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Over the last decade we have witnessed the convergence of

two powerful experimental designs toward a common goal of

defining the molecular subtypes that underpin the likelihood of

a cancer patient responding to treatment in the clinic. The first

of these ‘experiments’ has been the systematic sequencing of

large numbers of cancer genomes through the International

Cancer Genome Consortium and The Cancer Genome Atlas.

This endeavour is beginning to yield a complete catalogue of

the cancer genes that are critical for tumourigenesis and

amongst which we will find tomorrow’s biomarkers and drug

targets. The second ‘experiment’ has been the use of large-

scale biological models such as cancer cell lines to correlate

mutations in cancer genes with drug sensitivity, such that one

could begin to develop rationale clinical trials to begin to test

these hypotheses. It is at this intersection of cancer genome

sequencing and biological models that there exists the

opportunity to completely transform how we stratify cancer

patients in the clinic for treatment.
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Introduction
All cancers arise due to the acquisition of somatic

mutations in their genomes, which fundamentally alter

the function of the protein products of key cancer genes

[1�]. Such mutations are responsible not only for the

development of the cancer in the first instance but also

for maintaining the proliferation status and evasion of cell

death that are the hallmarks of cancer [2]. To date

approximately 500 genes have been identified for which

Open access under CC BY license.
Current Opinion in Genetics & Development 2014, 24:114–119 
mutations (including somatic coding changes and struc-

tural rearrangements) have been causally implicated in

cancer (http://www.sanger.ac.uk/genetics/CGP/Census/)

[3�]. Moreover, next-generation sequencing of large num-

bers of tumours across many tissue types is currently

underway as part of the International Cancer Genome

Consortium (ICGC) and The Cancer Genome Atlas

(TCGA), and we can expect to have within a decade

complete catalogues of somatic mutations for many of

the most prevalent cancer types (www.icgc.org; http://

cancergenome.nih.gov/).

There is an expectation that these studies will reveal

genetic dependencies in cancer that can be targeted

therapeutically to improve patient survival. Indeed they

have begun to reveal pathways and cellular processes that

are subverted in cancer and that may be promising drug

targets. However, it is also clear that cross-talk between

such pathways and compensatory  signalling following

drug treatment are also present and as such can only

be captured by the examination of how cancer cells

respond to treatment over time. Such ‘dynamic’ exper-

iments by their nature require biological models, and

here we discuss how large-scale cancer cell line models

can be used to associate mutated pathways and processes

with the likelihood of drug response in cancer patients.

Cancer genomics and drug response in the
clinic
While most of the current treatment regimens for cancer

are based on the tissue of origin, the clinical response of

cancer patients to treatment with a particular drug is often

highly variable. There is a compelling body of evidence,

both clinical and experimental, that for an increasing

number of drugs used in the clinic the likelihood of a

patient’s cancer responding to treatment is strongly influ-

enced by alterations in the cancer genome (Table 1) [4–
14]. Critically, these genomic changes can be used as

molecular biomarkers to identify patients most likely to

benefit from a particular treatment. Arguably the most

celebrated example of this has been the use of imatinib, a

small molecule inhibitor of the ABL1 tyrosine kinase, to

target the fusion protein product of the BCR-ABL trans-

location seen in chronic myeloid leukaemia [15]. More

recently, the use of EGFR and ALK inhibitors in lung

cancer patients whose tumours harbour EGFR mutations

and EML4-ALK rearrangements, respectively, as well as

BRAF inhibitors in melanoma has resulted in significantly

improved response rates compared to conventional thera-

pies in those subsets of patients [5,6,9]. Equally striking
www.sciencedirect.com
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Table 1

FDA-approved targeted cancer drugs in clinical use that are dependent for activity on the presence of a genomic alteration in the

patient’s tumour. Approved small molecule inhibitors and antibodies targeting specific drug-sensitizing mutations in human cancers.

Although these mutations dramatically affect the likelihood of a given patient responding to a particular therapy, it is pertinent to note that

in many cases these mutations are only present in a subset of that specific tumour type. Identification of these subgroups using next-

generation sequencing technologies will become increasingly important for the management of cancer patients in the clinic

Tumour Gene

(mutation)

Prevalence

of gene

alteration (%)

FDA-

approved

drug

Year

approved

Therapeutic

target

Response rate

in mutant

tumours (%)

Study

Chronic myeloid

leukaemia

BCR-ABL

(translocation)

>95 Imatinib 2001 ABL1 >95 Druker et al. [4]

Gastrointestinal

stromal tumour

KIT (mutation),

PDGFRA

(mutation)

85 (KIT),

5–8 (PDGFRA)

Imatinib 2002 KIT,

PDGFRA

>80 Verweij et al. [8]

Non-small cell

lung cancer

EGFR (mutation) 10 Gefitinib,

erlotinib

2003,

2004

EGFR 70 Mok et al. [6]

Chronic myeloid

leukaemia

(imatinib-resistant)

BCR-ABL

(translocation)

>95 Dasatanib 2006 ABL1 >90 Talpaz et al. [7]

Breast cancer–

node +ve

HER2 amplification 15–20 Trastuzunab 2006 ERBB2 HR 0.48 Perez et al. [13]

Melanoma BRAF (mutation) 40–70 Vemurafenib 2011 BRAF >50 Chapman et al. [20]

Non-small cell

lung cancer

EML4-ALK

(translocation)

2-7 Crizotinib 2011 ALK 57 Kwak et al. [5]

Melanoma BRAF (mutation) 40–70 Debrafenib 2013 BRAF 52 Hauschild et al. [10]

Melanoma BRAF (mutation) 40–70 Trametinib 2013 MEK1 22 Flaherty et al. [11]

Non-small cell

lung cancer

EGFR (mutation) 10 Afatinib 2013 EGFR/ERBB2 50 Yang et al. [12]

Breast cancer

(metastatic)

HER2 amplification 15–20 Trastuzumab 2013 ERBB2 44 Verma et al. [14]

Abbreviations: KIT, v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homologue; PDGFRA, platelet-derived growth factor receptor; alpha

polypeptide.
has been the rapid development of targeted therapies

compared to the timeline for cytotoxic therapies, best

exemplified by the development of ALK inhibitors for

lung cancer, which took less than 5 years from initial

identification of the EML4-ALK rearrangement as a

molecular biomarker to clinical approval of the drug.

Despite the relative success of these approaches, the

number of genomic biomarkers used in the clinic is very

small, and the development of new genomic biomarkers

has the potential to improve the application of the

majority of new and existing therapies. Moreover, even

appropriately selected patient populations exhibit a

poorly explained range of clinical responses, such as

the �60% response rate in BRAF mutated melanoma

patients, which currently limit the effectiveness of even

the most targeted approaches. The emergence of clinical

resistance appears to be almost a universal feature of

targeted therapies, and new clinical strategies incorporat-

ing improved biomarkers will be required to monitor,

counteract and prevent the emergence of drug resistance.

Systematic screens to identify molecular biomarkers to

better guide patient therapies, as well as to counter act

drug resistance, could have a profound impact on the

development of new cancer therapies and ultimately in

improving patient outcomes. Therefore, one can begin to

imagine how a large panel of cancer cell lines that have
www.sciencedirect.com 
been extensively characterised and assayed for their

sensitivity to a large collection of pre-clinical and clinical

therapeutic agents might enable therapeutic biomarker

discovery (Figure 1).

Cancer cell lines as models for drug
biomarker discovery
Immortalised cancer cell lines serve as highly useful and

tractable experimental models for cancers in patients and,

to a substantial extent, recapitulate in vitro the genetic

and biological complexity of cancer. From the establish-

ment of the HeLa cell line almost 50 years ago, they have

been the mainstay of biological investigation of human

cancer [16]. The current, globally available set of approxi-

mately 1000–1500 experimentally usable cancer cell lines

constitutes an extraordinarily useful resource that is ubi-

quitously used in cancer biology and drug development.

In particular, cancer cell lines have proven to be invalu-

able models for cell intrinsic processes and can be used to

study the effects on many existing targeted cancer thera-

pies.

Nonetheless, there are specific aspects of cancer biology

that are difficult to faithfully model cancer cell lines.

These include the effect of tumour–stroma interaction,

immune surveillance, invasion and metastasis, angiogen-

esis and the role of stem cell populations. Moreover, as
Current Opinion in Genetics & Development 2014, 24:114–119
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Figure 1
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Pharmcogenomic profiling in cancer cells. The genomics of drug sensitivity in cancer project has assembled a panel of >1000 cancer cell lines

covering a broad range of tissue types and that have been extensively characterised by exome sequencing, copy number analysis, DNA methylation

and mRNA gene expression profiling. Each cell line has drug sensitivity data for a large number of pre-clinical and clinical compounds. These data can

be used to identify combinations of mutations, copy number alterations or transcriptional programs that best explain drug response in cancer

(www.cancerrxgene.org).
cell lines can be likened to a snapshot of a tumour, they

are not well suited for the study of cancer initiation or

progression. This can only be studied properly by

employing more complex experimental systems; cell

lines have shown themselves to be robust models of cell

intrinsic processes. A number of recent publications

describing the landscape of driver mutations across a

range of cancers have highlighted the mutational hetero-

geneity present in any given tumour type [17–25]. Sim-

ilarly, gene expression studies of clinical samples have

also defined molecularly defined subgroups within a

number of tumour types [26,27,28�]. It is entirely plaus-

ible that these molecularly defined subgroups will exhibit

different biological characteristics including drug

response and therefore any screen that utilises cancer

cell lines must be of sufficient scale to capture both the

tissue-type and genetic diversity of human cancers. Only

in this way will it be possible to accurately model the

effect of cancer mutations on drug response.
Current Opinion in Genetics & Development 2014, 24:114–119 
Large-scale drug screens in cancer cell lines
One of the first systematic efforts to use cancer cell lines

to identify biomarkers of drug sensitivity was the NCI-60

panel at the National Cancer Institute in 1990 [29��]
(http://dtp.nci.nih.gov/branches/btb/ivclsp.html).

Although these 60 cell lines have now been screened

against many thousands of chemical agents, it has become

increasingly clear that much larger numbers of cell lines

are required to capture the genetic diversity of human

cancer. It is now clear from next-generation sequencing

studies that cancers are remarkably heterogeneous and

many cancer genes are present in only a fraction of any

tumour type. It is therefore likely that hundreds of cancer

cell lines would be required to capture this landscape of

cancer gene mutations.

To address this need, a Wellcome Trust Sanger Institute

and Massachusetts General Hospital collaboration was

established in 2009 to screen >1000 cancer cell lines
www.sciencedirect.com

http://dtp.nci.nih.gov/branches/btb/ivclsp.html
http://www.cancerrxgene.org/


Cell line drug screens to evaluate cancer therapeutics Garnett and McDermott 117

Table 2

The advantages and disadvantages of using cancer cell lines to model cancer biology. It is pertinent to note that many of the current

disadvantages of established cancer cell lines could be negated through the generation of tumour organoid cancer models using novel

tissue culture and sequencing technologies

Advantages Disadvantages

Cancer is an intrinsic disease

of cells.

Some cancer types are very poorly represented as cancer cell lines, for example prostate cancer.

Cancer cell lines are derived

from naturally occurring human

cancers.

Even for those cancer classes that are represented, there are relatively small numbers available as

cancer cell lines.

Cancer cell line resources capture

at least some of the cell-of–origin

and mutational diversity of cancer.

Cancer cell lines do not reflect the cell-type or tissue architecture of the tissue from which they were

derived.

Cancer cell lines are routinely

used in drug development.

The available set of cancer cell lines have adapted to culture in multiple different ways. They have

been derived over five decades or more in a large number of laboratories under widely differing

conditions, and have been grown for widely differing numbers of passages.

Cancer cell lines are tractable for

high-throughput analysis as

well as gene silencing and

overexpression experiments.

The available set of cancer cell lines appears to represent, for many cancer classes, a subset of cases

with pre-existing favourable intrinsic features that have allowed establishment in in vitro culture.

For most cancer cell lines there is little or no clinical or pathological data attached.

For most cancer cell lines, a normal sample from the same individual is not available and hence we

cannot clearly identify the somatic mutations present in the cell line.

For almost all cancer cell lines, there has not been parallel genomic or other characterisation of the

primary cancer from which it was derived in order to assess the degree of similarity (or difference) and

the extent to which the line has evolved in vitro.

The recent explorations of cancer genomes through sequencing, with concomitant discovery of new

cancer genes, have revealed how patchy is the recapitulation of key driver events in each cancer type

within the current series of cancer cell lines, and how few of the combinations of mutated cancer

genes are found therein.
against 400 cancer drugs and to make that data publicly

accessible (pharmacologic profiles of 142 cancer drugs

screened across 668 cell lines are currently available)

(http://www.cancerrxgene.org/) (Figure 1). A similar

initiative funded by the pharmaceutical company Novar-

tis at the Broad Institute has profiled 24 cancer drugs

across 504 cell lines (http://www.broadinstitute.org/ccle/

home). A key element of both endeavours is the detailed

genomic, epigenetic and transcriptomic characterisation

that has been made possible for these cancer cell lines by

advances in next-generation sequencing, such that multi-

dimensional signatures of drug response can be derived

from such screens and that could be used to stratify

patients for clinical trial recruitment or treatment in

the clinic. Landmark papers by both these groups

recently demonstrated the power of these large screens

to identify both novel and previously documented bio-

markers of drug response in a completely unbiased

fashion [18��,30��]. It is now feasible to consider profiling

all new experimental oncology compounds in such

screens in order to develop hypotheses as to mechanisms

of activity as well as insights into patient subgroups that

may be most likely to respond to treatment in the clinic.

Tumour organoids as the next generation of
cancer cell models
Although the current set of cancer cell lines has demon-

strated value when used at sufficient scale to capture the
www.sciencedirect.com 
genetic diversity of human cancer, it has a number of

drawbacks (Table 2). Foremost among these has been the

low success rate in deriving these cell lines from patient

biopsies in the past, with the result that some tumour

types are very poorly represented (e.g. prostate cancer)

and the cell lines available do not completely capture the

genetic diversity present in the patient population. It is

possible therefore to envisage the ideal scenario for

derivation of a new panel of cancer cell lines, where

phenotypically stable cells could be generated with high

success rates from patient biopsies together with clinical

data and where matched normal tissue from the same

patient could also be cultured for experimental assays.

Recently the Clevers lab has recently shown that it is

possible to establish long-term cultures from a variety of

adult mouse and human primary tissues and cancers

(‘organoids’), which can be expanded for many months

in vitro without genetic or phenotypic changes [31,32�].
The essential ingredients of the Matrigel-based 3D orga-

noid cultures are a combination of specific growth factors

known to exert strong agonistic effects on critical signal-

ling pathways. Currently, organoid cultures can be made

routinely for colon, stomach, and liver [32�,33,34]. Proto-

cols for their derivation from pancreas, prostate and lung

cancers are also being developed. These organoid cul-

tures will need to be extensively characterised to deter-

mine their stability over time and to what degree they
Current Opinion in Genetics & Development 2014, 24:114–119
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match the original cancer biopsy, but the development of

this technology raises the possibility of generating a new

panel of tumour organoid cultures to replace the current

1000 cancer cell lines that are currently available. These

developments are the specific focus of an article in this

edition of Current Opinion in Genetics and Development

(‘Organoid cultures for the analysis of cancer pheno-

types’).

Concluding remarks
Remarkable advances in DNA sequencing technologies

are transforming our ability to define the mutational

burden of any given cancer and in the near future these

data will become a routine part of the clinical decision-

making process to stratify patients for treatment. In order

to empower clinicians to interpret how these mutations

can affect cancer treatment outcome there will be a

continual need for model systems to functionally link

these genomic alterations with drug response. Cancer cell

lines screened at sufficient scale to capture the existing

genetic diversity provide a route into defining the patient

subgroups that are more likely to respond to any given

therapy. Furthermore, many of the current disadvantages

of the current cancer cell lines will potentially be over-

come in the near future by their replacement with poten-

tially even larger panels of tumour organoid models. Thus

it is likely that such systematic efforts to understand the

biology of drug response in cancer will become increas-

ingly important for any new drug in order to better

understand the patient subgroup most likely to respond

in the clinic. Indeed, one can readily imagine a time in the

not too distant future when all new cancer therapeutics

will be routinely submitted to such screens and the

hypotheses generated used to guide clinical trial design.
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