
RESEARCH ARTICLE

TLR4 is essential for dendritic cell activation and
anti-tumor T-cell response enhancement by DAMPs
released from chemically stressed cancer cells

Hongliang Fang1,4, Bing Ang2,4, Xinyun Xu3, Xiaohui Huang2, Yanfeng Wu2, Yanping Sun3,
Wenying Wang2, Nan Li2, Xuetao Cao1,2 and Tao Wan2

The combination of immunotherapy and chemotherapy is regarded as a promising approach for the treatment of certain

types of cancer. However, the underlying mechanisms need to be fully investigated to guide the design of more efficient

protocols for cancer chemoimmunotherapy. It is well known that danger-associated molecular patterns (DAMPs) can

activate immune cells, including dendritic cells (DCs), via Toll-like receptors (TLRs); however, the role of DAMPs released

from chemical drug-treated tumor cells in the activation of the immune response needs to be further elucidated. Here, we

found that colorectal cancer (CRC) cells treated with oxaliplatin (OXA) and/or 5-fluorouracil (5-Fu) released high levels of

high-mobility group box 1 (HMGB1) and heat shock protein 70 (HSP70). After OXA/5-Fu therapy, the sera of CRC patients

also exhibited increased levels of HMGB1 and HSP70, both of which are well-known DAMPs. The supernatants of dying

CRC cells treated with OXA/5-Fu promoted mouse and human DC maturation, with upregulation of HLA-DR, CD80 and

CD86 expression and enhancement of IL-1b, TNF-a, MIP-1a, MIP-1b, RANTES and IP-10 production. Vaccines composed

of DCs pulsed with the supernatants of chemically stressed CRC cells induced a more significant IFN-c-producing Th1

response both in vitro and in vivo. However, the supernatants of chemically stressed CRC cells failed to induce phenotypic

maturation and cytokine production in TLR4-deficient DCs, indicating an essential role of TLR4 in DAMP-induced DC

maturation and activation. Furthermore, pulsing with the supernatants of chemically stressed CRC cells did not efficiently

induce an IFN-c-producing Th1 response in TLR4-deficient DCs. Collectively, these results demonstrate that DAMPs

released from chemically stressed cancer cells can activate DCs via TLR4 and enhance the induction of an anti-tumor T-cell

immune response, delineating a clinically relevant immuno-adjuvant pathway triggered by DAMPs.
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INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer and

the third leading cause of cancer deaths in developed countries.

Oxaliplatin (OXA)- and 5-fluorouracil (5-Fu)-based FOLFOX

chemotherapy is the first-line therapeutic regimen in the treat-

ment of patients with advanced CRC.1,2 Chemical drugs

mainly kill tumor cells through cytotoxic effects and also kill

normal cells at the same time, which causes lymphopenia and

suppresses the immune system’s function. Immunotherapy is

now becoming a promising approach for CRC treatment, and

much attention has been paid to the combination of chemo-

therapy and immunotherapy. Efficiently killing tumor cells

with chemical drugs while enhancing induction of the anti-

tumor immune response is becoming increasingly important.

CRC cells treated with OXA and 5-Fu may release danger-

associated molecular patterns (DAMPs), which play important
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roles in immunogenic tumor cell death. Through experiments

performed in vivo and in vitro, DAMPs induced by chemical

drugs have been demonstrated to stimulate dendritic cells

(DCs) to induce an anti-cancer immune response.3–5 However,

DAMPs also play a putative role in the promotion of tumor

progression by attracting immature myeloid cells and triggering

tumor cell proliferation.6–8 Thus, how to more efficiently trigger

an anti-cancer immune response mediated by DAMPs is worthy

of attention.

DCs are characterized by their ability to efficiently present

antigens and are uniquely equipped to stimulate T-cell res-

ponses. DCs have a strong ability to activate CD81 cytotoxic

T lymphocytes and CD41 Th1 immunity and therefore play an

essential role in the anti-tumor immune response.9–13 DCs in

the tumor environment are mainly immature and are ideally

equipped to engulf and process dying cells. However, tumor-

derived factors maintain DC immaturity, trapping the cells

within the tumor and hence impairing effective presentation

of ingested antigens to T cells. Moreover, these immature DCs

have immunosuppressive rather than immunostimulatory

properties.14,15 Therefore, improving the immunogenicity of

tumor cells and the efficiency of stimulated DCs in inducing

potent anti-tumor immunity is an important way to enhance

the efficacy of cancer therapy.

Toll-like receptors (TLRs) play important roles in the ini-

tiation of innate and adaptive immune responses. Increasing

numbers of DAMPs are being reported as candidate agonists

of TLRs, and particularly TLR4, including heat shock proteins

(HSPs) (HSP70, HSP90),16–18 high-mobility group box 1

(HMGB1)19,20 and uric acid crystals.21 These molecules can bind

to TLR4, thereby causing inflammatory responses and providing

DCs with danger signals, which can be translated into the pro-

motion of an anti-tumor T-cell response. Supporting these find-

ings, patients with breast cancer who have lost TLR4 function

have been shown to relapse more quickly after chemotherapy

than patients with normal TLR4 expression.22

Here, to improve the efficacy of DC vaccines in the induction

of an anti-tumor immune response, we investigated whether

DCs pulsed with DAMPs from dying CRC cells could efficiently

induce an anti-tumor T-cell response. We showed that OXA

and 5-Fu induced the release of DAMPs from CRC cells and

that DAMPs from CRC cells activated DCs to more signifi-

cantly induce anti-tumor immune responses than did the

supernatants of untreated CRC cells. More importantly, we

found that TLR4 in DCs was essential for CRC cell-derived

DAMPs to activate DCs and induce an anti-tumor immune

response. Thus, our data demonstrate that TLR4 is essential

for DC activation and anti-tumor T-cell response enhance-

ment by DAMPs from chemically stressed cancer cells, provid-

ing a molecular mechanism for the synergy of immunotherapy

and chemotherapy in the induction of an anti-tumor effect.

MATERIALS AND METHODS

Serum samples

Sera were obtained from patients with CRC stage III/IV who

had received FOLFOX (5-Fu1OXA) chemotherapy at

Shanghai Changzheng Hospital (Shanghai, China). All patients

gave written informed consent, and the protocol was approved

by local institutional review boards. Blood was collected before

and after the first chemotherapy treatment (any day among the

third to seventh days after the treatment).

Animals and cell lines

Wild-type (WT) C57BL/6 and Balb/c mice, 6–8 weeks of age,

were obtained from the Shanghai Laboratory Animal Center of

the Chinese Academy of Sciences (Shanghai, China). TLR4-defi-

cient mice (TLR42/2, C57BL/6 strain) were kindly provided by

Dr S Akira (Research Institute for Microbial Diseases, Osaka,

Japan).23 All mice were housed in a specific pathogen-free facil-

ity during all experiments. The human CRC cell line SW480

(HLA-A2.11) and the mouse CRC cell line CT-26 were obtained

from the American Type Culture Collection (Manassas, VA,

USA) and cultured according to the provided instructions.

Preparation of supernatants from chemically stressed cancer

cells

SW480 cells and CT-26 cells were cultured in cell culture flasks

(13106/ml) in the presence of 10 mg/ml 5-Fu (Sigma, St Louis,

MO, USA) and/or 0.5 mg/ml OXA (Sanofi, Paris, France).

Supernatants were collected after 0, 6, 12, 18, 24, 30, 36 and 42 h,

and HSP70 and HMGB1 levels were then measured using ELISA

kits (Stressgen, Cedar Creek, TX, USA). To remove the chemical

drugs, the supernatants collected after 30 h were dialyzed in phos-

phate-buffered saline at 4 uC for 48 h and concentrated by cent-

rifugation in 10000 MWCO centrifuge tubes at 2000g for 15 min at

4 uC. Untreated sup-CTR describes the supernatants of untreated

SW480/CT26 cells (the control group); OXA-sup, the superna-

tants of SW480/CT26 cells treated with OXA; 5-Fu-sup, the super-

natants of SW480/CT26 cells treated with 5-Fu; and OXA1

5-Fu-sup, the supernatants of SW480/CT26 cells treated with

OXA and 5-Fu.

Generation of DCs

Human peripheral blood monocytes were isolated from healthy

volunteers (HLA-A2.11), and monocyte-derived DCs were pre-

pared as described previously.24 Mouse bone marrow-derived

DCs (BMDCs) were prepared as previously described.25

Assays for cytokine and chemokine production

Human DCs and BMDCs were cultured for 5 days and adjusted

to a final concentration of 53105 cells/ml in 24-well plates.

Next, 100 ml/ml untreated CTR-sup, OXA-sup, 5-Fu-sup and

OXA15-Fu-sup and 100 ng/ml lipopolysaccharide (LPS) were

added to separate wells of the 24-well plates. Supernatants from

designated wells were harvested after 24 h for quantification of

cytokines, such as IL-6, IL-1b and TNF-a, and of chemokines,

including MIP-1a, MIP-1b and RANTES, using ELISA kits

(R&D Systems, Minneapolis, MN, USA).

Flow cytometry

After 5 days of culture, human DCs and BMDCs were stimu-

lated with 100 ml/ml untreated CTR-sup, OXA-sup, 5-Fu-sup
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or OXA15-Fu-sup or 100 ng/ml LPS for 24 h. The DCs were

then collected; washed with phosphate-buffered saline; and

stained with phycoerythrin-conjugated anti-CD40 or anti-

CD86 or fluorescein isothiocyanate-conjugated anti-HLA-

DR (I-Ab) monoclonal antibody (PharMingen, San Diego,

CA, USA) for analysis with a FACSCalibur flow cytometer

(Becton Dickinson, Mountain View, CA, USA) and

CellQuest software (Becton Dickinson).

Generation of T-cell response

Human DCs and BMDCs (from WT or TLR42/2 C57BL/6 mice)

were cultured for 5 days; harvested; stimulated with 100 ml/ml

untreated CTR-sup, OXA-sup, 5-Fu-sup or OXA15-Fu-sup for

24 h; and then washed twice in serum-free RPMI 1640 medium. In

the TLR4-antagonist group, 30 mg/ml HTA125 (HBT, Uden, The

Netherlands), an anti-TLR4 monoclonal antibody, was adminis-

tered before stimulation with untreated CTR-sup, OXA-sup, 5-Fu-

sup or OXA15-Fu-sup.26 Human DCs (23105) and autologous

peripheral blood lymphocytes (23106) or BMDCs (23105) and

autologous splenocytes (23106) from WT or TLR42/2 C57BL/6

mice were cocultured in 1 ml RPMI 1640 medium supplemented

with 10% fetal calf serum in 24-well plates. The human peripheral

blood lymphocytes or mouse splenocytes were restimulated with

autologous fresh supernatant-pulsed DCs every 7 day for three

times respectively. On the third day after the second stimulation,

20 IU/ml rhIL-2 (Sigma) was added. Half of the medium was

removed every 3 days and replaced with fresh medium containing

rhIL-2 (20 IU/ml). On the seventh day after the final stimulation,

the cells were harvested and prepared for ELISPOT analysis.

ELISPOT assay

Human lymphocytes were re-stimulated with 50 mg/ml SW480

tumor cell lysate antigen (prepared by repeatedly freezing and

thawing SW480 cells) for 72 h, as described above, and then

collected and used as effector cells. SW480 (13105) tumor cells,

serving as stimulator cells, were cocultured with 23105 effector

cells and seeded into 96-well polyvinylidene difluoride-backed

microplates coated with anti-human IFN-c mAb. After incuba-

tion at 37 uC for 24 h, the cells were removed, and the plates were

processed following the manufacturer’s protocol (R&D Systems).

Splenocytes from WT or TLR42/2 C57BL/6 mice were re-

stimulated with 50 mg/ml CT-26 tumor cell lysate antigen for

72 h and then collected and used as effector cells. BMDCs

(13105) pulsed with CT-26 tumor lysate antigen, serving as

stimulator cells, were cocultured with 23105 effector cells and

seeded into 96-well polyvinylidene difluoride-backed micro-

plates coated with anti-mouse IFN-c mAb. After incubation

at 37 uC for 24 h, the cells were removed, and the plates were

processed following the manufacturer’s protocol for the

ELISPOT kit (R&D Systems). The resulting spots were counted

using an ImmunoSpot Analyzer (Cellular Technology Ltd,

Cleveland, OH, USA).

DC vaccination

BMDCs generated from Balb/c mice were harvested on the fifth

day; plated at a cell concentration of 23106/ml; pulsed with

100 ml/ml untreated CTR-sup, OXA-sup, 5-Fu-sup or

OXA15-Fu-sup for 24 h; and then washed three times with

phosphate-buffered saline. Balb/c mice were subcutaneously

immunized three times at an interval of 1 week with superna-

tant-pulsed BMDCs (13106 per mouse).

Tumor challenge

Five days after the final immunization, the C57BL/6 mice were

subcutaneously challenged with 23105 CT-26 tumor cells in

the flank area. Tumor growth was monitored by measuring the

diameter of the tumor with a caliper every 2 days and was

recorded as the average of two perpendicular diameter mea-

surements. The survival time following tumor challenge was

also recorded.

Statistical analysis

Differences in the growth of the CT-26 tumors, as indicated by

the tumor diameters within each group, were compared using

the Mann-Whitney U test. To compare mouse survival

between the treatment groups and the control group, a

Kaplan–Meier statistical analysis was performed. All other sta-

tistical analyses were based on the Student’s t-test. P,0.05 was

considered as a statistically significant difference.

RESULTS

DAMPs release from cancer cells induced by chemical drugs

HMGB1 and HSP70 are prototypical DAMPs that are hall-

marks of cancer and are released following chemotherapy.3,4,27

The release of HMGB1 and HSP70 was detected in the super-

natants of the mouse CRC cell line CT-26 (Figure 1a) and the

human CRC cell line SW480 (Figure 1b) after treatment with

the chemical drugs OXA and/or 5-Fu. We found that HSP70

and HMGB1 release into the cell supernatants 6 h after treat-

ment with OXA and/or 5-Fu was significantly increased com-

pared with release in the untreated control group (P,0.05).

Additionally, the HSP70 and HMGB1 concentrations in the

cell supernatants 18, 24 and 30 h after treatment with the com-

bination of OXA and 5-Fu were even higher than following

treatment with OXA or 5-Fu alone (Figure 1a and b).

DAMPs in sera from cancer patients induced by

chemotherapy

Next, we investigated changes in the expression of HMGB1 and

HSP70 in the sera of 11 patients with advanced CRC who had

received FOLFOX chemotherapy (5-Fu1OXA). We found

that the serological concentrations of HSP70 and HMGB1

in the patients who had received chemotherapy increased

markedly after chemotherapy (Figure 1c). The results indicated

that chemotherapy can increase DAMPs release in cancer

patients.

Supernatants from chemically stressed human cancer cells

induce maturation of human DCs in TLR4-dependent

manner

DAMPs are shown to be candidate TLR4 agonists and to

promote the maturation and activation of DCs.4,18,19 To
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investigate the role of TLR4 in mediating DC maturation

by supernatants from chemical drug-treated SW480 cells,

we observed the phenotypic changes in DCs stimulated

with supernatants from chemically stressed SW480 cells. We

found that stimulation with OXA-sup, 5-Fu-sup or OXA15-

Fu-sup induced upregulation of HLA-DR, CD80 and CD86

expression on human DCs compared with stimulation

with untreated sup-CTR. Stimulation with OXA15-Fu-sup

particularly induced greater phenotypic changes than did

stimulation with OXA-sup or 5-Fu-sup alone. When we

used the mAb HTA125, a TLR4 antagonist, to block the inter-

action of TLR4 with DAMPs in the supernatants of SW480 cells

treated with chemical drugs, the upregulation of HLA-DR,

CD80 and CD86 expression on DCs was reversed (Figure 2a),

indicating that TLR4 on the DCs mediated the enhancing

effect.

Next, we investigated whether TLR4 was essential for the

induction of pro-inflammatory cytokine and chemokine secretion

by DCs stimulated with supernatants from chemically

stressed SW480 cells. We found an increase in pro-inflamma-

tory cytokine and chemokine secretion by DCs stimulated with

OXA-sup, 5-Fu-sup or OXA15-Fu-sup, especially when sti-

mulated with OXA15-Fu-sup (P,0.05), but not DCs blocked

with the TLR4 antagonist (Figure 2b). These results indicated

that TLR4 was the crucial receptor mediating the DC matura-

tion induced by DAMPs from SW480 cells treated with che-

mical drugs.

Supernatants from chemically stressed mouse cancer cells

induce maturation of mouse DCs in TLR4-dependent

manner

Next, we prepared DCs from WT and TLR42/2 C57BL/6 mice

and observed the phenotypic changes in these DCs when sti-

mulated with supernatants from chemically stressed CT-26

cells. We found that stimulation with OXA-sup, 5-Fu-sup or

OXA15-Fu-sup induced upregulation of I-ab, CD80 and
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Figure 1 HMGB1 and HSP70 release from chemically stressed CRC cells and in the sera of CRC patients after chemotherapy. (a) CT26 cells or (b)
SW480 cells (33105/ml) were treated with 0.5 mg/ml OXA, 10 mg/ml 5-Fu or a combination of 0.5 mg/ml OXA and 10 mg/ml 5-Fu. Supernatants
were collected after 0, 6, 12, 18, 24, 30, 36 and 42 h of culture. HMGB1 and HSP70 levels in the supernatants were measured by ELISA. (c)
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are presented as the mean6s.e.m. of three independent experiments. CRC, colorectal cancer; 5-Fu, 5-fluorouracil; HMGB1, high-mobility group
box 1; HSP, heat shock protein; OXA, oxaliplatin.
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CD86 expression on WT DCs, but not TLR42/2 DCs

(Figure 3a). The production of pro-inflammatory cytokines

(IL-1b, TNF-a and IL-6) and chemokines (MIP-1a, MIP-1b,

RANTES and IP-10) was significantly increased among WT

mouse DCs stimulated with OXA15-Fu-sup. However, there

was no significant increase in the production of these cytokines

and chemokines by TLR42/2 DCs stimulated with OXA15-

Fu-sup (Figure 3b).

Taken together, the results suggest that the supernatants of

CRC cells treated with chemical drugs induced DC phenotypic

maturation and production of chemokines and pro-inflam-

matory cytokines via TLR4, indicating that TLR4 was one of

the functional receptors mediating DC activation by the super-

natants of the chemically stressed CRC cells.

DCs pulsed with supernatants from chemically stressed

cancer cells induce Th1 response in vitro in TLR4-dependent

manner

To assess whether TLR4 played an important role in the

in vitro induction of a Th1 response by the DCs pulsed with

DAMPs, we incubated peripheral blood lymphocytes from

health donors and autologous DCs pulsed with the superna-

tants of chemically stressed SW480 cells in vitro. Alternatively,

we incubated splenocytes from WT or TLR42/2 C57BL/6 mice
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and syngeneic DCs pulsed with the supernatants of chemically

stressed CT-26 cells. As shown in Figure 4, the number of

IFN-c-producing cells induced by the DCs pulsed with OXA-

sup, 5-Fu-sup or OXA15-Fu-sup was significantly higher than

the number in the untreated sup-CTR group (P,0.01).

However, the number of IFN-c-producing cells was decreased

by the TLR4 antagonist HTA125 (Figure 4a), and an increase in

the number of IFN-c-producing cells was not observed in the

TLR42/2 mice immunized with syngeneic DCs pulsed with super-

natants from chemical drug-treated CT-26 cells (Figure 4b). These

results further indicated that TLR4 functioned as the receptor by

which DAMPs activated the DCs. The data suggested that the DCs

were activated by the DAMP-containing supernatants of chemically

stressed CRC cells via TLR4 and then triggered the Th1 response

more potently.

More efficient induction of anti-tumor effect in vivo by

immunization with DCs pulsed with supernatants from

chemically stressed cancer cells

Induction of the in vivo anti-tumor immune response by

DAMPs was assessed in a murine model with CT-26 tumor

challenge. Balb/c mice were subcutaneously immunized

three times at an interval of 1 week with BMDCs that had

been stimulated with the supernatants of chemically stressed

CT-26 cells. On the seventh day after the last immunization, the

mice were subcutaneously challenged with CT-26 cells, and the

tumor size of the mice was measured every 2 days.

Tumor growth was significantly suppressed in the OXA15-

Fu-sup group compared with the control group (P,0.05)

(Figure 5a), and the survival time was markedly prolonged

in the OXA15-Fu-sup group compared with the untreated
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sup-CTR group (P,0.05) (Figure 5b). These data demon-

strated that immunization of mice with DCs that had been

pulsed with the DAMP-containing supernatants of chemically

stressed CRC cells more efficiently induced an anti-tumor

immune response.

DISCUSSION

It has recently been shown that DAMPs are released from dying

cells treated with certain chemical drugs, such as OXA, cyclo-

phosphamide and doxorubicin.4,5,28,29 In our study, we found

that the release of HSP70 and HMGB1 into CRC cell super-

natants was significantly increased after OXA and/or 5-Fu

treatment. Additionally, HSP70 and HMGB1 concentrations

in the supernatants of cells treated with the combination of

OXA and 5-Fu were even higher than after treatment with

OXA or 5-Fu alone. Indeed, our data showed that the com-

bination of OXA and 5-Fu treatment significantly increased

DAMPs release, suggesting that the combination chemother-

apy FOLFOX directly triggers more CRC cell death while more

efficiently stimulating endogenous immune responses against

the tumor. Timing is critical for effective anti-tumor immu-

notherapy. It has been reported that sequential events are

associated with chemically stressed tumor cells. When tumor

cells are treated with doxorubicin, intracellular calreticulin

rapidly translocates to the cell surface (within 1 h). At 12 h after

drug treatment, molecular chaperones, such as HSP70, may
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appear on the tumor cell surface. Finally, at 18 h, the release of

HMGB1 from dying tumor cells can be observed.30,31 In con-

trast to the results for doxorubicin, our data showed that the

levels of HSP70 and HMGB1 peaked at 30 h after exposure to

OXA and 5-Fu and gradually decreased afterward. Thus, we

evaluated the anti-tumor effect of adjuvant immunotherapy

induced by a DC vaccine, including protocols for maturing

DCs pulsed with 30-h supernatants. Consistent results were

also collected from human patients, showing that the serum

concentrations of HSP70 and HMGB1 in patients receiving

FOLFOX chemotherapy increased markedly following chemo-

therapy.

DAMPs appear to play an alternate paradoxical role during

tumor formation. It has been reported that DAMPs recog-

nition can favor tumor progression by attracting immature

myeloid cells and triggering the proliferation, migration and

sprouting of endothelial cells in tumor beds.6–8 Moreover, in

CRC, HMGB1 expression is increased at metastatic sites com-

pared with primary tumor sites in non-metastatic patients.32 In

addition to the putative role of HMGB1 in the promotion of

tumor progression, certain preclinical and clinical data have

revealed that HMGB1 seems to induce the functional matura-

tion of DCs and to trigger protective anti-cancer T cell res-

ponses.4,5,16,20 The question of how DCs decode DAMPs

needs to be further investigated. Recent studies have high-

lighted that after treatment with chemotherapeutic drugs,

apoptotic tumor cells can release microparticles, which may

contain DAMPs that stimulate DCs and can be used to effec-

tively kill tumor cells.33,34 Therefore, when appropriate anti-

genic transfer to DCs occurs, the acute release of DAMPs may

help to elicit immune responses in cancer-bearing patients.

Maturation and activation of DCs is required for DC migration

to T-cell regions within the lymph node.9–11

In this study, we found that DAMPs from CRC cells treated

with OXA and 5-Fu promoted mouse and human DC matura-

tion in vitro, activating the DCs to produce pro-inflammatory

cytokines, such as IL-1b and TNF-a, whose autocrine or para-

crine secretion can stimulate DC maturation.9,14,16 Moreover, in

our study, increased MIP-1a, MIP-1b, RANTES and IP-10 secre-

tion by DCs stimulated with DAMPs was also observed. These

chemokines have been shown to play important roles in the

immune response due to their involvement in the inflammatory

response and their capacity to chemoattract leukocytes. Our pre-

vious studies have shown that chemokine gene transfer can

enhance DC-mediated and T cell-dependent anti-tumor

immunity and thus represents a potent anti-tumor immunother-

apeutic approach.35–37 Therefore, increased chemokine secretion

by DAMP-stimulated DCs is expected to exert strong chemoat-

tractant effects on DCs and T cells, resulting in improved pro-

tective immunity and an enhanced T-cell response.

It is strongly recommended that vaccination strategies aim-

ing to induce immunity against cancer include a means to

stimulate the maturation of the targeted DCs. However,

tumor-derived factors maintain DC immaturity, trap these

cells within the tumor and hence, impair the effective presenta-

tion of ingested antigens to T cells.38 The presence of HSPs

from dying tumor cells promotes the formation of tumor anti-

gen–HSP complexes, which are processed by DCs for T-cell

cross-priming more efficiently than tumor antigens alone.9,11

In the current study, the release of HSP70 and HMGB1 into the

cell supernatants was significantly increased after OXA and/or

5-Fu treatment. HSP70 could have chaperoned tumor antigen

generated by dying cells, triggering tumor-specific T-cell res-

ponses and anti-tumor effects via cross-presentation by DCs.

We also found that a vaccine generated by pulsing DCs with the

supernatants of chemically stressed CRC cells induced a polar-

izing IFN-c-producing Th1 response in vitro. Induction of a

Th1 response could be a vital mechanism underlying anti-

tumor immunotherapy. We have previously reported that gene

modification of Th1 cytokines (e.g., IL-18 and IFN-c) can effi-

ciently induce a T cell response to treat immunological disor-

ders, including cancer and chronic infection.12,13,39 Moreover,

a CEA576–669-HSP70L1 fusion protein promotes the secretion

of Th1 cytokines (such as IL-12 and IFN-c) and stimulates an

anti-tumor cytotoxic T lymphocyte response to a DC vaccine.40

Thus, certain types of chemotherapy can kill tumor cells

through efficient cytotoxic effects while enhancing the induc-

tion of an anti-tumor immune response.

An increasing number of endogenous proteins are being

reported as stimulating TLRs (in particular, TLR2 and TLR4),

such as HMGB119,20 and HSPs, including HSP60, HSP70, endo-

plasmin and HSPB8.9,11,41,42 In this study, we found phenotypic

maturation and significantly increased cytokine secretion among

WT DCs, but not TLR42/2 DCs, after stimulation with the

supernatants of chemically stressed CT-26 cells. Similarly, the

supernatants of chemically stressed SW480 cells failed to pro-

mote the maturation and activation of human DCs when the

mAb HTA125 was used to block TLR4 function in DCs. HMGB1

and HSP70 bind promiscuously to multiple proteins and are

reported to bind to the receptor for advanced glycosylation end-

products,43,44 TLR241,42 and TLR4,16,19,20 all of which can be

presented on the surfaces of DCs. Our data suggest that the effect

of the supernatants of dying CRC cells on DCs is mainly TLR4

mediated. Therefore, our current study indicated that TLR4 on

DCs is one of the most important members of the TLR family to

target in order to enhance the anti-tumor immune response.

The activation of TLRs by their cognate ligands leads to inflam-

matory cytokine production and upregulation of costimulatory

signals and MHC molecules among DCs, thereby linking innate

recognition to adaptive T- and B-cell immune responses, as well

as to memory responses after the immune system encounters any

pathogen. Interestingly, TLR4 appears to be required for efficient

DC-mediated induction of a T-cell response. Our studies have

proven that DCs pulsed with the supernatants of chemically

stressed CRC cells induce an IFN-c-producing T cell response

in a TLR4-dependent manner. Thus, during chemotherapy,

DAMPs, which are released from chemically stressed tumor cells,

can activate the TLR4 signaling pathway and induce anti-tumor

T-cell immunity against tumor cells, delineating a clinically re-

levant immuno-adjuvant pathway triggered by DAMPs.
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