yuzurimine-
type alkaloid, whose structure was confirmed by a single crys-
tal X-ray diffraction study, and calycinumine B (19) features an 
unprecedented heteroatom-containing adamantane-like motif.  

C,C-linked dimeric indolizidine alkaloids (Figure 2): Flueg-
gea virosa Roxb ex Willd (Euphorbiaceae) is a TCM that has 
been used to treat rheumatism, pruritus, cephalic eczema, leu-
corrhea, and injuries.  Previous chemical studies on this plant 
identified a number of indolizidine-type alkaloids known as 
Securinega alkaloids.  In our recent study of this plant, two 
unprecedented C,C-linked dimeric indolizidine alkaloids, 
flueggenines A (20) and B (21), along with their precursor 
(–)-norsecurinine, were isolated from the roots of F virosa[22].  
Their structures and absolute configurations were elucidated 
by extensive spectroscopic analyses.  The biogenetic origin of 
these two compounds could be traced back to the coexisting 
major alkaloid (–)-norsecurinine via a self-catalyzed Baylis-
Hillman reaction as the key step to achieve the dimerization.  

Other structural classes of alkaloids (Figure 2): Alkaloids are 
a class of structurally interesting and biologically important 
natural products.  In the past years, we examined the chemi-
cal components of eight other plant species in the families 
Loganiaceae, Apocynaceae, and Lycopodiaceae, and a total of 
142 structurally diversified alkaloids were isolated from the 
genera Gelsemium[23, 24], Ervatamia[25, 26], Stephania[27, 28], Winchia[29], 
and Lycopodium[30], of which 42 were new compounds and 5 
had novel skeletons.  Some alkaloids showed strong cytotoxic 
activities.  For example, gelseganines A–D (22–25), a new class 
of monoterpenoid indole alkaloids that bear an N4-iridoid unit, 
together with three new analogs (26–29)[23, 24] were isolated 
from the stems and leaves of Gelsemium elegans, a well-known 
toxic plant in Southeast Asia.  The structures of 22–29 were 
determined by spectroscopic analysis, single-crystal X-ray dif-
fraction, and chemical evidence.  A plausible biogenetic path-
way for alkaloids 22–25 was also postulated.

Complex and novel terpenoids
Triterpenoids (limonoids) from Meliaceae plants (Figure 3): 
China has a rich diversity of Meliaceae.  To date, 62 species 
and 12 varieties of 15 genera in the Meliaceae family have been 
documented, and these are mainly distributed in the provinces 
south of the Yangtze River.  Plants of this family are known 
to metabolize abundant nortriterpenoids (limonoids) with 
diverse and complex structures that have been demonstrated 
to have a variety of important biological activities, such as 
antifeeding, antibacterial, anticancer and antimalarial activi-
ties.

In the past several years, our research group made tremen-
dous efforts to explore biologically significant chemical com-
ponents from the plants in the Meliaceae family, which has 
led to the isolation of more than 600 structurally diverse com-
pounds from 30 plant species.  Among these, 406 were new 
structures, and 32 possessed previously unknown skeletons.  

A variety of assays revealed that 50 additional compounds had 
important biological activities[31–71].  Our research results sup-
ported the traditional medical applications of several plants in 
the Meliaceae family.  This is by far the most systematic and 
leading chemical study on the plants of the Meliaceae family 
worldwide.  Several representative examples are summarized 

Figure 2.  Dimeric indolizidine alkaloids and monoterpenoid indole 
alkaloids.
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below.
Walsuronoid A (30)[39], a limonoid featuring an unprec-

edented 3,4-peroxide-bridged A-seco skeleton, together 
with walsuronoids B (31) and C (32), possessing a rare 
18(13→14)-abeo-limonoid skeleton, was isolated from Walsura 
robusta.  Their structures were elucidated by spectroscopic 
analysis and chemical correlation, and that of 30 was con-

firmed by single-crystal X-ray diffraction.  Compounds 31 and 
32 showed antimalarial activities, which well matched the tra-
ditional application of this plant as a treatment for malaria.

Compounds 33–38 are 9,10-seco-tetranortriterpenoids that 
were discovered in the seeds of the Chinese marine mangrove 
plant Xylocarpus granatum[42, 63].  Xylogranatin A (33) featured a 
unique 1,9-oxygen bridge, whose structure was confirmed by 

Figure 3.  Triterpenoids (limonoids) isolated from Meliaceae plants.
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single-crystal X-ray diffraction, and xylogranatin D (38) fur-
nished a novel skeleton via C-30–C-9 linkage that was postu-
lated to arise from 36 via an γ-hydroxyl ketone rearrangement, 
and this pathway was chemically mimicked.  Compounds 
33–38 were cytotoxic to the tumor cell lines P388 and A549, 
with IC50 values ranging from 6.3 to 15.7 μmol/L.

Turrapubesins A (39) and B (40)[41], two tetranortriterpenoids 
representing the first examples of halogenated and maleimide-
bearing limonoids, respectively, were isolated from the twigs 
and leaves of Turraea pubescens.  Their absolute configurations 
were determined by X-ray crystallography (39) and by CD 
analysis of a dihydrogenated derivative (40).

Four 16-norphragmalin-type limonoids, chuktabularins A-D 
(41–44)[40], featuring unprecedented carbon skeletons of a bio-
synthetically extended C2 or C3 unit at C-15 forming a unique 
2,7-dioxabicyclo[2.2.1]heptane moiety, and two limonoids, 
chuktabrin A (45), with the unique 1,3-dioxolan-2-one and 
3,4-dihydro-2H-pyran motifs, and chuktabrin B (46)[37] possess-
ing an unprecedented polycyclic skeleton, were isolated from 
Chukrasia tabularis.  Their structures were elucidated by spec-
troscopic analyses and single crystal X-ray diffraction.

The chemical investigations of Dysoxylum hainanense 
revealed a series of ring A modified triterpenoids among 
which dysoxyhainanin A (47)[38] possessed a unique 1,3-cyclo-
2,3-seco A ring with a formamido-containing appendage, dys-
oxyhainanin B (48)[38] featured an unprecedented 1,2-dinor-
3,10:9,10-bisseco skeleton, and dysoxyhainic acid A (49)[52] had 

an unprecedented 2-nor-1,3-cyclotirucallane skeleton.  Four 
compounds, dysoxyhainanin A (47) and dysoxyhainic acids 
B–C, showed significant activities against four gram-positive 
bacteria, Staphylococcus aureus ATCC 25923, S epidermidis 
ATCC 12228, Micrococcus luteus ATCC 9341, and Bacillus subti-
lis CMCC 63501, with MICs in the range of 6.25–50 μg/mL.

Walsucochins A (50) and B (51), with a novel carbon skel-
eton, were isolated from Walsura cochinchinensis[36].  Their 
structures, including absolute configuration, were elucidated 
by spectral methods.  Both compounds significantly attenu-
ated H2O2-induced damage in PC12 cells in a dose-dependent 
manner at dosages of 1, 5, and 10 μmol/L.  

A chemical study of the stems of Khaya senegalensis led to the 
isolation of two limonoids, namely khayalenoids A (52) and B 
(53)[35], with an unprecedented 8-oxa-tricyclo[4.3.2.02,7]unde-
cane motif in the nortriterpenoid core.  Their structures, with 
absolute configuration, were determined by spectroscopy, 
X-ray crystallography, and CD analysis.  Recently, another 
limonoid with an unprecedented carbon skeleton, grandifo-
tane A (54), was isolated from the stem bark of K grandifoli-
ola[34].  The absolute configuration of 54 was determined by 
spectroscopy, X-ray crystallography, and ECD calculations.  A 
biogenetic route for grandifotane A (54) synthesis from a mex-
icanolide-type limonoid precursor, involving an enzymatic 
Baeyer-Villiger oxidation as the key step, was proposed.

Aphanamolide A (55)[33], featuring an unprecedented carbon 
skeleton with a C-3–C-6 bond, was isolated from the seeds of 

Figure 4.  Structurally interesting and biologically important diterpenoids.
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Aphanamixis polystachya.  Its structure was established using 
spectroscopic methods.  

Walsucochinoids A (56) and B (57)[32], two rearranged 
limonoids possessing an unprecedented carbon framework, 
were isolated from Walsura cochinchinensis.  Their absolute 
configurations were assigned based on a detailed examination 
of spectroscopic data, single crystal X-ray diffraction analysis, 
and CD experiments.

Diterpenoids (Figure 4): Diterpenoids are a class of structur-
ally interesting and biologically important natural products 
that are found in many TCM plants, and some were even 
proven to be the active ingredients in their respective plants.  
More than 260 diterpenoids were obtained by our research 
group in the past years from the Euphorbia[72], Trigonoste-
mon[73–79], Daphne[80], Pseudolarix[81, 82], Siegesbeckia[83], Sapium[84], 
and Larix[85] genera.  Among them, 122 were new compounds, 
and 4 possessed novel carbon scaffolds.  Biological tests dem-
onstrated that 49 compounds exhibited important biological 
activities in a variety of bioassays, some of which demon-
strated the biological basis of the traditional applications of 
those plants in TCM medication.  

Diterpenoids from the Euphorbiaceae family: Lathyranoic 
acid A (58)[72], the first seco-lathyrane diterpenoid with a new 
skeleton was isolated from the seeds of Euphorbia lathyris.  Its 
structure was elucidated by spectroscopic analysis and chemi-
cal transformation.  Lathyranoic acid A was proposed to be 
biosynthetically produced from the co-existing diterpenoid 
Euphorbia factor L11 with an enzymatic Baeyer-Villiger oxida-
tion as the key and the committed step, and its chemical syn-
thesis was achieved (Scheme 1).

Two highly modified daphnane-type diterpenoids, 
trigochilides A (59) and B (60), together with six highly oxy-
genated diterpenes, trigochinins A-I (61–66)[73–75], were isolated 

from the twigs and leaves of Trigonostemon chinensis Merr col-
lected from Yunnan Province.  Trigochilides A (59) and B (60) 
contain 12-carbon-containing polyketide appendages, which 
are linked to the diterpenoid core at C-16 by a C-bond and 
form a macrolactone between C-1’ and C-3, while trigochinins 
A–I (61–66) share a rare 4,6-oxetane moiety.  Their structures 
were elucidated by spectroscopic analysis, X-ray crystallogra-
phy, and CD analysis.  Compounds 64 and 65 showed potent 
cytotoxic activities against HL-60 tumor cell lines with IC50 
values of 8.1 and 6.4 μmol/L, respectively.  Compound 66 
significantly inhibited MET tyrosine kinase activity (IC50=1.95 
μmol/L).  Trigonochinenes A–E (66–71)[79], five antibacterial 
diterpenoids, were isolated from the aerial parts of this plant 
collected from Hainan Province.  Compounds 67–70 possess 
a rare 3,4-secocleistanthanic skeleton, and compound 71 is a 
highly aromatized tetranorditerpene.  Compounds 67–71 were 
tested for antimicrobial activity against 11 microorganisms in 
vitro.  All compounds tested were active against Helicobacter 
pylori-SS1, with MICs of 12.5–25 μg/mL, and compounds 
67–70 also significantly inhibited the growth of the drug 
(metronidazole)-resistant strain H pylori-ATCC 43504, with 
MICs of ca 50 μg/mL.  Compounds 69 and 71 also exhibited 
selective activities against the gram-positive bacteria Staphy-
lococcus aureus ATCC 25923, Staphylococcus epidermidis ATCC 
12228, and Micrococcus luteus ATCC 9341 with MICs in the 
range of 6.25–50 μg/mL.

Twelve new highly oxygenated daphnane-type diterpe-
noids, genkwanines A–L (72–83)[80], were isolated from the 
bud of Daphne genkwa, a well-known TCM.  These compounds 
showed very potent cytotoxic activities against two tumor cell 
lines, P388 and A549, with IC50 levels of 0.15–8.40 μmol/L.  
Most interestingly, three of the compounds, 75, 78, and 81, 
and two known compounds, yuanhuacine and yuanhuadine, 
strongly inhibited the endothelial cell line HMEC at the IC50 
levels of 2.90–15.0 μmol/L.  

Sesquiterpenoids: Sesquiterpenoids are the major compo-
nents of many TCM plants, and they have a broad spectrum of 
biological activities including antiinflammatory, antiparasitic, 
antitumor, and anti-HIV properties.  More than 18 TCM plants 
in the families of Chloranthaceae (four genera, Chloranthus, 
Sarcandra, and Hedyosmum)[86–95] and Compositae (five gen-
era, Eupatorium[96, 97], Vernonia[98], Siegesbeckia, Saussurea, and 
Parasenecio)[96–101], and a fungus (Lactarius piperatus)[102], have 
been investigated in our laboratory, which led to the identifica-
tion more than 280 compounds.  Among them, 126 were new 
compounds, and 8 possessed new carbon skeletons.  Biological 
activity screening revealed that 28 isolates showed important 
biological activities in a number of tested bioassays, and some 
of the results were consistent with the traditional applications 
of these plants in TCM.  

Mono- and dimeric sesquiterpenoids (Figure 5): The Chlo-
ranthaceae family has 16 species and 5 variants belonging to 
three genera, Chloranthus, Sarcandra and Hedyosmum, in China.  
Most plants in this family have been applied in TCM and/or 
Chinese folk medicine for a variety of indications.  Chemical 
studies of seven species in the Chloranthaceae family con-

Scheme 1.  Chemical transformations from Euphorbia factor L11 to 58.
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ducted in our research group identified 42 new mono- and 
dimeric sesquiterpenoids, of which the sesquiterpenoid dim-
ers are particularly interesting, especially 4 of these dimers, 
which possessed unprecedented carbon skeletons.

Chlorahololides A–F (84–89)[87, 88], six highly complex ses-
quiterpenoid dimers, were isolated from whole C holostegius.  
Their structures and absolute configurations were established 
by spectroscopy, X-ray crystallography and CD analysis.  
Chlorahololides A–F (84–89) exhibited potent and selective 
inhibition of the delayed rectifier (IK) K+ current, with IC50 
values of 10.9±12.3, 18.6±2.5, 3.6±10.1, 2.7±0.3, 27.5±5.1, and 
57.5±6.1 μmol/L, respectively.  It is noteworthy that the activi-
ties of chlorahololides A–F (84–89) are 18- to 388-fold more 
potent than the positive control tetraethylammonium chloride 
(IC50=1.05±0.21 mmol/L), a classical blocker of the delayed 
rectifier K+ current.  Three more sesquiterpenoid dimers, mul-
tistalides A–B and chloramultilide A (90–92), were isolated 
from whole C multistachys[90, 91].  Serratustones A (93) and B 
(94), which share an unprecedented carbon skeleton repre-
senting a novel dimerization of an elemane and a eudesmane 

sesquiterpenoid, were isolated from C serratus[86].  Two novel 
lindenane-type sesquiterpenoid dimers, sarcanolides A (95) 
and B (96), featuring an unprecedented carbon framework via 
the formation of C-11–C-7’ bond, were isolated from whole S 
hainanensis[92].  The structures of compounds 93–96, including 
the absolute configuration were fully determined by spectros-
copy, X-ray crystallography, and CD analysis in combination 
with ECD calculation.  A number of novel sesquiterpenoids 
were also isolated from plants in the Chloranthaceae fam-
ily; eg, hlorantene A (97) isolated from C serratus possessed a 
unique C-4 to C-10 linkage[89].  

Phloroglucinol-coupled sesquiterpenoids (Figure 5): Euca-
lyptus globulus Labill, a tall timber tree, grows widely in the 
southern part of China.  Its fruits and leaves have been used 
as a Chinese folk medicine to treat flu, dysentery, eczema, and 
scald.  A large number of phloroglucinol-coupled sesquiterpe-
noids and other classes of phloroglucinol-coupled compounds 
were isolated from E globulus and other species in the Euca-
lyptus genus.  Of these, eucalyptals A–C (98–100)[94], with a 
novel 3,5-diformyl-isopentyl phloroglucinol-coupled cadinane 

Figure 5.  Structurally complex sesquiterpenoids.
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carbon framework, were isolated from the fruits of E globulus.  
Their structures were elucidated by spectroscopic analysis, 
and that of 98 was confirmed by single-crystal X-ray diffrac-
tion.  Compounds 98–100 showed selective activity against 
HL-60, with IC50 values of 1.7, 6.8, and 17 μmol/L, respec-
tively.

Miscellaneous
In addition to our particular interests in natural alkaloids and 
terpenoids (tri, di, and sesquiterpenoids), we isolated more 
than 300 phenolics and prenylated polyketides from approxi-
mately 20 TCM or herb plants.  Among them, approximately 
60 were new compounds, and 6 had new carbon skeletons 
(Figure 6).  In particular, 48 of these compounds showed 
significant biological activities in a variety of bioassays and 
provided a scientific foundation for the use of a number of tra-
ditional Chinese herbs[103–114].

A series of phenolic compounds were isolated from the 
ethanolic extract of whole Sarcostemma acidum.  Sacidumlig-
nan D (101)[108] was found to have an unprecedented rear-
ranged tetrahydrofuran lignan skeleton.  Psoracorylifols A–E 
(102–106)[105] represented five novel compounds from buguzhi, 
a well-known TCM made from the seeds of Psoralea corylifolia.  
The structure of 102 was confirmed by single-crystal X-ray 
diffraction.  Psoracorylifols D and E (105 and 106) exhibit 
an unprecedented carbon skeleton.  A plausible biogenetic 
origin of psoracorylifols A–E (102–106) was also postulated.  
Psoracorylifols A–E (102–106) showed significant inhibition 
against two strains of H pylori (SS1 and ATCC 43504), with 

MICs of 12.5–25 μg/mL, respectively.  Notably, the activity 
of psoracorylifols A–E (102–106) are 5–10 times stronger than 
that of metronidazole against H pylori ATCC 43504, a drug 
(metronidazole)-resistant strain; metronidazole is a critical 
ingredient in combination therapies of H pylori infection.  The 
chemical investigation of the seeds of Psoralea corylifolia also 
revealed a number of prenylflavonoids, among which the two 
new compounds, corylifols A and B (107 and 108)[107], signifi-
cantly inhibited two hospital pathogenic gram-positive bacte-
ria, S aureus ATCC 25923 (MICs: 0.147 and 0.037 mmol/L) and 
S epidermidis ATCC 12228 (MICs: 0.147 and 0.037 mmol/L) 
in vitro.  Cinnacassides A–E (109–113)[103] are five novel gly-
cosides with a unique geranylphenylacetate aglycone carbon 
skeleton from a common TCM (Rougui) based on the stem 
bark of Cinnamomum cassia.  Each of the cinnacassides A–D 
(109–113) possessed one of the four stereoisomers of the agly-
cone.  Their structures were established by extensive spectro-
scopic analysis and chemical and chiroptical methods.  Plau-
sible biosynthetic routes for 109–113 were also proposed.

Harrisotones A–E (114–118),  five novel prenylated 
polyketides with a rare spirocyclic hydroperoxypolyketide-
derived skeleton, along with the new hydroperoxypolyketide 
harrisonol A (119), were isolated from Harrisonia perforate[104].  
Their structures were extensively elucidated through spectro-
scopic analysis and CD spectra.  The origins of compounds 
114–118 could be traced back to harrisonol A (119).  Harriso-
tone A and C and harrisonol A (114, 116, and 119) exhibited 
significant cytotoxic activity against P388 tumor cells, with 
IC50 values of 1.56, 2.35, and 0.27 μmol/L, respectively.  Har-

Figure 6.  Phenolics and prenylated polyketides.
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risotone A (114) and harrisonol A (119) also showed moderate 
activity against A549 tumor cells, with IC50 values of 24.5 and 
26.6 μmol/L, respectively.

Structural modifications and structure-activity relation
ship studies
In our search for bioactive natural products[13, 16, 22, 24, 25, 29, 33, 36, 

38, 39, 41, 42, 44–46, 51–53, 58, 63, 68, 70, 73–81, 85, 87–88, 93, 95–98, 103–109, 115–120], a large 
number of compounds were found to exhibit a variety of 
biological activities, and 11 compounds with particularly 
promising potential were selected for structure optimization 
and structure-activity relationship studies.  As a result, over 
400 new derivatives were obtained.  Among these derivatives, 
58 showed significantly improved activities, which provided 
opportunities to explore the structure-activity relationship 
of the related compound class[121–125].  As an example, we will 
discuss the structure optimization and structure-activity 
relationship study of the antiangiogenesis pseudolaric acid B 
(PAB)[121].  PAB is the major active component of a well-known 
TCM (Tujinpi), the root bark of Pseudolarix kaempferi, which 
has traditional applications as an antifungal and abortifacient 
for use in the early stage of pregnancy.  PAB also showed 
strong cytotoxic activity.  In our collaboration study, this com-
pound was found for the first time to have strong antiangio-
genic activity with a unique mode of antitumor action[118–120].  
A structural modification of PAB was thus conducted, and 
more than 40 derivatives were prepared in the first round.  
Antitumor assays showed that nine derivatives in the series 
120a–120n showed significantly improved activities, while 
those in the 121a–121d and 122a–122g series were inactive.

Observation of the structures of PAB and its derivatives 
revealed a clear antitumor structure activity relationship 
(Scheme 2)[121]: (1) All of the active PAB compounds tested in 
our study (120a–120n) have amphipathic properties and pos-
sess a hydrophobic domain of a constrained-rings system and 
a hydrophilic domain consisting of a side chain possessing an 
conjugated double bond and a terminal carboxylic acid.  (2) A 
hydrophobic group R1 at C-7 and a ∆7 double bond are neces-
sary for the anticancer activity, and the bulk and steric factor 
of R1 also seem relevant to the activity.  (3) The chain length 
and/or the conjugated double bonds in the side chain are 
essential for the anticancer activity.  (4) Any structural changes 
in the seven-membered ring, eg, ∆7 double bond migration 
and oxygenation at C-7 or C-8, will render the analogs inac-
tive.  (5) The C-4 acetoxyl group is crucial for the activity and 
its removal or replacement with a bulk acyloxy group sig-
nificantly attenuated the activity.  (6) The free carboxylic acid 
group in the terminus of the side chain is necessary for the 
anticancer activity, while acylation or amidation of this group 
with either a hydrophilic or a hydrophobic group is detrimen-
tal to the activity.

PAB is also a strong antifungal agent.  The anticancer SAR 
of the aforementioned PAB analogs is very similar to the anti-
fungal SAR reported by our group[81], except for the difference 
in the modification of the R1 group.  The modification of the 
R1 group of PAB showed a particularly exciting result with 
respect to anticancer activity.  Meanwhile, in an antifungal 
assay, all of the structurally modified PAB analogs showed 
attenuated activities or were completely inactive[81].  Our stud-
ies suggest that PAB is very promising as an anticancer drug 

Scheme 2.  Preparation of PAB derivatives and structure activity relationship study.
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lead but limited as an antifungal lead due to its loss of activity 
upon modification and strong cytotoxic side effects.
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