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I N T R O D U C T I O N

Molecular oxygen has three different electron configura-
tions: the triplet ground state (3), and the first and sec-
ond singlet excited states (1 and 1) (Kochevar, 2004; 
Ogilby, 2010). Singlet oxygen (1O2) mainly refers to the 
1 state because of its longer lifetime compared with the 
1 state. 1O2 is highly reactive and oxidizes a wide range 
of biomolecules including DNA, proteins, and unsatu-
rated lipids. Among the 20 amino acids, 1O2 mainly reacts 
with histidine, cysteine, methionine, tyrosine, and tryp-
tophan (Gracanin et al., 2009). Histidine is an effective 
quencher of 1O2 and the major target of 1O2 oxidation. 
Under physiological conditions, 1O2 can be generated 
through metabolic reactions and functions as a signaling 
factor, such as in plants and stimulated neutrophils and 
macrophages (Steinbeck et al., 1992; Triantaphylidès 
and Havaux, 2009). Native compounds including flavins 
and NADH/NADPH inside the cell can function as pho-
tosensitizers and produce 1O2 upon sunlight excitation, 
which has been linked to aging and cancer development 
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in skin cells (Baier et al., 2006; Bäumler et al., 2012). Low 
levels of 1O2 play an instructive role in intracellular sig-
naling, such as promoting gene expression and trigger-
ing apoptosis (Anthony et al., 2005; Guo et al., 2010;  
Nam et al., 2013). However, high levels of 1O2, espe-
cially the 1O2 produced in vitro through photosensiti-
zation processes, can lead to excessive oxidation of 
biomolecules and even cell necrosis. Photosensitization 
or photodynamic processes require three key elements: 
photosensitizer, oxygen, and light (Fig. S1) (DeRosa and 
Crutchley, 2002). Actually, many photo-excitable molecules 
used in basic research, such as FITC and fluorescent 
proteins, are effective photosensitizers and can produce 
1O2 upon excitation.

Two unique features of 1O2 are its short lifetime (µs) 
and its short working distance (nm), which make it ef-
fective in eliminating the function of specific proteins 
and cells with high temporal and spatial precision. In 
chromophore-assisted light inactivation, a fluorophore-
tagged antibody recognizes and forms a complex with 
the target protein. Upon light excitation, an excessive 
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modifications at the molecular level.
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at the resting level, and the sensation of pain (Nolan  
et al., 2003; Wang et al., 2007; Baruscotti et al., 2011). In 
addition to the hyperpolarization-activated current (Ih), 
HCN channels also conduct the voltage-insensitive in-
stantaneous current (Iinst), although its molecular na-
ture is not clear (Proenza et al., 2002; Mistrík et al., 
2006; Proenza and Yellen, 2006). It was reported that Ih 
and Iinst could be conducted by two distinct populations 
of HCN channels that are not in rapid equilibrium 
(Proenza and Yellen, 2006).

The dual regulation of HCN channels by voltage and 
ligand provides a unique opportunity to study 1O2 modi-
fication of membrane proteins. In our previous studies, 
we have used fluorescent cAMP analogues as a reporter 
to address the dynamic interaction between cAMP and 
the whole channel (Wu et al., 2011, 2012). Using 8-NBD-
cAMP as the marker, we discovered that channels in the 
open state have an increased binding affinity for cAMP, 
and residues near the activation gate in S6 remotely 
control ligand binding. During these studies we noticed 
that applying high concentrations of fluorescein-cAMP 
(8-fluo-cAMP or FITC-cAMP) resulted in interesting 
changes to HCN function. Following this lead, we identi-
fied 1O2 as the central player. Intriguingly, 1O2 modifica-
tion of the HCN channel is state dependent and depends 
on a critical histidine residue near the activation gate.

M A T E R I A L S  A N D  M E T H O D S

Functional expression of HCN channels in  
Xenopus laevis oocytes
The DNA plasmid containing the sequence of WT mouse HCN2 
(mHCN2) channel was provided by S. Siegelbaum (Columbia 
University, New York, NY). The HCN2-SOG and HCN2-EGFP con-
structs were made by inserting the DNA sequence encoding 1O2 
generator (SOG) or EGFP at the C terminus of the CNBD through 
the BsmI cut site, flanked by the CNBD and the downstream se-
quence of the mHCN2 channel (Figs. S2 and S3). The H434A mu-
tation was introduced by a two-step PCR method. DNA plasmids 
were linearized by SphI and purified by phenol-chloroform extrac-
tion. mMessage machine (Ambion) was used to make cRNA. 40–50 ng 
cRNA was injected into each oocyte at stage VI. Injected cells were 
cultured between 16 and 18°C for 2–4 d before experiments.

Electrophysiology and optical setup
We used symmetrical solutions during patch-clamp recording in 
the inside-out configuration. The solution contained 110 mM 
KCl, 1 mM EDTA, and 10 mM HEPES, pH 7.4 adjusted by KOH. 
To measure ion selectivity, K+ ions in the bath solution, which 
faced the intracellular side of the channel, were replaced by Na+. 
All experiments were performed at room temperature. Current 
traces were amplified by a patch-clamp amplifier (model 2400; A-M 
Systems) and digitized by a Digidata 1440 (Axon Instruments). 
Voltage-clamp and laser-pulse protocols are illustrated in the 
figures. Typically the membrane potential was held at 40 mV. 
Hyperpolarizing voltage steps were applied every 15 s.

We calculated the percentage of Iinst based on the following 
equation:
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amount of 1O2 is generated and inactivates the func-
tion of the protein in close proximity (Liao et al., 1994; 
Tour et al., 2003). Similarly in photodynamic therapy 
(PDT), light is guided to the target tissue to excite the 
pre-administered drugs (photosensitizers) to produce 
1O2, which eventually leads to the death of the target cells 
through a combination of apoptosis, necrosis, and acutely 
triggered local immune responses. The major advan-
tage of PDT is the minimal side effects. PDT is a proce-
dure approved by the US Food and Drug Administration 
for treating cancer and some other diseases (Agostinis 
et al., 2011).

However, in contrast to its application potential and 
physiological significance, little is known about  
1O2-mediated modification of biomacromolecules at 
the molecular level. Previous studies on 1O2 mainly 
relied on cell and tissue preparations in the presence of 
complex intracellular signaling pathways. Numerous 
factors make 1O2 a challenging research target: the 
volatile chemical nature of 1O2; the wide range of target 
molecules; and the heterogeneous distributions of oxygen,  
photosensitizers, and quenchers (Schweitzer and Schmidt,  
2003; Skovsen et al., 2005; Latch and McNeill, 2006; 
Pedersen et al., 2011). Isolated reports have addressed 
the effects of 1O2 modification of channel and trans-
porter proteins (Valenzeno and Tarr, 1991; Eisenman  
et al., 2007, 2009). Most of these studies used whole-cell 
preparations and applied nonspecific photosensitizers, 
such as rose bengal, to generate 1O2. Thus, interactions 
between 1O2 and lipid membranes or other membrane-
affiliated elements could not be completely ruled out. 
Notably, all those studies required a long duration of 
light exposure—up to minutes or even longer—to pro-
duce observable effects, in contrast to the short lifetime 
of 1O2 (µs). A well-defined and sensitive working model 
for studying 1O2 modification is needed.

Here we report that hyperpolarization-activated, cAMP-
gated (HCN) channels are sensitive to modification by 
photochemically generated 1O2. HCN channels are 
involved in physiological functions including cardiac 
pacemaking, sensation of pain, learning, and memory 
(Robinson and Siegelbaum, 2003; Biel et al., 2009). 
HCN channels are tetrameric. Each subunit contains  
a transmembrane domain of six  helices (S1–S6), ho-
mologous to that of voltage-gated potassium channels, 
and the cyclic nucleotide–binding domain (CNBD) in 
the C terminus of the channel (Robinson and Siegelbaum, 
2003; Biel et al., 2009). In the transmembrane domain, 
S4 contains multiple positively charged residues and 
functions as the voltage sensor for membrane hyper-
polarization. Intracellular cAMP directly binds to the 
channel and increases current amplitude, shifts chan-
nel opening to less negative potentials, and slows down 
channel deactivation. cAMP-dependent gating in HCN 
channels contributes to the storage of working memory 
in the prefrontal cortex, the maintenance of heart rate 
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where EREV represents the reversal potential, and [X]o and 
[X]i represent the ion concentrations in the pipette and in the 
bath, respectively.

The setup was based upon a microscope (IX71; Olympus) 
equipped with a 100× oil-immersion objective (NA 1.25; Olympus 
Plan). A 473- or a 532-nm diode-pumped, solid-state laser was 
used as the excitation light source. The following filter set was 
used to collect the fluorescence signal from FITC, EGFP, and 

where Iinst is the instantaneous current measured just after the 
hyperpolarizing voltage step, i is the stimulation index (episode 
number), Iinst

0  is the instantaneous current before laser treat-
ment, and Imax is the peak current measured near the end of the 
hyperpolarizing voltage step before laser treatment and includes 
both Ih and Iinst. We used a single-exponential equation to fit the 
tail current measured at 40 mV. Leak current was not subtracted 
from the recordings. To determine the V1/2 values, a series of hy-
perpolarizing voltage steps was applied to activate the channel. 
Tail currents were measured at 40 mV, and the amplitudes were 
fitted with the Boltzmann equation.

The ratio of permeability for Na+ and K+ ions was calculated 
based on the value of the reversal potential and the Goldman–
Hodgkin–Katz equation:

Figure 1.  Effects on Ih current by photodynamic 
transformation. (A) Bright field (left) and fluo-
rescence (right) images of a membrane patch 
expressing mHCN2 channels. Bottom pictures 
show a membrane patch from an uninjected 
cell. 0.5 µM FITC-cAMP was applied to the bath.  
(B; top) The voltage protocol for channel activa-
tion and the timing of 100-msec laser pulse. (Bot-
tom) Representative current traces before (no. 3 
in C) and after the application of laser pulses (nos.  
6 and 9 in C). (C) Normalized Ih amplitude ver-
sus stimulation index. Voltage step was delivered 
every 15 s. (D) Normalized time constant of de-
activation. *, P < 0.05 in C and D. (E; left) The 
voltage protocol for collecting I-V curve. (Mid-
dle) Current traces before the laser treatment. 
(Right) Current traces after the laser treatment. 
(F) I-V curves without laser treatment. The V1/2 
values are 126.7 ± 3.2 mV (n = 8; control with-
out cAMP), 109.4 ± 2.6 mV (first I-V in 0.5 µM 
FITC-cAMP), and 112.5 ± 2.4 mV (second I-V 
in 0.5 µM FITC-cAMP). The averaged shift in V1/2 
is 3.1 ± 1.7 mV (n = 7) and not significant (one-
way repeated measures ANOVA). (G) I-V curve  
with laser treatment. The V1/2 values are 114.6 ± 
1.6 mV (I-V in 0.5 µM FITC-cAMP before laser) 
and 120.4 ± 1.2 mV (I-V in 0.5 µM FITC-cAMP 
after laser treatments). The averaged shift in V1/2 
is 5.8 ± 0.8 mV (n = 6) and significant.
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laser light source, the CCD camera exposure time, and the ampli-
fier for patch-clamp recording were synchronized by transistor–
transistor logic signals. Fluorescence images were analyzed with 
ImageJ software (Schneider et al., 2012). The TurboReg program 

SOG: exciter, D480/30; dichroic mirror, DC505LP; emitter, 
D510LP. The intensity of the laser light applied to the membrane 
patch was estimated to be 350 mW/cm2. Optical signals were 
detected by an EMCCD camera (Cascade 1K; Photometrics). The 

Figure 2.  Photodynamic transformation slows 
down channel deactivation and enhances voltage-
insensitive Iinst. (A) Current traces before (black; 
no. 3 in B) and after (blue; no. 7 in B) laser treat-
ments. Arrow indicates Iinst. Gray arrows point 
out close-up view over the current traces dur-
ing channel deactivation. (B) Percentage of Iinst 
(top) or time constant of channel deactivation 
(bottom) versus episode number. Laser pulses 
(filled blue triangle) were given every 15 s after  
the third episode. FITC-cAMP, n = 19; cAMP, 
n = 7. *, P < 0.05.

Figure 3.  Photochemically generated Iinst has 
key biophysical features of canonical HCN 
channel. (A) Voltage protocol (top) and 
current traces for measuring pK+/pNa+ of Ih 
current. (B) I-V curves of Ih current. (C) Volt-
age protocols (top) and current traces of Iinst. 
(D) I-V curves of Iinst. (E) ZD7288 and Cs+ in-
teract with different regions in the HCN pore. 
(F) Iinst was generated by applying laser pulses 
(nos. 3–5). 60 µM ZD7288 was added to the 
bath solution after number 9. (G) 2 mM Cs+ 
was added to the pipette solution. A voltage 
step to +60 mV released the Cs+ block. Cur-
rent traces: black, control; blue, after three 
laser pulses. Current traces in A–C were mea-
sured in the absence of ligands (cAMP or 
FITC-cAMP). 0.5 µM FITC-cAMP was present 
in F and G.
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(Wu et al., 2011). To prevent the interference from in-
tracellular signal transduction pathways, we used a cell-
free system and studied the channels expressed on a 
membrane patch held within the patch-clamp record-
ing pipette in the inside-out configuration. To increase 
the spatial specificity of the photodynamic transforma-
tion, we used FITC-cAMP that specifically binds to the 
HCN channel on the cell membrane as the photosensi-
tizer. Using uninjected oocytes as a negative control, we 
confirmed the specific interaction between FITC-cAMP 
and HCN channels (Fig. 1 A).

In the presence of 0.5 µM FITC-cAMP, a series of  
laser pulses applied during channel activation (473 nm, 
100 msec, 1 pulse/episode) introduced significant func-
tional changes in the mHCN2 channel (Fig. 1 B). Laser 
pulses significantly reduced the amplitude of the Ih cur-
rent, slowed down channel deactivation, and enhanced 
the voltage-insensitive component (Iinst). First, we asked 
whether the changes in Ih after laser treatment are re-
lated to Ih rundown, which is a known phenomenon 
and reflected in both the reduction in current ampli-
tude and the negative shift in the channel activation 
(I-V) curve. As a negative control, the same concen-
tration of cAMP was applied to the patch. During the 
3-min recording period, the reduction in Ih was mini-
mal and less than 10% with laser pulses (Fig. 1, C and 
D, green trace). In contrast, Ih was reduced by 40% 
in the presence of FITC-cAMP and with laser pulses. 
Without laser treatment, applying FITC-cAMP led to a 
reduction in Ih, which was probably caused by the exci-
tation of the fluorophore by ambient light. Further 

was used for image alignment. The fluorescent cAMP analogue, 
FITC-cAMP (8-fluo-cAMP), was obtained from Biolog. The stock 
solution of FITC-cAMP (1 mM, dissolved in ddH2O) was kept 
frozen at 20°C. TROLOX was from Sigma-Aldrich. ZD7288 was 
from Tocris Bioscience.

Data analysis
Summarized data are presented as mean ± SEM. The number of ex-
periments is indicated by n. One-way ANOVA (or one-way repeated 
measures ANOVA for the shift in V1/2), followed by Tukey’s post-hoc 
test, was used to evaluate data groups. P-values of <0.05 were consid-
ered significant and are indicated by an asterisk in the figures.

Online supplemental material
Fig. S1 shows working models for 1O2 modification of HCN 
channel. Figs. S2 and S3 show the DNA and protein sequences of 
mHCN2-EGFP and mHCN2-SOG constructs. Fig. S4 shows de-
creases of Ih under different conditions. Fig. S5 shows the current 
trace at the moment when the laser pulse was applied. Fig. S6 shows 
that cAMP increases Iinst, and the negative control is shown in 
Fig. S7. Fig. S8 shows the results with mHCN2-EGFP as a negative 
control. Fig. S9 shows the results with rose bengal as the photosen-
sitizer. Figs. S10 and S11 illustrate basic biophysical properties of 
the mHCN2/H434A mutant channel. Fig. S12 shows that the de-
crease of Ih amplitude in the mHCN2/H434A mutant channel was 
more dramatic than that in the WT channel. Fig. S13 shows the 
photodynamic transformation of the HCN channel with 2-ms laser 
pulses. The online supplemental material is available at http://
www.jgp.org/cgi/content/full/jgp.201311112/DC1.

R E S U L T S

Photodynamic transformation of the mHCN2 channel
We performed experiments on a setup that enables  
simultaneous electrical recording of channel activity  
and optical detection of associated fluorescence signals 

Figure 4.  Photochemical transformation of the 
HCN channel is oxygen dependent. Solutions 
used in the experiments were degassed and then 
purged with pure N2 or O2. (A and B) Current 
traces before (black; no. 3 in C and D) and after 
laser pulses (blue; no. 8 in C and D). *, the group 
of O2 is significantly different from the data 
groups of Normal air + trolox and N2 (one-way 
ANOVA). (C and D) deactivation or percentage of 
Iinst versus episode number. 0.5 µM FITC-cAMP 
was applied to the bath solution. *, the groups 
of O2 and normal air are significantly different 
from the other two data groups.
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a plateau after four to six pulses, whereas Iinst did not 
reach a plateau (Fig. S5). The “use-dependent” increase 
in Iinst could be related to the fact that after laser treatment 
the channel closed so slowly that a substantial amount 
of channels remained open, even until the next voltage 
stimulation step.

To confirm that the Iinst after laser treatment was car-
ried by HCN channels but not related to nonspecific 
damage to the membrane patch, we characterized the 
biophysical properties of Iinst and compared them with 
those of the Ih current (Fig. 3). We started from ion se-
lectivity because HCN channels have a distinctive mixed 
conductivity for K+ and Na+ ions. The ratio of permea-
bility to K and Na is 3:1. We first measured the relative 
permeability of the Ih current as a positive control. We 
separately applied solutions containing either K+ or Na+ 
to the intracellular side (Fig. 3 A). Based on the reversal 
potential, we determined PK/PNa of the Ih conductance 
to be 3.61 ± 0.21 (n = 3; Fig. 3 B). Next, we applied the 
photodynamic procedure to transform the channel and 
then determined PK/PNa to be 3.03 ± 0.22 (n = 7), which 
is not significantly different from that of Ih (one-way 
ANOVA) (Fig. 3, C and D). To further address the bio-
physical nature of Iinst, we asked whether Iinst could be 

control experiments involving two other constructs 
were performed under different conditions (Fig. S4). 
Collectively, these results suggest that the photody-
namic transformation of HCN channels is an active pro-
cess and distinct from their rundown. Moreover, we 
studied hyperpolarization-dependent channel activa-
tion by measuring the I-V curve (Fig. 1 E). After adding 
FITC-cAMP to the bath, we collected an I-V curve as the 
first control and then applied two to four laser pulses 
before collecting the second I-V curve. Compared with 
the I-V curves collected without laser treatment, the 
photodynamic process decreased the maximal current 
amplitude and slightly shifted the I-V curve toward neg-
ative potentials (Fig. 1, F and G). Notably, for an HCN 
channel with a slow gating kinetics, it is known that the 
duration of voltage command affects the I-V curve and 
slight slowdown in activation could lead to a negative 
shift in V1/2.

To quantify the changes in the amplitude of Iinst and 
the kinetics of channel deactivation, we calculated the 
percentage of Iinst in the total current and measured 
the time constant of channel deactivation (Fig. 2). The 
slowdown in channel deactivation occurred immediately 
after the delivery of the first laser pulse and reached  

Figure 5.  1O2 mediates photochemical trans-
formation of the mHCN2 channel. (A) Con-
struction of the HCN2-SOG fusion channel. 
(B; top) Bright field and fluorescence images 
of a membrane patch expressing HCN2-SOG 
channels. (Bottom) Excitation and emis-
sion spectra of purified mini-SOG protein.  
(C) Timing of the laser pulse and the voltage 
protocol. (D) Current traces before (black; 
no. 3 in E) and after (blue; no. 7 in E) laser  
treatments. (E) deactivation or percentage of 
Iinst versus episode number. Neither cAMP 
nor FITC-cAMP was applied. *, P < 0.05.
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with EGFP, FITC is known to have a higher quantum 
yield for generating 1O2 (3 vs. 0.4%) (DeRosa and 
Crutchley, 2002; Jiménez-Banzo et al., 2008). To test 
the involvement of 1O2, we applied 0.1 µM rose ben-
gal, a widely used photosensitizer (Fig. S9), or 10 mM 
of free FITC to the intracellular side of the patch and 
indeed obtained similar observations. Then we asked 
whether the photodynamic process was sensitive to oxy-
gen. We degassed the solutions used in the recordings 
and separately purged them with pure nitrogen or 
pure oxygen (Fig. 4, A and B). Impressively, remov-
ing oxygen from the solution effectively abolished  
the photochemical transformation of HCN function 
whereas, in contrast, the solutions purged with oxy-
gen exaggerated the transformation effects. We also 
tested Trolox C, a known 1O2 quencher (Ohara et al., 
2009). As expected, 0.5 mM Trolox C (under normal  
air) suppressed the increases in deactivation and Iinst 
(Fig. 4, C and D).

To further study the involvement of 1O2, we engi-
neered the recently developed mini-SOG protein to the 
C terminus of the HCN channel (Fig. 5, A and B). Mini-
SOG was developed from the light, oxygen, voltage 
(LOV) domain of a plant protein. Mutations were intro-
duced to increase the quantum yield of 1O2 (up to 47%, 
20 times higher than that of ReAsh, a previously de-
veloped genetically targetable SOG) (Shu et al., 2011; 
Qi et al., 2012). In the absence of exogenous photosen-
sitizers, light illumination of the HCN2-SOG channel 
reproduced the observations on the HCN2 channel in 
complex with FITC-cAMP (Fig. 5, C–E). Similarly, the pho-
tochemical transformation of the mHCN2-SOG channel 
was sensitive to oxygen.

blocked by known HCN channel blockers including 
ZD7288 and Cs+ (Proenza and Yellen, 2006). Because 
two compounds block the channel from either side of 
the membrane, we separately tested them by applying 
60 µM ZD7288 to the bath solution or 2 mM Cs+ to the 
pipette solution. Iinst was significantly reduced by ZD7288 
and completely blocked by Cs+ (Fig. 3, E and F). Finally, 
we tested whether Iinst can be regulated by intracellular 
cAMP. After washing FITC-cAMP from the system, we  
applied 3 µM cAMP to the bath solution and observed  
a reversible increase in current amplitude (Figs. S6 
and S7). These biophysical and pharmacological char-
acterizations confirmed that the Iinst generated by the 
photochemical process carried key signatures of the 
HCN current.

1O2 is involved in the photochemical transformation 
of the mHCN2 channel
Next, we investigated the molecular basis of the photo-
transformation process. To further exclude nonspecific 
effects on the HCN channel by blue excitation light or 
green fluorescent emission, we used the HCN-EGFP fu-
sion channel because EGFP and FITC share similar exci-
tation and emission spectra (Fig. S8). Laser treatment 
had little effect on the channel. To test any potential  
effects by the green fluorescent light, we replaced the 
473-nm laser with a green laser (532 nm) and directly 
illuminated the membrane patch. None of these ma-
nipulations produced any noticeable change in channel 
function. Collectively, it appears that the transformation 
of the HCN channel is through a photochemical process 
that involves the excitation of FITC.

Why does exciting FITC, but not EGFP, produce 
such dramatic effects on channel function? Compared 

Figure 6.  1O2 modification of the mHCN2 chan-
nel is state dependent. (A) Schematic drawings 
of closed and open channels. (B) Laser pulses 
were delivered preceding the hyperpolarization 
step. (C) Current traces before (black; no. 3 in 
D and E) and after (blue; no. 7 in D and E) laser 
treatments. (D and E) Normalized deactivation or 
percentage of Iinst versus episode number. 0.5 µM 
FITC-cAMP was applied to the bath. *, P < 0.05.
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locate the residue(s) that underlies the 1O2 modifica-
tion effects. We focused on the regions that go through 
significant conformational changes during channel 
opening, such as the intracellular end of S6 where the 
activation gate was presumably located (del Camino  
et al., 2000; Shin et al., 2004; Prole and Yellen, 2006; 
Kwan et al., 2012; Wu et al., 2012). We discovered H434 
to be important (Fig. 7 A). In the presence of FITC-cAMP, 
applying laser pulses negatively shifted the I-V curve of 
the mHCN2/H434A mutant channel and decreased the 
Ih amplitude (Figs. 7 B, S10, and S11). The negative shift 
in V1/2 was about the same as the control (without laser 
pulses between two I-Vs), indicating a contribution by 
current rundown (Fig. 7 C). The decrease in the Ih am-
plitude of mHCN2/H434A is more pronounced than 
that of the WT channel (Fig. S12).

Importantly, alanine replacement of H434 effectively 
abolished the increases in deactivation and Iinst upon light 

State dependency in 1O2 transformation of the mHCN2 
channel and a critical histidine residue in the channel pore
The short duration of laser pulses (ms) used in our study 
enabled us to probe whether the timing of the 1O2 modi-
fication, corresponding to different functional states of 
the channel, was a critical factor. We applied a light pulse 
preceding the hyperpolarizing voltage step, when most 
of the channels remained closed (Fig. 6, A and B). To 
our surprise, laser treatments of the closed channel 
reduced the Ih current amplitude but did not affect 
deactivation or increase Iinst (Fig. 6, C–E). This result sug-
gested that some effects of the transformation process, 
including increases in deactivation and Iinst, are state depen-
dent and require the channel to be in the open state 
when 1O2 is released.

The above observation suggests that certain residue(s) 
might become more accessible to 1O2 when the channel 
is in the open state. Following this insight, we tried to 

Figure 7.  H434 is critical for 1O2 modification 
of the mHCN2 channel. (A) Structure model of 
the mHCN2 pore (based on Kv1.2-2.1 chimeric 
structure) (Long et al., 2007). (B) Current traces 
of mHCN2/H434A mutant channel in the pres-
ence of 0.5 µM FITC-cAMP. A series of hyperpo-
larizing voltage steps in a 10-mV interval was 
used to activate Ih. (C) I-V curves of mHCN2/
H434A before (black) and after (blue) laser 
treatment. Current amplitudes were normalized  
to the maximal level before laser treatment. V1/2 
values (with laser treatment) are 121.4 ± 1.7 mV 
(before laser in FITC-cAMP) and 129.7 ± 1.3 mV 
(after laser). The corresponding V1/2 is 8.3 ± 
2.0 mV (n = 7) and significant (one-way re-
peated measures ANOVA). As a control, the V1/2 
values in the presence of FITC-cAMP but without 
laser treatment are 119.6 ± 3.3 mV (first I-V) 
and 128.2 ± 4.1 mV (second I-V). The V1/2 is 
8.5 ± 1.6 mV (n = 8; significant). (D; top) Laser 
pulse. (Middle) Voltage protocol. (Bottom) Cur-
rent traces before (black; no. 3 in D and E) and 
after (blue; no. 7 in D and E) laser treatments. 
(E) Normalized deactivation or percentage of Iinst 
versus episode number. WT, n = 19; mHCN2/
H434A, n = 13. *, P < 0.05.
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that the photodynamic transformation is an irreversible 
process, and the generated Iinst stayed at the same level 
during the recording period. Moreover, we observed 
similar results showing that Iinst can be up-regulated by 
cAMP and responds much faster to open channel block-
ers than Ih does. What is the molecular basis of Iinst? Our 
study suggests that modifications made to residues near 
the activation gate, such as H434, could slow down 
channel deactivation and produce Iinst. It is possible that 
under physiological conditions, certain residues includ-
ing H434 are modified so that the channel’s gate is de-
coupled from the gating machinery and remains open 
to produce Iinst. This is consistent with previous reports 
that the coupling between voltage sensor and gate in 
HCN channels is intrinsically weak compared with that 
in Kv channels (Bruening-Wright et al., 2007; Ryu and 
Yellen, 2012).

Our study revealed two major changes after photody-
namic transformation: slowdown in channel deactivation 
and enhancement in Iinst. The two phenomena occurred 
concurrently and might even share the same molecular 
basis, but the connection between them requires further 
investigation. Delayed or incomplete deactivation should 
be able to directly contribute to the expression of Iinst by 
HCN channels, which had been seen in previous studies 
of a mutation in the S4–S5 linker that disrupts channel 
closing (Macri and Accili, 2004) and on the regulation of 
Iinst by intracellular chloride ions (Mistrík et al., 2006). As 
shown in Figs. 2 B and S5, it appears that the deactivation 
was slowed down after the first laser pulse (delivered in 
episode 4), but only in the next episode (5) could signifi-
cant Iinst be detected. We kept the start-to-start interval 
between two episodes at 15 s, which is much longer than 
the cycle of membrane potential changes under physio-
logical conditions when delayed deactivation will en-
hance the expression of Iinst upon repeated stimulations. 
Furthermore, the intrinsic connection between delayed 
deactivation and Iinst is supported by the observation that 
both were abolished when laser pulses were applied to 
the channels in the closed state or to the H434 mutant 
channel. However, we recognize the possibility that de-
layed deactivation and the generation of Iinst are not re-
lated. After photodynamic transformation, Iinst still exists 
even after a minute-long waiting period before the next 
hyperpolarizing stimulation. It is possible that modifica-
tions to H434 of different chemical natures are separately 
responsible for delayed or incomplete deactivation and 
the generation of Iinst. In the literature on Iinst, many stud-
ies do not report any changes in channel deactivation, 
although this could be caused by the fact that the Ih with 
delayed deactivation (and Iinst) only occupies a small frac-
tion of the total current, so that the kinetics will not be 
affected macroscopically.

Our study only provided a peek into 1O2 modifica-
tion of proteins, which understandably is complicated. 
State-dependent photodynamic modification, most likely 

stimulation (Fig. 7, D and E). These results support the 
working model that for channels in the open state, 
H434 becomes more accessible to 1O2; subsequent mod-
ification of H434 leads to a delay in channel deactivation 
and the expression of the instantaneous HCN current 
(Fig. S1). In contrast, in the H434A mutant channel, 1O2 
becomes more abundant and modifications of other 
parts of the channel by 1O2 might underlie the significant 
reduction in Ih current amplitude.

D I S C U S S I O N

Here we report that HCN channels are very sensitive to 
photodynamic modification by 1O2. FITC-cAMP or in-
frame inserted SOG greatly increases the spatial speci-
ficity of 1O2 production. In contrast with earlier studies 
that used second-to-minute long light illuminations, 
our study relied on millisecond light pulses, which ex-
hibited significant changes in HCN channel function. 
Taking advantage of the short lifetime of 1O2 and the 
slow gating kinetics of the HCN channel, we discovered 
that 1O2 modification of HCN channels is state depen-
dent and has distinct effects on channels in the open 
state compared with channels in the closed state. Fol-
lowing this lead, we identified a critical histidine resi-
due at a critical region in S6. Impressively, replacing 
H434 abolished the effects of photodynamic transfor-
mation. Our study provides new insights into the instan-
taneous current conducted by the HCN channel and 
paves the way for further exploration of 1O2 as an effec-
tive photonics tool.

HCN channels are known to conduct Iinst, but the 
physiological significance and the molecular basis have 
been unclear. The Iinst carried by HCN channels has 
been recorded from native cells, including neurons and  
cardiomyocytes, and heterologous expression systems 
(McCormick and Pape, 1990; Hagiwara et al., 1992; Irisawa 
et al., 1993; Maccaferri and McBain, 1996; Graf et al.,  
2001; Anderson et al., 2011). The Iinst conducted by HCN 
channels might have significant physiological conse-
quences. On the one hand, it is known that nonphysio-
logical negative potentials are required to activate the 
canonical Ih current, especially the currents carried by 
HCN2 and HCN4 channels. On the other hand, any 
compromise to HCN channel function, through either 
genetic or pharmacological approaches, consistently 
leads to a hyperpolarization shift of the resting mem-
brane potential and an increase in the input resistance. 
Iinst might provide a hint for the resolution of this di-
lemma and some answers for exactly how HCN channels 
contribute to various physiological functions.

A molecular understanding of Iinst has been lacking. 
The most recent study reported that Iinst is conducted 
by a group of HCN channels that are distinct from the 
Ih-conducting channels (Proenza and Yellen, 2006). 
That observation is consistent with our current study in 
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domain has also been discovered in transcription fac-
tors that regulate circadian rhythms (Sassone-Corsi, 
1998), some of which play a role in regulating 1O2 sig-
naling pathways (Metz et al., 2012). HCN channels 
share a similar topology with KCNH channels and do 
not contain the N-terminal LOV domain, but interest-
ingly, they are very sensitive to regulation by 1O2 gener-
ated by a mutated LOV domain. We anticipate that with 
a more powerful laser source and an ample supply of 
oxygen in the local microenvironment, it will be possi-
ble to push the time limit further to submilliseconds, a 
resolution that is essential for probing protein dynam-
ics (Fig. S13). Further investigation of 1O2 modification 
at the molecular level will provide insights into the role 
of 1O2 as a signaling molecule and help establish 1O2 as 
an effective photonics tool for biomedical research.
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