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Interplay between Helicobacter pylori and immune cells
in immune pathogenesis of gastric inflammation and
mucosal pathology

Hwei-Fang Tsai1,2 and Ping-Ning Hsu3

Helicobacter pylori infection is associated with an inflammatory response in the gastric mucosa, leading to chronic gastritis, peptic

ulcers, gastric carcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphomas. Recent studies have shown that

apoptosis of gastric epithelial cells is increased during H. pylori infection. Apoptosis induced by microbial infections are factors

implicated in the pathogenesis of H. pylori infection. The enhanced gastric epithelial cell apoptosis in H. pylori infection has been

suggested to play an important role in the pathogenesis of chronic gastritis and gastric pathology. In addition to directly triggering

apoptosis, H. pylori induces sensitivity to tumor-necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis

in gastric epithelial cells via modulation of TRAIL apoptosis signaling. Moreover, H. pylori infection induces infiltration of T

lymphocytes and triggers inflammation to augment apoptosis. In H. pylori infection, there was significantly increased CCR61CD31

T-cell infiltration in the gastric mucosa, and the CCR6 ligand, CCL20 chemokine, was selectively expressed in inflamed gastric tissues.

These results implicate that the interaction between CCL20 and CCR6 may play a role in recruiting T cells to the sites of inflammation in

the gastric mucosa during Helicobacter infection. Through these mechanisms, chemokine-mediated T lymphocyte trafficking into

inflamed epithelium is initiated and the mucosal injury in Helicobacter infection is induced. This article will review the recent novel

findings on the interactions of H. pylori with diverse host epithelial signaling pathways and events involved in the initiation of gastric

pathology, including gastric inflammation, mucosal damage and development of MALT lymphomas.
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INTRODUCTION

Helicobacter pylori, a common human pathogen, which infects about

50% of the world’s population, is associated with duodenal and peptic

ulcer diseases. The clinical consequences range from asymptomatic

gastritis to peptic ulceration and gastric malignancy.1,2 The outcome

of the infection is determined by interactions among H. pylori viru-

lence factors, host gastric mucosal factors and the environment.

However, the mechanisms by which host factors cause disease remain

unclear. The H. pylori infection changes the microenvironment of

gastric mucosa. The apoptosis of gastric epithelial cells is increased,3–7

and direct cytotoxicity as well as inflammatory responses occurs in the

gastric mucosa cells.6,8–10 It has been demonstrated that T helper type

1 cells selectively increased during H. pylori infection.11–15 T helper

type 1 cytokines, such as gamma interferon (IFN-c) and tumor-nec-

rosis factor alpha (TNF-a), can increase the release of proinflamma-

tory cytokines, augmenting apoptosis induced by H. pylori.10 H. pylori

infection could also induce gastric mucosa damage by increasing

expression of Fas in gastric epithelial cells, leading to gastric epithelial

cell apoptosis through Fas/FasL interaction with infiltrating T cells.9,16

These findings suggest a role for immune-mediated apoptosis of

gastric epithelial cells during H. pylori infection. Recently, several bac-

terial pathogens have been found to trigger apoptosis in host cells in

vitro or in vivo, and several types of mechanisms have been eluci-

dated.17 It was shown that H. pylori directly triggers cell death by

cytotoxins after interaction with gastric epithelial cells.18,19

Meanwhile, recent reports have shown that H. pylori translocates cyto-

toxin-associated gene A (CagA) into gastric epithelial cell by type IV

secretion, inducing intracellular protein phosphorylation and dysre-

gulate the signal transduction pathways within host cells.20–23

Modulation of TNF-related apoptosis-inducing ligand (TRAIL)-

mediated apoptosis by H. pylori
TRAIL (also called Apo2L), a novel TNF superfamily member with

strong homology to FasL, is capable of inducing apoptosis in a variety

of transformed cell lines in vitro,24,25 but usually not in normal prim-

ary cells. It was shown that T cells can kill target cells via TRAIL/TRAIL

receptor interaction,26–31 indicating that TRAIL might serve as a cyto-

toxic effector molecule in activated T cells in vivo. These findings

suggest that TRAIL/TRAIL receptor interaction is involved in the

interaction between infiltrating T cells and gastric epithelium during
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H. pylori gastritis. In recent reports, Wu et al. demonstrated that

human gastric epithelial cells sensitized to H. pylori confer susceptibil-

ity to TRAIL-mediated apoptosis, suggesting a role for immune-

mediated apoptosis of gastric epithelial cells by infiltrating T cells

during Helicobacter infection.7,15 The induction of TRAIL sensitivity

by H. pylori is independent of expression of H. pylori virulent factors

vacuolating cytotoxin gene A (VacA) and CagA, and is dependent on

viable bacteria and direct contact with cells.7 The expression of TRAIL

receptors did not change after H. pylori infection, indicating the

H. pylori-induced enhanced sensitivity to TRAIL-mediated apoptosis

in gastric epithelial cells was not due to upregulation of TRAIL death

receptors. H. pylori-induced sensitivity to TRAIL-mediated apoptosis

in gastric epithelial cells is dependent on activation of caspase 8 down-

stream pathway to convey the death signal to mitochondria, leading to

activation of mitochondrial pathway and breaking the apoptosis re-

sistance. H. pylori induces TRAIL-mediated apoptosis via enhancing

the assembly of TRAIL death-inducing signaling complex and activa-

tion of caspase 8 and its downstream apoptosis signaling pathway.

Thus, in addition to directly triggering apoptosis, H. pylori induces

sensitivity to TRAIL in gastric epithelial cells by modulation of death-

receptor signal transduction pathways. Modulation of host cell apo-

ptosis by bacterial interaction adds a new dimension to the immune

pathogenesis in Helicobacter infection.

Chemokine-mediated lymphocyte trafficking of T lymphocytes in

gastric inflammation during H. pylori infection

Previous studies have indicated that T lymphocytes play an important

role in the pathogenesis of Helicobacter gastritis.11,32 Inflammation of

the gastric mucosa develops in response to the host immune reaction

against the pathogens. The stimulation of epithelial cells with H. pylori

contributes to the recruitment of neutrophils and lymphocytes. The

activation of macrophages results in the release of cytokines, including

IL-1, IL-6, IL-8, IL-12, TNF-a and IFN-c. As described, the features of

H. pylori-induced inflammatory immune response are orchestrated by

sequential elaboration of proinflammatory cytokines including IL-10,

IFN-c, TNF-a and IL-1b. Accordingly, factors involved in regulating

cytokine responses may confer susceptibility to or protection against

H. pylori-associated diseases. All these results indicate that immune

reaction and inflammation mediators to H. pylori play an important

role in the pathogenesis of H. pylori-associated diseases. Among the T

cells in response to H. pylori infection, the gastric infiltrating T cells

mostly are CD45RO1CD691CD41 T cells, indicating that there was

accumulation of activated memory CD41 T cells during Helicobacter

infection.15 Recent reports indicated that the T helper type 1 response

is induced during infection with H. pylori,11,13,14,33 and the levels of

IFN-c and TNF-a, are increased in the gastric mucosa during H. pylori

infection, augmenting the apoptosis induced by H. pylori.6,7,10 These

results suggest a role for immune-mediated apoptosis of gastric epi-

thelial cells by infiltrating T cells during Helicobacter infection.

Therefore, in addition to bacterial virulence factors, the degree of

gastric mucosa damage is also determined by the inflammation res-

ponse induced during H. pylori infection. However, the induction of

immune response and the immunopathogenic mechanism(s) of

mucosal inflammation in H. pylori infections are still not clear, and

chemokines are thought to play an important role in this process.34–37

Chemokines are small, 6–14-kDa heparin binding proteins, which

play a role in a variety of biological processes, most notably leukocyte

chemotaxis.38,39 Chemokines are involved in acute and chronic

inflammatory processes by attracting neutrophils, monocytes and T

cells to the site of inflammation via their corresponding chemokine

receptors.38,39 Recent reports have shown that there are specific che-

mokines that mediate the homing of lymphocytes in the intes-

tines,37,40,41 suggesting that some chemokines may be involved in

lymphocyte trafficking in the gut. It has been demonstrated that dis-

tinct sets of chemokines and their receptors are responsible for direct-

ing lymphocytes to inflammatory sites.35,36,40,42,43 A set of

proinflammatory chemokines has been shown to be involved in H.

pylori gastritis: Gro-a, IL-8, RANTES, IFN-c-inducible protein-10

(CXCL10), a monokine induced by IFN-c (CXCL11) and CCL20

(MIP-3a/LARC/exodus).15,44–46 It has been demonstrated that the

gastrointestinal epithelium senses the invading microorganisms and

produces cytokines/chemokines that attract lymphocytes and dend-

ritic cells to the site of inflammation.35,47,48 Recently, it was reported

that CCR6 mediates dendritic cell localization, lymphocyte homeosta-

sis and immune responses in mucosal tissue.49 CCR6, a specific b-

chemokine receptor for CCL20, is selectively expressed on dendritic

cells and some memory T cells48,50–52 and may play a role in chemo-

kine-mediated lymphocyte trafficking during gastric inflammation. It

has also shown that CCL20, the ligand of CCR6, is abundantly

expressed in mouse and human inflammatory enteric mucosa.53,54

The production of CCL20 was upregulated in response to H. pylori

in gastric epithelial cells when there was stimulation by the proinflam-

matory cytokines IL-1b and TNF-a.15,55–57 These results implicate

that the interaction between CCL20 and CCR6 may play a role in

recruiting CD45RO1 memory T cells to the sites of inflammation in

the gastric mucosa during Helicobacter infection.

H. pylori CagA protein and the development of mucosa-associated

lymphoid tissue (MALT) lymphomas

It has been established that the cagA gene product, CagA, can be

directly injected into bacterium-attached host gastric epithelial cells

via the bacterial type IV secretion system.20–23 Infection by cagA-pos-

itive H. pylori is associated with gastric carcinomas and gastric MALT

lymphomas.1,58 The development of gastric MALT lymphomas is clo-

sely associated with H. pylori infection. The pathogenic role of H.

pylori infection in gastric MALT lymphomas was observed in in vitro

experiments and clinical evaluations of the effects of eradication on the

progression of gastric MALT lymphomas.59,60 Epidemiological studies

further indicated that cagA-positive H. pylori is present in the gastric

mucosa of most patients with gastric MALT lymphomas.61,62 Clinical

observations that eradication of H. pylori by antibiotic therapy can

lead to the complete remission of MALT lymphomas60 provide evid-

ence that cagA-positive H. pylori plays an important role in the

development and/or maintenance of MALT lymphomas. The

development of gastric MALT lymphomas is dependent on H. pylori

infection. Bacterial colonization of the gastric mucosa triggers

lymphocyte infiltration.15,63 and the formation of acquired MALTs.

Previous studies suggested that MALT lymphoma cells preserve B-cell

properties and that their growth may be partially driven by antigenic

stimulation. H. pylori stimulates lymphoma B cells through tumor-

infiltrating T cells, involving CD40 and CD40L costimulatory mole-

cules.64,65 However, the pathogenesis and how H. pylori induces the

development of B-cell MALT lymphomas are still not clear. Much

attention has been focused on the role of the cagA gene product,

CagA, in the malignant transformation of cells. CagA was directly

injected from bacteria into attached gastric epithelial cells by a type

IV secretion system, encoded by the cag pathogenicity island,20,66 and

underwent tyrosine phosphorylation.23,67–69 In human B lympho-

cytes, overexpression of cagA via transfection induces activation of

extracellular signal-related kinase and their downstream apoptosis
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Figure 1 Immune pathogenesis of gastric mucosa damage in H. pylori infection. In the absence of H. pylori infection, there are very few T cells infiltrating into the

gastric mucosa, which do not induce apoptosis in gastric epithelial cells. In contrast, in the presence of H. pylori infection, H. pylori induce inflammation and

production of chemokine CCL20 to recruit CCR6 expressing activated CD41 T cells infiltrated to the sites of inflammation in the gastric mucosa. The TRAIL expressing T

cells subsequently induce apoptosis in the H. pylori-infected gastric epithelia cells. Meanwhile, immune cells constituting MALTs migrate to and infiltrate the site of H.

pylori infection in the gastric mucosa, and in such circumstances, CagA may be injected into lymphocytes as well as gastric epithelial cells. When CagA is transloacted

into B lymphocytes, it may induce activation of B lymphocytes to proliferate. The molecular mechanism of H. pylori-induced susceptibility to TRAIL-mediated

apoptosis in gastric epithelia cells is shown in the lower inlet of the figure. In the absence of H. pylori infection, TRAIL engagement with death receptors on gastric

epithelial cells induces only weak activation of caspase 8, and is not able to activate the caspase 8 downstream signals to trigger cell death. In contrast, in the presence

of H. pylori infection, H. pylori enhance the assembly of TRAIL death-inducing signaling complex (DISC) after TRAIL engagement, to augment the activation of

caspase 8 and to convey the death signal to mitochondria via cleavage of Bid, leading to activation of mitochondrial pathway and breaking the apoptosis resistance.

CagA, cytotoxin-associated gene A; FADD, Fas-associated protein with death domain; MALT, mucosa-associated lymphoid tissue; TRAIL, tumor-necrosis factor-

related apoptosis-inducing ligand.
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regulators, indicating that CagA has effects on the growth and survival

of B lymphocytes and may play a role in the development of MALT

lymphomas.70,71 H. pylori infection stimulates immune lymphocytes

in the gastric mucosa and induces the formation of MALTs, from

which MALT lymphomas of B-cell origin develop. Immune cells con-

stituting MALTs migrate to and infiltrate the site of H. pylori infection

in the stomach. In such circumstances, CagA may be injected into

lymphocytes as well as gastric epithelial cells. Recent results in our

laboratory have demonstrated that CagA could be directly translo-

cated into human B cells from H. pylori. This implies the direct role

and importance of CagA in the development of H. pylori-associated

MALT lymphomas.

SUMMARY

Human gastric epithelial cells sensitized to H. pylori conferred sus-

ceptibility to TRAIL-mediated apoptosis. Although the induction of

TRAIL sensitivity by H. pylori in gastric epithelial cells was independ-

ent of H. pylori virulent factors CagA and VacA, the degree of apo-

ptosis was linked to the presence of H. pylori and the associated

inflammatory response. Therefore, the degree of mucosal damage

was also determined by the inflammatory response induced by

H. pylori within gastric epithelium. These results suggest a role for

immune-mediated apoptosis and mucosa damage by infiltrating T

cells during Helicobacter infection (Figure 1). In conclusion, H. pylori

enhances susceptibility of gastric epithelial cells to TRAIL-mediated

apoptosis. The induction of TRAIL sensitivity by H. pylori is depend-

ent upon direct contact of viable bacteria with gastric epithelial cells.

Modulation of host cell apoptosis by bacterial interaction adds a new

dimension to the immune pathogenesis in chronic Helicobacter infec-

tion. The interplay between H. pylori and immune cells may induce

activation of B lymphocytes via direct interaction or indirect immune

stimulation leading to the development of H. pylori-associated MALT

lymphomas.
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