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Abstract

Integrative Next Generation Sequencing (NGS) DNA and RNA analyses have very recently

become feasible, and the published to date studies have discovered critical disease implicated

pathways, and diagnostic and therapeutic targets. A growing number of exomes, genomes and

transcriptomes from the same individual are quickly accumulating, providing unique venues for

mechanistic and regulatory features analysis, and, at the same time, requiring new exploration

strategies. In this study, we have integrated variation and expression information of four NGS

datasets from the same individual: normal and tumor breast exomes and transcriptomes. Focusing

on SNPcentered variant allelic prevalence, we illustrate analytical algorithms that can be applied

to extract or validate potential regulatory elements, such as expression or growth advantage,

imprinting, loss of heterozygosity (LOH), somatic changes, and RNA editing. In addition, we

point to some critical elements that might bias the output and recommend alternative measures to

maximize the confidence of findings. The need for such strategies is especially recognized within

the growing appreciation of the concept of systems biology: integrative exploration of genome and

transcriptome features reveal mechanistic and regulatory insights that reach far beyond linear

addition of the individual datasets.
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Introduction

With the evolution of next-generation sequencing (NGS) technologies, the time, cost and

amount of the material needed are constantly declining, thus making applications such as

genome/exome and transcriptome sequencing increasingly feasible. As a result, a rapidly

growing number of exomes, genomes and transcriptomes from the same individual are
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accumulating, providing unique venues for mechanistic and regulatory feature analysis, and,

at the same time, requiring new exploration strategies. To date, only a handful of studies

have integrated NGS genome scale datasets. Nevertheless, these studies have provided

essential functional and regulatory insights, reaching far beyond linear addition of individual

NGS dataset information layers, and often unraveling novel diagnostic and therapeutic

targets [1–6].

Commonly explored algorithms for genomic data integration include alignment of germ line

and somatic DNA in search for tissue-and tumor-specific changes [6], exome/genome-to-

transcriptome comparison for pre- and post-transcriptional regulatory elements [7], and non-

coding transcriptome-epigenome-genome overlay for assessment of encoded and acquired

expression control [8–11]. In our study, we focus on one relatively unexplored aspect of

integrative genomic analysis: SNP-centered allelic preferential expression at nucleotide

resolution using exome and transcriptome data from the same individual.

We have integrated the variation and expression information of four NGS datasets from the

same individual: germ-line exome, normal breast tissue transcriptome, and breast tumor

exome and transcriptome (Table 1). Focusing on nucleotide resolution allelic imbalance, we

explore different analytical algorithms to retrieve potential encoded-to-regulatory links:

expression/growth advantage driving variations, tumor-related gross genomic alterations,

somatic changes, imprinting, and, RNA editing. We further discuss our observations in the

light of existing knowledge, and highlight opportunities to integrate expression data through

variation-to-abundance analytical algorithms. Finally, we point to some critical elements

that might bias the output and recommend alternative measures to maximize the confidence

of the findings.

Materials and Methods

Short read data was obtained from The Cancer Genome Atlas (http://

cancergenome.nih.gov/) via the CGHub data portal (https://cghub.ucsc.edu/). Short read

datasets from a single patient with exome and RNA-seq breast cancer tumor and normal

tissue (TCGABH-A0B3) was selected for analysis. Additional information about the patient

and sample was retrieved from data matrix available at https://tcga-data.nci.nih.gov/tcga/.

The sample details are as follows: Disease type - BRCA-Breast invasive carcinoma; Data

Type – Clinical; Race – White; History – no previous history of malignancy; Platform –

illumina. The tumor and the matched control samples were identified by the TCGA bar code

associated with the sample. The sample type of RNA-seq case dataset (TCGA-BH-

A0B3-01A-11R-A056-07) is Primary Tumor. The sample type of RNA-seq control datasets

(TCGA-BH-A0B3-11B-21R-A089-07) is Normal Solid Tissue. The sample type of exome

case datasets (TCGA-BH-A0B3-01A-11W-A071-09) is Primary Tumor. The sample type of

exome control datasets (TCGA-BH-A0B3-10A-01W-A071-09) is Blood Derived Normal.

The data manifest was downloaded using the ‘cgquery’ script, which is available on the

CGHub website (https://cghub.ucsc.edu/). A manifest file was generated by specifying the

required characteristics, such as disease type, platform, tissue site, etc. Once the manifest

was generated, data was downloaded through the ‘GeneTorrent’ software (also available on

CGHub) in BAM format. The BAM file is converted into the FASTQ format using the
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‘bam2fastq’ program available through http://www.hudsonalpha.org/-gsl/information/

software/bam2fastq.

The raw reads were then aligned against Ensembl GRCh37 (hg19) using Bowtie2 [12] for

exome data and TopHat2 [13] for transcriptome data. For transcript assembly, we utilized

the Cufflinks from the Tuxedo suite of programs [14]. We used the default parameters

during the analysis, which filters low abundance transcripts that comprise 10% of the most

abundant isoform. The variants were called using mpileup utility of Samtools [15] with

default settings except for the maximum read depth, which was set to 8,000. The variation

calls were annotated through SeattleSeq v.137 (http://snp.gs.washington.edu/

SeattleSeqAnnotation137/). To minimize false negative and false positive calls, we applied

filtering as previously described [16]. Briefly, previously reported SNPs, due to independent

validation by other group(s), were analyzed further without filtering. The novel variants

were required to satisfy the following criteria optimized by our group: supported by a

minimum of four bidirectional reads with unique start position, phred quality value (QUAL)

> 20, and mapping quality value (MQV)>20. For visual evaluation of positions of interest,

we utilized Integrative Genomic Viewer (IGV, http://www.broadinstitute.org/igv/ [16,17].

Results

Prior to integration of the datasets, all variants were called and annotated individually in the

four datasets, and abundance was estimated for the transcriptomes. To extract observations

with high confidence, we analyzed the above features only in regions well covered in all

four datasets. To maximize the informative overlap between the exome and transcriptome,

we filtered out data from intergenic and intronic regions. As an initial step for the integrative

analysis, we mapped all the SNPs called in at least one dataset, and displayed the wild type

(wt) and variant (var) calls in absolute and relative (var/wt) numbers for all four datasets.

The major steps of our analytical algorithm are presented in (Figure 1).

Overlay of the four datasets revealed several intriguing observations (Figure 1A). First, both

normal and tumor transcriptome displayed more SNPs as compared to the corresponding

exomes (Table 2). More than 70% of the variants seen in the transcriptome and not in the

exome overlapped between the normal and the tumor datasets. When we analyzed the

variants by annotation type, we found that the major proportion of the transcriptome

exclusive variants (78% and 67%, for the normal and the tumor, respectively) belong to 3’

and 5’UTRs. Such a result is logical due to the widely used exome capture design that

includes only the UTR regions immediate to the coding sequences. Therefore, most of the

UTR variants called are outside the exome capture target. In contrast, since these regions are

transcribed, they are readily included in the transcriptome and thus comprise the major

variant-based difference between the exome and the transcriptome

From the remaining, at least half are called with 5 or less reads, with some proportion of

those likely to represent false positives, especially the ones not listed in the human variation

databases (referred hereafter as “novel”). A portion of the non-UTR transcriptome-exclusive

variants likely reside outside of the exome capture capacity and, finally, a small percentage

may represent post-transcriptional modifications, including RNA editing events.
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To outline preferentially expressed SNP bearing alleles, we extracted all transcriptome SNPs

called with var/wt ratio higher than 2 (var/wt > 2), and, called heterozygote in the respective

exomes (Figure 1A). Overlap of thus selected normal and tumor datasets revealed higher-

confidence preferentially expressed SNPs, and the ones exclusive for the tumor set defined a

subset of potential tumor-specific changes. From the preferentially expressed alleles, a

particular over-selected subset consists of the novel SNPs, due to the minimal possibility to

be present in homozygote state on genomic level. For high confidence findings on this

dataset, we further tightened the criteria for strong allele preferential expression to var/wt >

5. This revealed thirty-one SNPs, all present in the population databases, shared between the

normal and the tumor datasets; seven of them were homozygous in both transcriptomes.

When we looked in the tumor-specific allele-preferential expression, we found 683 SNPs

with strong allele-preferential expression exclusive for the tumor transcriptome; from them,

11 were novel (not present in the databases) and 343 were in homozygous state.

Several molecular mechanisms may account for preferential expression of genomically

heterozygous SNPs in the normal transcriptome. Among the common causes are

imprinting, caused by the exclusive expression from only one of the parental alleles, and,

cis-acting expression advantage provided by the allele harboring the SNP. In some cases

this might be caused by the nucleotide change contained in the SNP of interest, through

either creation or disruption of regulatory molecule(s) binding element. In our dataset, an

example of imprinting is illustrated by the known SNP (rs2192206) in the gene encoding the

growth suppressor necdin NDN (Table 3). NDN is known for its exclusively paternal

expression [19]; rs2192206 presented with well-balanced heterozygous signal in both

exomes and monozygotic expression of the variant allele in both transcriptomes (Figure 2A).

In contrast, rs73231013 in the gene encoding the nucleosome binding protein HMGN5

shows similar expression pattern (Figure 2B) without acknowledged involvement of

imprinting processes. Whether the SNP rs73231013 in HMGN5 is molecularly implicated in

the increased allelic expression is a subject of future large-scale validation and focused wet-

lab studies.

In the tumor setting, a common cause for allelic expression is the elimination of one of the

alleles, in many cases the wild type, through the mechanism of LOH. Because LOH occurs

at DNA level, such SNPs can be identified by their homozygote vs heterozygote state in the

tumor and the normal exomes, respectively. In our dataset, 214 SNPs, five of which are

novel, matched these conditions. Since LOH usually affects large genomic regions, one

additional distinguishing feature would be the coexistence, in an uninterrupted fashion, of

similarly transitioned hetero-to-homozygote SNPs (from normal to tumor exome,

respectively) in the immediate chromosomal surroundings. Several strings of adjacently

located SNPs were observed in our dataset; an example is the gene string TNS1, PNKD,

ZNF142, and OBSL1, encompassing the region chr2:218682771 - chr2:220431631

(rs1043537 is presented on Figure 2C). Of note, somatic deletion of these genes was

confirmed by the microarray data available on the same sample through the integrative

cBioPortal for Cancer Genomics (http://www.cbioportal.org/public-portal/). This validation

shows the capacity of the exome-to-transcriptome alignment to independently indicate
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potential LOH, and, at the same time, features one additional level of genomic data

integration.

Another tumor related SNP preferential expression is defined by variants providing growth
advantage to the tumor cells. Such SNPs could be distinguished through comparison

between the normal and the tumor transcriptome – while in the normal tissue they are

expected to retain their heterozygosity, accelerated growth of SNP-expressing tumor cells

will acquire higher proportion of the variant over the wild type alleles. In our dataset, 265

SNPs, six of which not listed in the population databases, satisfied the criteria to be present

in heterozygote state in the exomes and the normal transcriptome, vs homozygous

expression in the tumor transcriptome. One interesting example is the very rare silent

substitution C>T at chr1:9305335(rs138024142, Figure 2D) in the coding sequence of the

recently reported to be up-regulated in breast cancer glutamate dehydrogenase H6PD [20].

The variant allele frequency is below 0.01% in general population; parallel in silico

modeling of the local genomic region with the wt and the variant nucleotide through the

modeling tool “RNAstructure” [21] showed reasonable probability for alteration of the

secondary RNA structure harboring the SNP. Focused wet-lab studies are required to assess

if rs138024144 variant is implicated in expression regulation of H6PD, in normal or tumor

tissues.

Next, we sought to determine the efficiency of the integrative analysis to outline somatic
cancer changes. Compared to the extensively performed searches for somatic mutations

through comparison of germ line and tumor DNA, RNA-sequencing called SNPs allow

estimation of allelic preferential expression, and, thus, uncovering of potential driving (vs

passenger) changes [22]. Similarly to above described analyses, among the SNPs

confidently called in the tumor (but not in the normal) exome and transcriptome, a particular

subset of interest lies in the variants with higher var/wt ratio in the transcriptome, due to the

typically low var/wt ratio in the encoding exome. A total of 6 SNPs, none of them present in

the population databases, satisfied our criteria for confident somatic mutations. Of note, all

of them presented with var/wt ratio >2 in the tumor transcriptome. Of special interest is the

missense substitution V216M in the well-known breast cancer oncogene TP53 [23]; the IGV

visualization is presented on Figure 2E. The mutation affects the domain required for

interaction with FBXO42 and is predicted to be damaging; examination of the IGV files

revealed complete homozygous expression in the tumor exome, compared to only several

reads in the normal exome. While not present in the population databases, V216M has been

reported as a somatic mutation in multiple tumor samples, including breast invasive

carcinoma, and is catalogued in the COSMIC database (http://www.sanger.ac.uk/cosmic)

[24]. Similarly, we were able to validate all the rest of the somatic calls from our datasets in

the COSMIC Database.

RNA editing

To highlight potential RNA editing events, we identified the variants called in

transcriptomes but in none of the exomes, with a threshold of var/wt ratio>0.5 (See Figure

1). After removal of the SNPs present in the Exome Variant Server (http://

evs.gs.washington.edu/EVS/) [25], 7427 such variants were shared between the tumor and
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the normal transcriptomes, and additional 2384 were called in the tumor transcriptome only.

When we overlaid our results with the known RNA editing events database DARNED [26],

a total 1217 variants overlapped with our datasets. Two intriguing observations attracted our

attention in thus selected dataset. First, there was apparent gene-centered clustering of RNA-

exclusive events, and second, high proportion of the putative RNA editing sites seemed to

be predominant, often to monozygotic level, of the variant (vs wt) nucleotide harboring

reads. To examine further these observations, we blasted the surroundings of such SNPs

against the entire human genome. We found perfect match for the variant bearing allele, in a

different genomic locus. An example is the G>A substitution at position chr13:25671320

residing in the coding sequence of PABPC3. Blasting of the SNP calling reads revealed a

match at a region of chromosome 8 encoding the highly homologous gene from the same

family: PABPC1. Further investigation of more of these sequences suggested that they likely

originate from genomic regions highly homologous to the expressed mRNA transcripts, thus

representing partial or entire pseudogene-like elements, or closely related homologous genes

from the same family/cluster. This explains why these SNP-like calls often cluster in genes –

reads derived from an expressed pseudo-gene or homologous gene would generate similar

false-positive calls for every mismatch with the original transcript.

To search for new high-confidence RNA editing events, we focused on exonic variants, not

listed in population or disease datasets, and not present in DARNED. To remove potentially

biased calls, we visually examined the variation appearance through IGV, and removed

variants which did not satisfy the criteria for confident RNA editing due to either presence in

the exomes (false negative call at the exome level), lack of sufficient exonic coverage, or,

called by parts of short read from the intronic 3’- or 5’-splice site. We also blasted the SNP

calling reads against the entire genome and retained only SNPs called by uniquely mapped

genes. Among the retained high-confidence RNA editing SNPs, one interesting example is

the missense substitution S177G (1:160319987 A>G) in the gene encoding nicastrin

NCSTN. Of note, this change was called by very few reads in the normal transcriptome, but

over-dominated the position in the tumor transcriptome (Figure 2F). Nicastrin cleaves

integral membrane proteins, including Notch receptors and beta-amyloid precursor protein,

and has been recently identified as a cancer driver gene through genome-wide scan [27,28].

In addition, a major recent study has shown that NSCTR regulates breast cancer stem cell

properties and tumor growth both in vivo and in vitro [29]. Thus, S177G in NCSTN is

worthy focused investigation for cancer driving potential. S177G has never been reported

before, however, another NCSTN variant – 1:160327023 A>G - has been reported in

DARNED as subject of RNA editing in cerebellum. Notably, both variants represent the

common A>I (functional A>G) change, known as the most common RNA editing subject.

Taking into account the suggested NCSTN variants involvement in Alzheimer [30,31], there

is an apparent need of further investigation of disease implicated NCSTN editing.

Discussion

Despite the fact that the exome and transcriptome target largely overlapping genomic

regions, they contain genuinely distinct information layers. While whole exome capture is

designed based on the knowledge on all coding genomic sequences, transcriptome does not

employ previous knowledge and captures the collection of expressed genes in the studied
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sample at the moment of harvesting. As such, any single transcriptome represents a snapshot

of the transient cell/tissue condition, and only roughly reflects the sample representative

genes’ and isoforms’ profile. In terms of number of called variations, two major sources

define the significant deviation between the two datasets – the transcriptome will not cover

variations in genes that are not expressed, and the exome design does not include most of the

large untranslated (UTR), but expressed regions. Additional factors contributing to the

exome/transcriptome diversity might be some randomly included non-targeted areas,

differences in the sequencing platform, variation call pipeline and filtering criteria.

For the regions covered by the exome and transcriptome, the observed deviations usually

indicate important regulatory features. In our set of normal/tumor/transcriptome/exome,

cancer related changes could be outlined through comparison between the normal and tumor

datasets, and expression-specific elements could be found through exome-to-transcriptome

comparison (Figure 3). Transcriptome specific allelic expression is an important factor that

reflects advantage driven preferential dominance of certain alleles. At nucleotide resolution,

it involves one additional information layer – the potential to highlight causative or

contributing to the allelic imbalance nucleotide changes. These changes should be carefully

distinguished from variants that randomly co-exist along with the driving allele. While lab

validation of such findings is definitely a must, application of similar analyses on large-scale

can tremendously decrease the rate of random observations and select a finely narrowed

feature-set for further analyses.

Despite the array of integrative NGS analyses provided advantages, on many occasions they

need to be applied with caution. Here, we highlight three important points worthy of

consideration when aligning NGS datasets. First, ample coverage for all compared regions is

necessary, to avoid methodological bias. While in many cases low number of RNA-seq

reads indicate low expression, it may also reflect difficult to sequence transcripts. This

consideration further applies on preferentially expressed variants – either the nucleotide

change itself, or, coexisting allelic feature can provide sequencing advantage or

disadvantage compared to the wild type. In both cases, alternative method and/or multi-

samples comparisons are the first step to confirm the authenticity of the observation.

Second, visual examination of the region of interest through IGV or similar genome

visualization tool is always helpful to determine the confidence of the call (see Figure 2).

Despite the growing number of alignment, assembly and variant calling tools, filtering

strategies and confidence-boosting algorithms, false positive and false negative variation

calls are still a challenge for NGS.

Third, inherent feature of the short reads sequencing technologies is the possibility for mis-

alignment. In our analysis, this bias is illustrated in the RNA-editing focused pipeline. When

aligning genomes to transcriptomes, it is essential to keep in mind that similar expressed

sequences usually derived from homologous or pseudo-genes, can almost perfectly match to

the transcript of interest, mistaking for SNP a single mismatch between the transcript of

interest and the original site. This is even more emphasized for the non-coding parts of the

genome, which still lack sufficient population data and the reference often contains rare

variants disfavoring the mapping of the reads to their original site. One approach that

Mudvari et al. Page 7

J Metabolomics Syst Biol. Author manuscript; available in PMC 2014 April 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



definitely restricts such miscalls is local alignment using tools such as BLAT (http://

genome.ucsc.edu/cgi-bin/hgBlat?hgsid=340320355&command=start) of the variant calling

reads against the whole human genome [32,33]. If a perfect match with another genomic

location is found, the SNP call should be treated with increased caution and validated

through alternative means.

The purpose of this report is to illustrate approaches that can extract or validate important

molecular features, such as expression or growth advantage, imprinting, LOH, somatic

changes, RNA editing, through alignment of SNP calls in their allelic context at exome and

transcriptome level from the same individual (see Table 3). One additional advantage of the

multi-NGS datasets format from the same sample is that it provides means to validate rare or

unique findings in cases where no new sample collection is possible. Further, each of the

exemplified analytical pipelines can be separately developed to rigorously define the

corresponding type of changes in a particular transcriptome dataset of interest. Moreover,

the proposed SNP-based pipelines can be integrated with expression information derived

from the transcriptome. Interlinking variation and expression require multiple samples, and

is outside of the scope of our single-individual based analysis. In a multi-sample large scale

analysis, it holds tremendous potential to uncover regulatory networks through analysis for

co-existing and mutually exclusive features.
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Figure 1.
Schematic representation of the overlay between four different NGS SNP datasets from the same individual: Normal Exome

derived (NE), Normal Transcriptome (NT), Tumor Exome (TE) and Tumor Transcriptome (TT). (A) Number of SNPs exclusive

and shared between the different datasets. (B) Analytical algorithms to extract regulatory features through comparison of the

allelic representation of the variant and wild type read representation at the nucleotide position of the SNP.
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Figure 2.
Integrative Genomics Viewer (IGV) representation of examples of SNP calls aligned between the four analyzed datasets:

Normal Exome, Tumor Exome, Normal Transcriptome, and Tumor Transcriptome. (A) G>A substitution on chr15:23931507 in

NDN, representing imprinting: the variant nucleotide (A) is in heterozygote state in the exomes and in homozygote in the

transcriptomes. (B) C>T substitution on chrX:80373961in HMGN5, representing strong allelic expression from the variant allele

in both transcriptomes. (C) G>T onchr2:220431631 in OBSL1, representing LOH: the SNP is heterozygote in the normal exome

and transcriptome, and homozygote in the tumor exome and transcriptome. (D) C>T onchr1:9305335 in H6PD, representing

tumor specific allelic expression: the SNP is heterozygote in the exomes and normal transcriptome, and, homozygote in the

tumor transcriptome. (E) C>T onchr17:7578203 in TP53 representing somatic mutation, likely driving: the variant is not present

in the normal exome and transcriptome, and transitions from hetero- to homozygote from the tumor exome to tumor

transcriptome. (F) A>G on chr1:160319987 in NCSTN representing RNA editing – the variant is not present in the exomes; it

appears in the tumor transcriptome only, suggesting potential tumor specific editing mechanism.

Mudvari et al. Page 12

J Metabolomics Syst Biol. Author manuscript; available in PMC 2014 April 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Circos plots representing alignment of the number of variant and wild type reads at each genomic position at which SNP is

called. Wild type read numbers are shown in blue for the exomes and in green for the transcriptomes, and the variant reads are

orange in the exomes and red in the transcriptomes.
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Table 1

Sample attributes of data included in our study.

Sample ID Sample
Type Site Sequencing

Technique

TCGA-BH-A0B3-01A-11R-A056-07 Primary Tumor Breast Tissue RNA-seq

TCGA-BH-A0B3-11B-21R-A089-07 Normal Breast Tissue RNA-seq

TCGA-BH-A0B3-01A-11W-A071-09 Primary Tumor Breast Tissue Whole Exome Sequencing

TCGA-BH-A0B3-10A-01W-A071-09 Normal Blood Whole Exome Sequencing
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