
GPU-based High-Performance Computing for Radiation Therapy

Xun Jia1, Peter Ziegenhein2, and Steve B. Jiang1

Xun Jia: Xun.Jia@UTSouthwestern.edu; Peter Ziegenhein: p.ziegenhein@dkfz-heidelberg.de; Steve B. Jiang:
Steve.Jiang@UTSouthwestern.edu
1Deparment of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
75390, USA

2German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation
Oncology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany

Abstract

Recent developments in radiotherapy therapy demand high computation powers to solve

challenging problems in a timely fashion in a clinical environment. Graphics processing unit

(GPU), as an emerging high-performance computing platform, has been introduced to

radiotherapy. It is particularly attractive due to its high computational power, small size, and low

cost for facility deployment and maintenance. Over the past a few years, GPU-based high-

performance computing in radiotherapy has experienced rapid developments. A tremendous

amount of studies have been conducted, in which large acceleration factors compared with the

conventional CPU platform have been observed. In this article, we will first give a brief

introduction to the GPU hardware structure and programming model. We will then review the

current applications of GPU in major imaging-related and therapy-related problems encountered in

radiotherapy. A comparison of GPU with other platforms will also be presented.

1. Introduction

Radiation therapy has experienced rapid developments over the past a few decades. A

number of novel technologies have been introduced into routine clinical practice. Behind

these developments sit a significant number of computationally intensive tasks, such as

3D/4D tomography reconstruction, high spatial/temporal resolution image processing,

inverse treatment planning, and Monte Carlo radiation dose calculations. On one hand, these

sophisticated problems are usually associated with large data sets and/or complicated

numerical algorithms. On the other, it is highly desirable to solve those problems in a timely

fashion, e.g. in minutes or sometimes even in (near) real time, to meet the clinical demands

of a high throughput or to facilitate new treatment modalities such as on-line adaptive

radiation therapy. The conflicts between these two aspects have clearly posted great

challenges to the time-critical and resource-limited clinical environment and thus there

exists a high demand on computation powers.

During the last decade, the performance of personal computers increased dramatically. The

technical innovations in the first few years of the new millennium were focused to produce

processors with an ever-increasing clock speed, as predicted by the Moore’s Law (Moore,

1965). This advancement was very convenient for the user, since any code written on an

older and slower CPU experienced an obvious speedup on a newer and faster processor. Yet,

NIH Public Access
Author Manuscript
Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

Published in final edited form as:
Phys Med Biol. 2014 February 21; 59(4): R151–R182. doi:10.1088/0031-9155/59/4/R151.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

the situation changed recently. The increase of clock speed hits its bottleneck due to inherent

technical limitations, especially with respect to energy consumption and heat emission of a

processing chip. To continue boost computation powers, another approach was employed

where several processing units are replicated on one chip. These homogenous units operate

in parallel, leading to increased performance. Thus, modern computers are not only getting

fast, but wider!

One particular example of the massively parallel architecture is graphics processing unit

(GPU). Originally designed to handle computer graphics operations, a GPU comprises

thousands of processing units on a single chip, which translates into a tremendous amount of

processing capabilities. Lately, GPU has been employed to solve challenging scientific

problems in, for example, physics, mathematics, chemistry, and biology. It has also become

a platform alternative to the conventional CPU that was used to solve the problems in

radiation therapy.

GPUs are particularly attractive for medical problems in radiotherapy for the following

reasons, making them favorable for a clinical environment, e.g. a typical cancer clinic. First,

GPU offers a high computing power suitable for radiotherapy problems. In fact, most

radiotherapy problems can be formulated in a massive fine-grained fashion and often a set of

relatively simple tasks are carried out independently on each subset of the underlying

clinical data, e.g. on the voxels of a discretized patient geometry. This fact naturally

supports GPU-based parallelization. Second, the computation power of GPUs is appropriate

for medical physics problems in radiotherapy. The sizes of clinical problems are usually at

an intermediate level. Apart from very few exceptions, they are much smaller in size than

those challenging problems in fundamental sciences, e.g. in astronomy, fluid dynamics, or

computational biology. While problems of those kinds are usually taken out on large

distributed clusters of CPUs, problems in medical physics may not benefit much from

distributed computing due to the relatively small size and hence large communication

overhead. In contrast, GPU is more suitable in this regard. Third, GPU provides the

advantage of having high performance computing with convenience and low cost.

Compared to a cluster, they are easy to maintain and access. The continuing demands from

computer game industry also significantly reduce the costs of GPU cards. It is usually orders

of magnitudes lower in price to deploy a GPU facility compared to a CPU cluster with a

similar processing power.

On the other hand, GPU also holds several disadvantages compared to CPU. First, the

hardware architecture of the GPU makes it extremely suitable for data parallel problems, but

not so for task parallel problems. Depending on the problems of interest, careful design of

the algorithm considering the nature of GPU architecture is needed to achieve a high

performance. Second, GPU is a relatively new platform. Most convenient libraries used

extensively for CPU computing do not have GPU counterparts yet. Hence, it requires a large

amount of work to code almost everything from scratch, increasing the difficulty to maintain

code optimality and the chances of making errors. These issues have posed a significant

amount of challenges for the developers and researchers who are actively seeking for GPU

solutions.

Jia et al. Page 2

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Since its introduction to medical physics, developing GPU-based solutions for those

computationally demanding problems have been an active research topic. A number of

algorithms have been developed particularly in a GPU-friendly form, leading to dramatically

accelerated processing speeds in a wide spectrum of problems, ranging from imaging-related

problems to therapy-related ones. This fact can be reflected by the number of publications

related to the applications of GPU in medical physics. For instance, Figure 1 depicts the

number of research articles published in Medical Physics and Physics in Medicine and

Biology since 2006 that contain the word “GPU” in the title or abstract. The monotonically

increasing trend, especially the jump from 2009 to 2010, clearly demonstrates the research

interest on this topic. Arguably speaking, employing GPU has become a standard and typical

approach to accelerate computation tasks in medical physics.

After a few years of successful use of GPUs in medical physics, there is a need for a review

article on this important topic. Not only will such an article summarize the current status of

developments, it will also offer an opportunity to look back into the development path, to

rethink those encountered problems, and to look into the future of this potent computational

platform. Although one review article on GPU-based high-performance computing in

medical physics was published in 2011 (Pratx and Xing, 2011a), given the vast development

of GPU hardware, algorithms, and implementations recently, it is necessary to have another

article to systematically review the current status of GPU applications in a wide spectrum of

radiotherapy problems. It is also of critical importance to perform in-depth discussions

regarding the techniques behind each problem, as well as the success, challenges, and

potential solutions.

With this objective in mind, this article will provide a comprehensive review regarding GPU

technology in radiotherapy physics. Because of the wide applications of GPUs, particularly

in image processing field, it is infeasible to cover all the topics available in literature. Trying

to cover all topics would also inevitably hinder the depth of each topic review. Hence, we

will limit the scope of this article only to major imaging and therapy problems encountered

in radiotherapy. In the rest of this paper, we will first give a general introduction about GPU

hardware structure and programming model. We will then present a systematical review of

the applications of GPU in a set of radiotherapy problems. The algorithm structure will be

analyzed with emphases on the compatibility with GPU. Potential problems and solutions

will also be discussed. A comparison of GPU with other platforms will be presented in

Section 5. Finally, Section 6 concludes this article with discussions on relevant issues.

2. Graphics Processing Unit

A graphics-processing unit (GPU) is a specialized electronic hardware in a computer system.

Although it was designed originally to conduct computations regarding image processing

and to facilitate the processing of graphics information, GPU has recently been utilized to

handle those computational tasks originally accomplished on CPU, leading to the so-called

general-purpose computing on graphics processing unit (GPGPU). In this section, we will

provide an overview about the GPU’s hardware structure, as well as its programming

language and computation model.

Jia et al. Page 3

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

2.1 Hardware

A typical hardware configuration of a computer workstation containing a GPU is shown in

Figure 2. In such a system, GPU usually presents as an individual card plugged onto the

PCI-express port on the workstation’s motherboard. It has access to the computer memory

space via the PCI-express bus. In this structure, the GPU is termed a “device”, while the rest

of the system is called “host”.

While GPUs from different manufactures have different design specifications, they share

some common architectural characteristics. Here we only briefly present the hardware

structures pertaining to the understanding of GPU programming.

The most distinct feature of a GPU compared to a conventional CPU is that it contains a

large number of processing units called stream processors. These processors are physically

grouped into a set of multi-processors. Each stream processor has a relatively low clock

speed compared to CPU. However, the large amount of processors available on a GPU card

lead to a much higher cumulative computational power.

As for the memory structure, different types of memory spaces exist on a GPU card, which

have different characteristics and can be used in computations accordingly. First of all,

analogous to RAM in a CPU workstation, there is global memory on the graphics card

accessible to all processors, up to several gigabytes in current GPU configurations. The

bandwidth of this memory is relatively low compared to other types of memories. Moreover,

this is the only memory space accessible from the host computer. Three different types of

memory can be allocated in the global memory: linear memory, arrays, and constant

memory. Among them, linear memory is the most common one and can be read or written

directly by the stream processors. Arrays are allocated and initialized from the host. After

that, it is bounded to the so-called texture, which can be read only from all stream processors

with the advantages of multi-dimensional spatial locality cache and hardware supported

linear interpolations. Constant memory can be allocated and initialized from the host. They

are readable from each stream processor with cache. Second, on each multiprocessor, there

is a memory space called shared memory that offers a space accessible to all processors

inside the multiprocessor. It usually serves as a user-managed cache space between each

processor and the global memory. Visiting the shared memory is fast. Finally, each stream

processor has a certain amount of registers (not shown in Figure 2), which provide memory

spaces required in the computations on each particular processor. The specific sizes and

bandwidths of these memory spaces vary depending on brands and generations.

2.2 SIMD programming model

GPU executes a program in a single-instruction-multiple-data (SIMD) fashion. Here we use

NVIDIA GPU’s terminology to explain this concept. In GPU-based parallel processing, a

special function called kernel is launched on GPU with a number of copies and each copy is

termed a thread. These kernel threads are grouped into a number of blocks, which are then

enumerated and distributed to multiprocessors for execution. A multiprocessor executes

threads in groups of 32 parallel threads termed a warp. Inside a warp, a common instruction

for all threads is executed at a time. If threads within a warp diverge at a certain point due to

Jia et al. Page 4

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

a conditional branch, e.g. an if-else statement, the warp serializes each branch path, while

putting all other threads in idle. When all paths are enumerated, the threads converge back

and continue the executions.

To illustrate how the GPU executes a program in parallel, we provide a simple example that

approximates the π value by Leibniz formula . Conventional CPU

code loops over the summation for a predefined large number of N times and accumulate the

results. For the GPU-based computation, the principle of code execution is illustrated in

Figure 3. After allocating a linear space data[] on GPU to hold each term in the series, a

GPU kernel is launched. As opposed to a CPU function that runs in a single copy, a number

of N copies of the kernel are launched, each indexed by a thread id i = 0,1, …, N − 1.

Depending on the id, the thread will compute only one term in the series and place the result

in the corresponding location of data[]. After all threads finish, the results stored in data[] is

transferred back to CPU and a summation is conducted, yielding the π value. On a modern

GPU, several thousands of threads are executed concurrently. Different GPU threads always

follow the same execution path but with different data, which is fully compliant with the

SIMD programming mode, leading to a high computational efficiency. It is worth

mentioning that we provide this example only for the purpose of illustrating the principle. It

is by no means the optimal implementation. For instance, advanced summation scheme can

be conducted on GPU as well to improve efficiency.

2.3 Programming languages

Widespread adoption of GPU for scientific computing requires user-friendly programming

languages or APIs (Application Programming Interface). Over the years, a set of APIs has

been developed to facilitate this purpose.

Among them, CUDA (Compute Unified Device Architecture) is a parallel computing

platform created by NVIDIA to support the programming of its own GPUs. It offers

developers the capability to program GPUs using typical programming languages, e.g. C,

and Fortran. With years of developments, a set of libraries useful to scientific computing

have become available, such as CURAND for random number generator, CUSPARSE for

sparse matrix manipulations, and CUBLAS for linear algebra operations. These libraries

greatly facilitate many scientific programming tasks by offering high efficiency

implementations of frequently used functions. A number of plug-in modules have also been

built on top of CUDA to provide GPU interfaces inside other computational environment,

such as MATLAB and Mathematica.

Unlike CUDA that specifically supports NVIDIA GPUs, OpenCL (Open Computing

Language) is an emerging framework for GPU programming. Because of its cross-platform

capability, OpenCL has received a lot of attentions recently and is experiencing rapid

developments. Not only does it support GPUs from different vendors, it also enables

programming across heterogeneous platforms consisting of both CPUs and GPUs.

Compared to CUDA, OpenCL is relatively at its early development stage and the support for

scientific computing is relatively incomplete. It is also an active research topic to study if

Jia et al. Page 5

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

there is any efficiency compromise due to the portability (Fang et al., 2011; Weber et al.,

2011; Kakimoto et al., 2012; Pallipuram et al., 2012; Su et al., 2012).

There are also a few other programming languages/APIs. Examples include Cg (C for

graphics) developed by NVIDIA in collaboration with Microsoft, HLSL (High-level shader

language) by Microsoft, Sh by the University of Waterloo Computer Graphics Lab, and

Brook by the Stanford University graphics group, etc..

2.4 Performance considerations

Although GPU possesses a tremendous computational power, it has to be utilized in an

appropriate fashion to fully exploit its capability. In practice, its SIMD programming model,

as well as some limitations on memory, determines that some algorithms are suitable for

GPU programming, while others attain inherent conflicts with this platform. It is therefore of

top priority to understand GPU’s programming model and limitations, when designing an

algorithm.

First, the SIMD programming model indicates that only when all 32 threads inside a warp

have the same execution path can we attain the full efficiency of execution. This condition,

however, is hardly met in real problems, and hence the so-called thread divergence problem

occurs, limiting the overall program efficiency. It is worth emphasizing that thread

divergence occurs only within a warp; different warps execute independently regardless of

whether they are executing common or disjoint code paths.

In general, the means of parallel computation are categorized into Task Parallelization and

Data Parallelization. The SIMD programming fashion of a GPU dictates that it is suitable

for data parallelization. An example in this category include vector and matrix operations, as

different GPU threads can process different matrix entries in the same operational fashion

but with different data. In contrast, it is quite difficult to achieve high speed-up factors for

task parallelization tasks, where different threads can follow different instruction path

throughout the algorithm. Examples include Monte Carlo particle transport simulations,

where the probabilistic nature of the code requires if-else statements all over the places. In

practice, the programmer can essentially neglect the problem of thread divergence for the

purpose of program correctness. However, substantial performance gain can be realized by

carefully designing algorithm and implementations to maximally avoiding the thread

divergence problem. Arguably speaking, eliminating thread divergence is the first priority

issue in GPU-based parallel processing to fully take advantage the power of a GPU.

The second issue is related to GPU memory. GPU kernels are always accompanied with

frequent visits to GPU memory, and the memory throughput critically determines the overall

efficiency. As such, it is important to minimize data, particularly large data, transfer between

the CPU and the GPU, where the bandwidth is much lower than that inside the GPU. It is

also necessary to minimize visits to global memory, which has much lower bandwidth

compared to other types of memories. In contrast, it is desirable to properly use other types

of memory spaces, e.g. shared memory and texture, to improve memory access speed, to

avoid redundant visits, and to improve memory visit locality. Moreover, a GPU tends to hide

the memory latency by concurrently executing programs on some of the multi-processors

Jia et al. Page 6

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

while having others performing memory operations. Carefully designing a program to

balance computation and memory visiting to keep GPU’s processors busy is hence another

effective way to ensure optimal utilizations of GPU.

Another problem that one could encounter in parallel programming is the memory-writing

conflict. While it is legitimate to have two GPU threads read from the same memory address

concurrently, writing to the same address at the same time leads to unpredicted results.

Hence, when there is possibility of concurrent writing from different threads, it is the

programmer’s responsibility to foresee this issue and employ appropriate schemes to enforce

result integrity. In most scenarios, some type of serialization of the writing operations, e.g.

using atomic functions, is needed. This serialization apparently compromises the parallel

capability of a GPU, reduces the efficiency, and thus should be used minimally.

There are also other issues that one would consider for code optimization. For instance,

small kernel is preferred to save register usage. When threads may have different path

length, it is better to organize the execution order among threads to simultaneously execute

threads with similar lengths. One would also like to minimize the use of arithmetic

instructions with low throughput: using intrinsic functions instead of regular functions,

whenever the accuracy is tested unaffected.

In short, it requires tremendous efforts to fully optimize a GPU code and to maximize its

performance. Depending on the way of coding, performance for a given problem may differ

by an order of magnitude or even more. Yet, code optimization is usually problem-specific.

This poses the most challenging problem when developing GPU-based applications.

2.5 GPU cards

Before we start discussing applications of GPUs in various radiotherapy physics problems,

we would like to summarize the main properties of those GPU cards employed by different

researchers. Providing the specifications of these GPUs will approximately give indications

about the performance of each GPU cards, which will facilitate the cross-comparisons of

efficiency among different implementations of a given problem. Yet, one needs to keep in

mind that the real performance of a GPU code depends on many factors. In addition to those

listed in Table 1, the speed is also critically impacted by the occupancy of the GPU

processors, the memory access patterns, etc.. There is no practical way to compare different

implementations on different GPUs in a completely fair fashion.

Table 1 summarizes all the GPU cards employed in the research works reviewed in this

article. A few interesting facts can be observed. First, NVIDIA clearly dominates the

applications of GPUs in radiotherapy physics computations. It is surprising that all the

research projects reviewed in this article utilizes NVIDIA GPUs. Second, only two series of

GPUs are used, namely GeForce series and Tesla series. GeForce series belong to the so-

called consumer-grade graphic cards, which are mainly used to support graphics processing

tasks in desktop computers. It gains popularity in research community primarily due to its

wide availability and low cost-to-performance ratio. On the other hand, Tesla series are

NVIDIA’s dedicated general purpose GPU cards manufactured specifically for scientific

computing purposes. While the price of a Tesla card is usually several times higher than a

Jia et al. Page 7

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

GeForce card with a similar processing power, a Tesla card has the advantages of error-

correcting-code (ECC)-protected memory and availability of models with higher memory

sizes, critical for many scientific computing tasks. The efficiency of processing double-

precision float numbers is also much higher than that of the GeForce series.

3. Imaging-related problems

Imaging is one of the most important aspects of modern radiation therapy, where high

quality images of the patient are generated for the purposes of treatment planning and

guidance. The size of the problems in this category is usually large, especially when it

comes to 4D problems. Yet, they are usually parallelization friendly, in that the entire task

can be naturally broken down to small operations at pixel/voxel level. Hence, generally

speaking, GPUs are suitable for the parallel processing of these problems. In the following

subsections, we will cover problems including ray-tracing calculations, Monte Carlo photon

transport in diagnostic energy range, analytical/iterative 3D/4D cone beam CT

reconstructions, and image registrations, etc..

3.1 Ray-tracing

Ray tracing refers to the evaluation of radiological path length along a given x-ray line. This

method is fundamental to many problems in radiotherapy, such as Digital Radiograph

Reconstruction (DRR), iterative cone beam CT reconstruction (CBCT), and radiation dose

calculations. The efficiency of ray-tracing algorithm hence largely impacts the overall

performance of those problems. Physically, a ray-tracing algorithm numerically computes a

line integral g = ∫L dl μ (x) of the x-ray attenuation coefficient μ(x) along a straight line L.

Since it usually requires the computations of g repeatedly for different ray lines, it is

straightforward to parallelize the algorithm on a GPU platform by simply having each GPU

thread compute the value of one line. Considerable speed-up factors can thus be obtained

due to the vastly available GPU threads.

In practice, the evaluation of the line integral is carried out in the form of numerical discrete

summation, and depending on the specific scheme the implementation varies. The most

widely used algorithm for ray-tracing calculation is Siddon’s algorithm (Siddon, 1985),

where the integral is approximated by g(u) = Σj Δlj μ(xj) with Δlj being the line segment

length of L intersecting with a voxel j and the summation is over all the voxels that L passes.

On the GPU implementation, an improved version of Siddon’s algorithm (Jacobs et al.,

1998) has been employed, which avoids the sorting operations required by the original

Siddon’s method. In particular, Folkerts et al. (2010) has implemented the improved

Siddon’s algorithm on an NVIDIA Tesla C1060 GPU card. It was reported that the average

computation time was 30 ms for an image resolution of 512×384 and a volumetric CT data

resolution of 512×512×104. The same algorithm was also implemented by Greef et al.

(2009) for radiation dose calculations, where the calculation was accelerated by a factor of

up to 10 using an NVIDIA GTX280 card.

This simple strategy of parallelization based on ray lines causes thread divergence during

run time due to different ray lengths, which hinders the computational efficiency. Recent

researches have been devoted to further improve the performance by maximally avoiding

Jia et al. Page 8

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

this issue. Chou et al. (2011) developed a multithread implementation scheme in which

multiple threads in a warp wewe employed to handle the computations associated with a set

of adjacent rays simultaneously. This approach eliminated the thread divergence within a

warp and hence improved efficiency. Other techniques employed in this paper included the

optimization of thread block size and the maximization of data reuse on constant memory

and shared memory. The computation time was shortened to 11 ms for a case with volume

resolution of 5123 and image resolution of 5122 on an NVIDIA C1060 GPU card. Xiao et al.

(2012) tried to convert conditional statements in the ray-tracing algorithm into simple

arithmetic and logic operations to avoid thread divergence caused by the conditions. The

algorithm was applied in a collapsed-cone convolution/superposition dose calculation

algorithm using an NVIDIA GTX 570 card, where about 2 times speed-up was observed

compared to the original simple implementation on GPU.

Another typical approach of discretizing the line integral is tri-linear interpolation (Watt and

Watt, 1992). In such a scheme, the x-ray path is divided into a set of intervals of equal

length Δl labeled by j and the linear attenuation μ(xj) at the midpoint of each interval is

computed via tri-linear interpolation of the underlying voxel data. j is then approximated by

the sum over all intervals Σj Δl μ(xj,E). Because of the interpolation nature behind this

algorithm, the generated DRR is smoother than that from the Siddon’s algorithm. In terms of

implementation, the same parallelization scheme, namely one GPU thread per x-ray line, can

be used for this method. GPU’s texture memory also offers highly efficient interpolations

via its hardware. Wu et al. (2009) has implemented this algorithm for the purpose of patient

alignment, and a reduction of computation time for at least an order of magnitude has been

reported compared to the CPU implementation using an NVIDIA GeForce 8800 GTX card.

Yet, this method is generally slower than the Siddon’s algorithm due to the additional

required operations of interpolations (Folkerts et al., 2010).

Another algorithm called Fixed Grid algorithm was recently proposed (Folkerts et al., 2012)

aiming at the maximal reduction of the thread divergence, while using interpolation to

render smooth images. The basic idea is to resample the volume data such that the projection

is always along one of the principal direction of the grid. The projection is then conducted

by tracing rays through each layer of voxels perpendicular to the projection direction.

Because each ray traverses the same number of layers with the same operations, thread

divergence is avoided. It only requires 2D interpolation during rotation and ray-tracing,

reducing computational burden. Using an NVIDIA C1060 card, a speed up of 2.2 times

compared to the Siddon’s algorithm on the same GPU has been observed.

Wobbled Splatting algorithm has also been implemented on GPU (Spoerk et al., 2007),

where each voxel is projected in the prospective geometry, during which the focal spot or

the voxel location is randomly perturbed to reduce aliasing artifacts. The implementation is

voxel parallel, in that each voxels is projected by a GPU thread. The voxel values at each

detector pixel are then summed up using alpha blending, a functionality of the GPU for

image rendering. An NVIDIA GeForce 7600 GS card helps to achieve a reduction of

rendering time by about 70%–90% compare the same algorithm on CPU.

Jia et al. Page 9

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

3.2 Monte Carlo photon transport in diagnostic energy range

One problem with the aforementioned ray-tracing approach for DRR calculations is that

only the primary component corresponding to the x-ray attenuation process is considered. In

reality, scatter component also exists in an x-ray projection image due to the scattered

photons detected at pixels. The realistic computation of a projection image calls for Monte

Carlo (MC) simulations of the photon transport process. In addition, other tasks, such as

accurately computing radiation dose from CT scans, also require photon transport

simulations using MC methods. Since a large number of photons are needed to get a reliable

result from the MC method, GPU can be of great help to significantly improve the

computational efficiency.

Conventional wisdom dictates that MC-based particle transport is highly parallelizable, as

particles can be simply distributed to different processing units and transporting them is

expected to be independent. Yet, this fact does not hold for the SIMD structure of GPU. In

fact, because particle transports at different threads are statistically independent, the

instructions could be very different at any moment of the execution, causing the

aforementioned thread divergence problem. Moreover, the random visit to GPU’s memory

also poses challenges to achieve high efficiency.

Badal and Badano first implemented the photon transport process on a GPU platform (Badal

and Badano, 2009). In their code named MCGPU, a number of GPU threads were launched

to transport a set of photons simultaneously, one for each photon. The photon transport

followed the same physics of PENELOPE (Salvat et al., 2009). A maximum 27-fold speed

up factor has been observed using an NVIDIA GeForce GTX 295 dual-GPU card compared

to the Intel Quad Cor 2 CPU at 2.66 GHz.

GPU-based photon transport was also studied by Jia et al. (2012d) with a focus on

computing radiation dose received by a patient in a CT/CBCT scan, yielding a code called

gCTD. While gCTD still used one thread per photon scheme, the transport process was

optimized for GPU programming. An efficient sampling method of particle scattering angle

was invented to replace the rejection method used in many other CPU-based photon

transportation code. Moreover, gCTD supported the simulation of CT/CBCT scanners to a

high level of realism, including the modeling of source spectrum and fluence map etc.. It

was observed that gCTD is about 76 times faster than EGSnrc in a realistic patient phantom

case and the radiation dose to a patient in a CBCT scan can be computed in ~17 sec with

less than 1% relative uncertainty using an NVIDIA C2050 card.

Another package called gDRR was later developed by Jia et al. (2012c) for accurate and

efficient computations of x-ray projection images in CBCT under clinically realistic

conditions. In addition to the same MC simulation module used in gCTD, gDRR also

contained a polyenergetic DRR calculation module using the incremental Siddon’s

algorithm. Smoothing of the scatter signal generated by MC simulations was also supported

and the noise signal was computed as well. On an NVIDIA GTX580 card, the computation

time per projection was up to ~100 sec depending on the image resolutions, majority of

which came from MC photon transport. This computation time was much shorter than the

corresponding CPU time (usually hours).

Jia et al. Page 10

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

3.3 Analytical CBCT reconstruction

CBCT (Jaffray et al., 1999; Jaffray et al., 2002) has been widely used in radiation therapy to

provide image guidance. The reconstruction problem, namely to compute the volumetric

image data based on x-ray projections obtained at various projection angles, is one of the

central topics. The current clinical standard algorithm is filtered back projection, also known

as FDK algorithm (Feldkamp et al., 1984). Because of the simplicity of this algorithm and

its suitability for GPU-based parallelization, it is one of those algorithms in radiation therapy

that was first implemented on the GPU platform. In this algorithm, there are three main

steps: 1) multiplying each projection pixel by a factor determined by the geometry, 2)

convolving the projection with a ramp filter, and 3) backprojecting the filtered projections

along the CBCT x-ray lines. In this process, the first step can be easily implemented using

one GPU thread per pixel, the second one can be accelerated by GPU-based convolution

operations (Podlozhnyuk, 2007) or fast Fourier transformation (FFT), and the last one is

performed in a voxel parallel manner, i.e., one GPU thread per voxel. The filtered data at the

projection location of each voxel, which is not necessarily on the pixel grid, is needed in the

third step. Hence, 2D interpolation is necessary, which can be accomplished by GPU-

supported hardware bi-linear interpolation.

Because there is a large body of literatures on this topic, we only list a few representative

ones here. Among the three key steps of the FDK algorithm, the backprojection step is the

most time consuming. In light of this observation, this step has been ported to GPU (Sharp

et al., 2007; Xu and Mueller, 2007; Noel et al., 2010), while the filter part was conducted on

the CPU side using FFT. Okitsu et al. (2010) implemented the entire FDK algorithm on

GPU, where the filtering part is accomplished by a direct summation. For another image

modality called digital tomosynthesis, whose reconstruction formula is identical to that for

CBCT, GPU has also been applied. The most computationally intensive backprojection part

was first ported to GPU (Yan et al., 2007; Yan et al., 2008) and then the filtering part was

later realized via GPU-based FFT using the CUDA library CUFFT (Park et al., 2011).

3.4 Iterative (4D)CT/CBCT/DTS reconstruction

Iterative approaches form another category of algorithms to solve the reconstruction

problem. Due to its better image quality and potential to reduce required measurements and

hence the associated radiation dose, it has attracted a lot of attentions recently.

Compared to the analytical reconstruction approach, in which the volumetric data is

obtained via a closed form expression, iterative methods reconstruct the data in an iterative

manner and in each iteration step, the solution is updated according to a certain algorithm.

By nature the iterative reconstruction approach is a sequential operation, and the focus of

acceleration is to parallelize the computations within each iterative step. In a CBCT

reconstruction problem, there are data in two domains, namely projection domain and

solution image domain. A projection operator relates them. The key to accelerate an iterative

reconstruction process is to speed up the computations of the mapping between the two

domains.

Jia et al. Page 11

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Several classical iterative algorithms for the CBCT reconstruction problem were first

implemented on GPU. In general, these algorithms update the solution by iterating three

steps: 1) forward projecting the current solution, 2) estimating correction factors based on

the computed and the actual projections, and 3) backprojecting the correction term to update

the solution. The step 1) is a DRR calculation and can be parallelized in the way mentioned

previously. The step 3) is accelerated in a voxel parallelization akin to that in an analytical

reconstruction. Algorithms that have been successfully implemented on GPU include

simultaneous algebraic reconstruction technique (SART) (Mueller et al., 1999; Mueller and

Yagel, 2000; Xu and Mueller, 2005) and expectation maximization (EM) (Xu and Mueller,

2004, 2005). The implementation was further refined by properly grouping a subset of ray-

lines (OS-SART), leading to a better performance (Xu and Mueller, 2004; Xu et al., 2010).

Recently, Compressive Sensing (CS) (Candes et al., 2006; Donoho, 2006) based iterative

reconstruction methods have demonstrated its tremendous power to restore CBCT images

from only a few number of projections and/or projections at high noise levels. Accelerating

algorithms of this type has become a major focus due to the potential benefit of imaging

dose reduction. Compared to those classical iterative reconstruction algorithms, CS-based

ones incorporate prior knowledge regarding the reconstructed image property and hence

pose strong assumptions about what the solution should look like. As such, some steps

enforcing the image properties, called regularization steps, exist in addition to those in a

classical iterative reconstruction method. These regularization operations usually stem from

image processing techniques. Because they act in the volumetric image domain, voxel

parallelization can be utilized.

Among a number of different methods, Total Variation (TV) is the most popular one, which

assumes that the solution image is piece-wise constant. Sidky et. al. first implemented the

TV regularization step on GPU (Sidky and Pan, 2008; Bian et al., 2010). A gradient descent

method was used in their implementation and the evaluation of the gradient was particularly

suitable for GPU parallelization due to the independence of operations at each voxel. Later,

the full reconstruction process was implemented on GPU. Specifically, Xu and Mueller

(2010) inserted the TV minimization in each iteration of their OS-SART loop. Jia et. al.

treated the reconstruction as an optimization problem in which the objective function

contained both a least-square term to enforce the projection condition and a TV term to

regularize the image (Jia et al., 2010b; Jia et al., 2011c). A GPU-friendly backprojection

method was invented, and multi-resolution reconstruction technique was employed. All of

these techniques considerably shortened the computation time to the scale of minutes on an

NVIDIA C1060 card. A generalization of the TV function, called edge-preserving TV, was

proposed by Tian et al. (2011b) to weight the TV term using adaptively determined spatially

varying factors in order to prevent edge smoothing. Similar speed was observed. In addition,

as opposed to enforcing the projection condition and the regularization in two alternative

steps, Park et al. (2012) treated the two terms together and solved the problem with the

Barzilai-Borwein algorithm. An improved efficiency was reported using an NVIDIA GTX

295 card. It needs to be mentioned that due to the algorithm nature, the computation time

critically depend on many factors, such as image/projection resolution, iterative steps,

stopping criteria etc.. The resulting image quality also varies accordingly. While GPUs

Jia et al. Page 12

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

greatly help reduce the computation time from hours to minutes, it is hard to compare the

absolute efficiency of different GPU implementations in an objective manner.

Other types of regularization techniques have also been developed. Originated from image

processing, bilateral filter is an edge-preserving non-linear filter that weights voxels similar

in both the intensity and the special domain. This filter was used by Xu et. al. in their

reconstruction framework together with the OS-SART algorithm (Xu and Mueller, 2009; Xu

and Mueller, 2010). A more general form of this filter, non-local-means was also utilized by

the same group (Xu and Mueller, 2010), where the weighting factors were obtained by

comparing patches centering at each voxel, rather than the voxels themselves. Finally,

another type of regularization method was invented based on the assumption that the

reconstructed image has a sparse representation under the tight wavelet-frame basis (Jia et

al., 2011a). The reconstructed image was found to maintain sharper edges compared to the

classical TV method, and the reconstruction speed was not sacrificed. This algorithm was

also implemented on a quad-GPU system recently (Wang et al., 2013). The frequent forward

and backward x-ray projections were accelerated by distributing tasks corresponding to

different projection angles among GPUs. A parallel-reduction algorithm was employed to

accumulate data from all GPUs. The regularization step was achieved by having each GPU

processing a sub-volume. Another acceleration factor of 3.1 was reported with two NVIDIA

GTX 590 cards, each containing two GPUs.

Notably, with the greatly improved reconstruction speed, one can perform systematical

studies involving a large number of CBCT reconstructions that were previously forbidden

by the low computational efficiency. Yan et al. (2012) conducted a comprehensive study

between the image quality and radiation dose in the low-dose CBCT problem using the TF

model. Thousands of reconstructions were conducted in the study, leading to the conclusions

that the dose can be reduced safely to a large extent without losing image quality and there

exists an optimal combinations of the number of projections and the dose per projection for

a given dose level.

CBCT generates a volumetric image of the patient body. Yet, when it comes to lung or

upper abdomen area, respiratory motion blurs the image. To overcome this problem, 4D-

cone beam CT (4DCBCT) was invented (Sonke et al., 2005), where a set of volumetric

images are reconstructed, one corresponding to a respiratory phase. The extra temporal

dimension in this problem inevitably increased the computational loads. One straightforward

approach of 4DCBCT reconstruction is to restore image at each phase individually. The

aforementioned GPU-based CBCT reconstruction algorithms are then trivially applicable.

Recently, it has drawn ones attention that utilizing the image correlations among different

phases can greatly facilitate the reconstruction process, e.g. enhance image quality and

improve convergence speed. In practice, this is realized by reconstructing all phases

simultaneously using iterative algorithms, whereas image processing tasks at each phase

using information from other phases are conducted frequently during the iteration process.

The additional image processing costs, as well as the simultaneous reconstruction nature,

call for GPU implementations. Because of the nature of image processing, these steps are

typically parallelization friendly, where GPU threads process different voxel simultaneously.

Jia et al. Page 13

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

A temporal non-local means (TNLM) method was developed by Jia et. al., where image

content from the next and the previous phases are borrowed to enhance image quality. This

method was first implemented in 4DCT context by Tian et al. (2011a) to reconstruct a

transverse slice of a patient. It was then further refined in order to gain enough speed to

solve the 4DCBCT problem (Jia et al., 2012b), where volumetric image reconstructions are

needed. Algorithm implementation was fine tuned, so that the complexity was reduced from

O(N3) to O(3N), where N is the number of voxels in each spatial dimension. It also

employed a more coalesced memory access scheme to improve efficiency. About 1 min per

phase reconstruction time has been reported using an NVIDIA C1060 card. Another

algorithm in this category used spatial-temporal tensor framlet (Gao et al., 2012). In this

approach, the four-dimensional tensor product of wavelet frame was applied to the spatial

and the temporal dimensions. The matrix-vector operation in this method made it suitable

for GPU parallelization. A total computation time of less than 10 min was reported when

using an NVIDIA C2070 card.

3.5 Deformable registration

Deformable image registration (DIR) is another important problem in radiotherapy. It gains

a lot of attentions recently in the context of adaptive radiotherapy, where DIR serves as a

critical tool to establish voxel correspondence between planning CT and daily CT/CBCT in

order to facilitate automatic segmentation and dose accumulation. Yet, the computation of

DIR is usually intensive for high-resolution 3D images. The ill-pose nature of this problem

requires complicated iterative algorithms with a large number of iteration steps to yield

acceptable results. On the other hand, DIR is a perfect data-parallelization task, where

deformation vectors at voxels can be computed almost independent of each other at each

iteration step. This fact places GPU at a unique position to accelerate the problem.

The most widely explored DIR algorithm on the GPU platform is Demons (Thirion, 1998).

Its popularity is mainly due to its simplicity and suitability for GPU parallelization.

Specifically, the Demons algorithm has a closed form expression regarding how the

deformation vector is updated at each iteration step based on the image intensities. The

vector computation is local at each voxel, making the parallelization straightforward. Sharp

et al. (2007) implemented this algorithm on an NVIDIA 8800 GPU using Brook, yielding 70

times acceleration compared to a CPU-based computation. An independent study was also

conducted by Kim et al. (2007) using Cg and by Samant et al. (2008) using CUDA. Later, a

systematic study was conducted by Gu et al. (2010) who implemented six different variants

of the Demons algorithm on GPU. While the vector update formula are difference among

these variants, the GPU code structure and parallelization scheme remain the same. A

comprehensive study was conducted to compare these different versions. Recently, Gu et al.

(2013) also generalized this algorithm into a contour-guided deformable image registration

(CG-DIR) version, where the registration is performed in accordance with user specified

organ contours. This is realized by regularizing the objective function of the original

Demons algorithm with a term of intensity matching between the contour pairs. Because of

the same algorithmic structure, the GPU implementation remains the same. The computation

time is 1.3–1.6 times longer than that of the original Demons on the same GPU card.

Jia et al. Page 14

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Another challenging problem within the DIR regime is inter-modality registration. Of

particular interest is CT-CBCT registration due to its potential applications in adaptive

therapy. Aiming at this problem, Zhen et al. (2012) developed an algorithm named

Deformation with Intensity Simultaneously Corrected (DISC). Under the Demons algorithm

iterative structure, DISC performed an intensity correction step in each Demons iteration

step to modify the CBCT image intensities to match intensities between CT and CBCT. The

intensity correction of a voxel in CBCT was achieved by matching the first and the second

moments of the voxel intensities inside a patch around the voxel with those on the CT

image. This step was easily parallelizable due to the independence of processing among

voxels. It took about 1 min to register two images of a typical resolution using an NVIDIA

C1060 card. The much longer time compared to the original Demons on GPU was ascribed

to the time-consuming intensity correction step, where complicated evaluations of statistical

moments were performed.

3.6 2D/3D registration and one-projection CBCT

Another form of registration problem encountered in radiotherapy is the so-called 2D/3D

registration, where a rigid or deformed vector field is determined in 3D image volume, such

that the projected image under CBCT geometry matches 2D measurements. Problems as

such are generally difficult, because of the nonconvex nature of the registration problem.

Moreover, a big computation challenge comes from the repeated computations of forward or

backward projections. Yet, similar to that in CBCT reconstruction problem, these two

operations are suitable for GPU parallelization. Wu et al. (2009) first investigated the rigid

2D/3D registration problem with a focus on comparing different registration metrics for

patient positioning in radiation therapy treatments. GPU-based DRR calculation was used to

generate forward projections, where a speed up of ~50 was seen using an NVIDIA GeForce

8800 GTX card and the absolute computation time was reduced by an order of magnitude.

Li et. al. studied the deformable 2D/3D registration problem, with an attempt to reconstruct

a volumetric 3D image corresponding to the 2D projection image by restoring the vector

field between the target volume image and a reference CT image (Li et al., 2010; Li et al.,

2011). An optimization problem was formed, in which the desired vector field would

minimize the difference between the computed forward projection and the measured one. A

gradient-based algorithm was employed to solve this problem, each iteration of which

contained a multiplication of the forward projection matrix and a multiplication of its

transpose. These operations were accelerated by GPU via a sparse matrix multiplication

scheme (Bell and Garland, 2008). Other operations were vector-vector operations that were

trivially parallelized on GPU. A high computational efficiency has been achieved on an

NVIDIA C1060 card with an average run time of ~0.3 second, very promising for real time

volumetric imaging.

3.7 Other image processing problems

Besides the aforementioned specific imaging problems, GPU has also been used to solve

other image processing problems pertain to radiotherapy. The first example is denoising,

namely removing noises from a given image. One of its applications in radiotherapy is to

reduce noise levels in CBCT projection images acquired in low dose scans so as to improve

Jia et al. Page 15

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

the reconstructed CBCT image quality. As such, a 3D anisotropic adaptive filter has been

developed (Maier et al., 2011). The most computationally demanding part in this algorithm

was FFT, which was accelerated using JCUDA, the Java language of CUDA to enable GPU

based FFT calculation. Other steps in the algorithm were easily parallelizable at pixel level,

and the implementation was straightforward. With an NVIDIA C1060 GPU card, a 8.9-fold

speed up compared to CPU implementation was achieved, which reduced the computation

time from 1336s down to 150 s.

Image segmentation problem has also been accelerated using GPU. Zhuge et al. (2011)

implemented a fuzzy connectedness-based segmentation algorithm on a GPU platform. In

this algorithm, one of the sub-problems computed affinity between every pair of voxels in an

image, which characterized the fuzzy relation between the two voxels. Because of the

independence of the computation among different voxel pairs, GPU implementation was

straightforward. Although another sub-problem requires Dijkstra’s algorithm, which was,

however, not suitable for GPU, overall speed-up factors of 10~24 times were achieved on an

NVIDIA C1060 GPU card over the CPU implementation, because of the dramatic

acceleration in the first sub-problem.

4. Treatment-related problems

Treatment related tasks constitute another category of computationally intensive tasks in

radiation therapy. Examples include radiation dose calculation, treatment plan optimization,

and dose comparison. Because of the intensive computation nature, GPU has also been

widely employed to solve problems here. We will discuss these applications in this section.

4.1 Non-MC dose calculations

Dose calculation plays a central role in radiotherapy. Its success dictates the entire clinical

practice of radiotherapy treatment, ranging from pre-treatment planning to post-treatment

verification. Classical correction-based methods are not computationally challenging enough

to demand the utilizations of GPUs. More advanced model-based calculation methods can

greatly benefit from GPU accelerations.

Popular model-based non-MC dose calculation algorithms are superposition/convolution

(SC) algorithms and pencil beam (PB) algorithms. Both algorithms split a broad beam into

small beamlets, and compute the total dose as a summation over dose from all the beamlets.

SC and PB differ in how they handle the beamlet dose contributions. For SC-type algorithms

for photon dose calculations, its basic idea comes from a physical picture of dose deposition,

namely the total energy released per mass (TERMA) at each voxel is deposit to surrounding

voxels through generated secondary particles. Hence, in an SC algorithm, TERMA is first

computed via a ray-tracing algorithm along each ray line and final dose is obtained by a

superposition-type operation to spread out the TERMA to nearby voxels. PB type

algorithms, on the other hand, are phenomenological descriptions of the dose deposition. A

quantity along the ray line is first calculated to characterize the overall dose variation along

the depth direction, e.g. build-up in photon cases and Bragg peak in proton cases. This

quantity is then spread out in planes perpendicular to the ray line via a certain kernel.

Overall, the two types of algorithms attain very similar algorithmic structures that consist of

Jia et al. Page 16

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

two stages. The first stage involves computing quantities along the ray line, while the second

one is 2D or 3D convolution or superposition type operations. Both steps are parallelizable

and GPU-friendly.

SC type algorithm was first implemented on GPU by Jacques et al. (Jacques et al., 2008;

Jacques et al., 2011; Jacques et al., 2010). In this implementation, an inverse TERMA

calculation algorithm was invented by ray-tracing from each voxel back to the source to

avoid discretization artifacts and memory writing conflicts occurred in forward ray-tracing

TERMA calculations. It was also fully parallelized with a large degree of cache reuse. In the

superposition stage, an inverse kernel formulation was employed where each voxel gathers

dose contributions from surrounding voxels, enabling voxel-based parallelization and

avoiding memory-writing conflicts. A multi-resolution superposition algorithm was used to

reduce the algorithm complexity and mitigate the star artifacts due to finite number of

angular discretization directions. A kernel tilting strategy was also implemented to account

for slight direction change of the dose-spread kernel at each beamlet, improving calculation

accuracy. On top of these, performance was optimized for CUDA, such as optimizing

occupancy, synchronizing thread blocks, and using shared memory. A speed-up of over 100

over the highly optimized Pinacle (Philips, Madison, WI) implementation was observed on

an NVIDIA GTX280 card, where the absolute computation time was about 1 second per

plan. Later, Hissoiny developed another implementation of the SC algorithm on GPU

(Hissoiny et al., 2010). Special function unit on the GPU was utilized to accelerate the

computations of intrinsic functions, e.g. exponential function, using dedicated hardware. A

larger number of ray directions were employed compared to the previous implementation by

Jacques et al.. To further boost the computational efficiency, a multi-GPU solution was also

developed, where the dose calculation array was split between GPUs. An overhead was

observed due to the initial data loading to all the GPUs, as well as the final accumulation of

results. Using the same GPU card, NVIDIA GTX280, acceleration ratios of 27.7~46 times

were observed compared to an Intel Xeon Q6600 CPU for TERMA calculations and up to

900 times for the convolution step. The overall 3D dose calculation time was about 2.8 sec/

beam. Using two GeForce 8800GT cards, another factor of up to 1.6 were achieved. SC type

algorithm was also employed by Lu (2010) and up to ~16 times acceleration factor was

reported in real clinical cases using an NVIDIA GTX295 card compared to a cluster with 56

2.66GHz CPUs.

As for the PB algorithms, Gu et al. (2009) first implemented an finite-size pencil beam

(FSPB) algorithm on GPU, where the 2D dose spread kernel was modeled using a set of

error functions. The algorithm sequentially computed dose from each beam angle. For each

beam, a ray-tracing operation was first launched, in which each GPU thread built a lookup

table of radiological depth as a function of physical depth for each beamlet. A second stage

of dose spread was performed in a voxel-parallel fashion, where a voxel looped over all the

beamlets nearby to accumulate contributions from each of them. A speed-up factor of ~400

times were achieved for the dose calculation part using an NVIDIA C1060 card. However, it

was also discovered that data communication time between CPU and GPU was comparable

to dose calculation time, reducing the speed-up factor to ~200. The implementation was also

tested on other GPU cards and the computation time for GTX285, C1060, and S1070 were

Jia et al. Page 17

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

almost identical, and were over seven times shorter than that on a low end GeForce9500

card. Later, the algorithm was further improved to incorporate 3D density correction (Gu et

al., 2011a). A different kernel function form was utilized with parameters fitted for different

materials. Better accuracy was observed, whereas implementation structure remained

unchanged.

Another dose calculation algorithm, Fluence-convolution broad-beam (FCBB) was proposed

by Lu et. al. in his non-voxel-based broad-beam framework in Tomotherapy treatment

planning system (Lu, 2010; Lu and Chen, 2010). The algorithm reversed the two steps seen

in the aforementioned CS or PB algorithms. It first conducted a convolution in the 2D

fluence map domain using a lateral spread function and then ray-tracing with radiological

distance and divergence correction. In terms of GPU implementation, the ray-tracing part

was handled by launching multiple GPU threads simultaneously, akin to the strategy in a CS

or PB algorithm. While there was no direct report of acceleration ratio of this calculation by

using GPU, when the algorithm was embedded in the treatment plan optimization process,

up to 3 times overall speed up was achieved using an NVIDIA GTX295 card compared to a

Tomotherapy cluster with 56 2.66GHz CPUs, which translated to ~150 times compared to a

single GPU (Lu, 2010).

Dose calculations for proton therapy using PB approach became available on GPU recently

(Fujimoto et al., 2011). The algorithm structure was very similar to that in the FSPB model.

The implementation aimed at speeding up the 2D dose spreading part, since it dominated the

computation time in CPU. As such, a voxel-parallel approach was employed to accumulate

dose from each beamlet. Frequently used error function values were pre-computed and

stored in tables. Performance was improved by using this table lookup approach. The new

algorithm showed 5–20 times faster performance using an NVIDIA GeForce GTX 480 card

in comparison with the Intel Core-i7 920 processor.

4.2 Monte Carlo dose calculations

Monte Carlo (MC) simulation is considered as the most accurate dose calculation method

due to its capability of faithfully capturing real physical interaction processes. Because of

the statistical nature of this method, a large number of particle histories are needed in one

simulation to yield a desired precision level. Despite the vast developments in computer

architecture and the increase of processor clock speed in recent years, the efficiency of

currently available full MC dose engines is still not completely satisfactory for routine

clinical applications. Recently, a lot of efforts have been spent on the developments of GPU-

based MC dose engines. Yet, because of complicated particle transport physics, as well as

sophisticated parallelization scheme required to achieve a decent speed up, GPU-based MC

is arguably the hardest problem among those reviewed in this article. To date, a set of MC

dose calculation codes have become available. They differ from each other in terms of the

level of physics employed, the functionality supported, and the code optimization

approaches.

The idea behind an MC simulation is simple: tracking particle propagation according to

physical models. It was the conventional wisdom that MC is extremely parallelization

friendly, as different computing unit can handle different particle transport independently.

Jia et al. Page 18

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

This is indeed the case for CPU cluster based MC simulations, where almost linear speed-up

has been observed with respect to the number of processors (Tyagi et al., 2004).

Nonetheless, the SIMD programming mode of a GPU and the randomness behind a MC

simulation create such a big conflict that it is very hard to achieve high efficiency in MC

dose calculation. In fact, Jia et al. (2010a) developed the first GPU-based MC dose

calculation package gDPM, where all GPU threads were treated as if they were independent

computational units, each tracking the entire history of a source particle as well as all the

generated secondary particles. Despite hundreds of threads available on a GPU card, only

5.0~6.6 times speedup was observed.

There are two types of GPU thread divergence that one may encounter in a MC simulation

for dose calculation, i.e. due to the different particle transport physics for different types of

particles (type I), and due to the randomness of the particle transport process (type II).

Hissoiny et al. (2011a) developed an MC dose calculation package, GPUMCD, where it was

proposed to separate simulations of electrons and photons to remove the type I thread

divergence. By smartly placing the particles to be simulated into two arrays holding

electrons and photons separately and having the GPU to simulate particles in only one array

at a time, a considerable amount of speed up was achieved. It only took ~ 0.3 s to simulate 1

million electrons or 4 million photons in water for monoenergetic beams of 15 MeV using

an NVIDIA GTX 480 card. Another 1.9 times acceleration was further achieved with dual

NVIDIA C1060 cards compared with single C1060 card. GPUMCD was developed based

on existing physics extracted from other general purposed MC packages, and its accuracy

was established when comparing with EGSnrc (Kawrakow, 2000). This package was later

extended to support more functionalities, including brachytherapy dose calculation

(Hissoiny et al., 2011b) and photon/electron transport in magnetic fields (Hissoiny et al.,

2011c).

Later, in the second version of gDPM, Jia et al. (2011b) utilized the same strategy to

separate transports of particles of different types and found a dramatic acceleration. Speedup

factors of 69.1 ~ 87.2 were observed against a 2.27GHz Intel Xeon CPU processor using an

NVIDIA C2050 card. The development of gDPM v2.0 also emphasized on its clinical

practicality by integrating various key components necessary for dose calculation in

radiotherapy plans. An IMRT or a VMAT plan dose calculation using gDPM can be

achieved in 36.1~39.6 sec with a single GPU card with less than 1% average uncertainty.

Multi-GPU implementation of gDPM has also been developed, achieving another speed-up

factor of 3.98~3.99 compared to a single GPU using a 4-GPU system. Recently, the third

version of gDPM was released with the capability of loading source particles from a phase

space file (Townson et al., 2013), permitting dose calculations with realistic linac models.

Another MC simulation package for photon-electron transport, GMC, has also been

developed (Jahnke et al., 2012) based on the electromagnetic part of the Geant4 MC code

(Agostinelli et al., 2003). It aimed at alleviating the type II thread divergence problem. An

electron trajectory in a simulation consists of a large number of small steps separated by

voxel boundaries or discrete interaction sites. As opposed to having a GPU kernel

simulating a full trajectory of an electron as in GPUMCD and gDPM, a GPU kernel in GMC

transported an electron by only one step. Such a kernel was repeatedly invoked to move the

Jia et al. Page 19

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

electron forward. Compared with the CPU execution of Geant4 on a 2.13GHz Intel Core2

processor, a speed-up factor of 4860 was reported on an NVIDIA GTX 580 card. This

enormously large speed-up factor can be partly ascribed to the slow Geant4 simulations on

CPU.

Meanwhile, GPU-based MC simulations for proton dose calculations also become an active

research topic. Kohno et al. first developed a simplified MC method (SMC) for proton dose

calculations employing simplified physics (Kohno et al., 2003; Kohno et al., 2011). The

dose deposition was determined by a water equivalent model (Chen et al., 1979) based on

the measured depth-dose distribution in water. Multiple Coulomb scattering of the proton

was also modeled. This simple model made it compatible with GPU’s SIMD structure,

where each GPU thread independently performed the same instructions but using different

data according to the current proton status. High speed shared memory was utilized in the

implementation. A speed-up factor of 12~16 compared to CPU implementation has been

observed in real clinical cases and it only took 9~67 seconds to compute dose in a clinical

plan with acceptable uncertainty on an NVIDIA Tesla C2050 GPU.

Another GPU-friendly MC simulation strategy is track-repeating (Li et al., 2005) and is

employed by Yepes et. al. in proton dose calculations (Yepes et al., 2009; Yepes et al.,

2010). In this strategy, a database of proton transport histories was first generated in a

homogeneous water phantom using an accurate MC code such as Geant4 (Agostinelli et al.,

2003). For dose calculation in a patient case, the track-repeating MC calculated dose

distributions by selecting appropriate proton tracks in the database and repeated them with

proper scaling of scatter angles and track lengths according to the patient body materials.

This method was computationally efficient, as it avoided the sampling of physical

interactions on the fly. It also attained a computation mode compatible with the SIMD

model, since each GPU thread essentially performed the same operations at all the time, i.e.

repeating a track. In practice, a 1% precision can be accomplished in less than 1 minute with

a dual GPU system equipped with Geforce GTX 295 GPUs, a speedup factor of 75.5 with

respect to the same CPU-based implementation.

The first full MC dose calculation package for proton therapy was developed by Jia et al.

(2012a), which tracked protons according to realistic physical process on the fly, each with a

GPU thread. The accuracy of gPMC has been established by comparing the dose calculation

results with those from TOPAS/Geant4 (Perl et al., 2012), a golden standard MC simulation

package for proton nozzle simulations and dose calculations. With respect to the efficiency,

it took only 6~22 sec to simulate 10 million source protons to yield ~1% relative statistical

uncertainty on an NVIDIA C2050 GPU card, depending on the phantoms and the energy.

One interesting issue discussed by Jia et. al. was that there existed a memory writing conflict

problem when using GPU for MC dose calculations (Jia et al., 2012a). Specifically, when

two threads happen to deposit dose to a voxel at the same time, a memory writing conflict

occurs and the energy depositions have to be serialized in order to obtain correct results.

Even though this memory writing conflict occurs also in photon dose calculations (Jia et al.,

2010a; Jia et al., 2011b), it is exacerbated in the context of proton beams, because protons

travel almost along a straight line and protons in a beam marches in a synchronized fashion,

leading to a high possibility of memory writing conflicts. Hence, computation time

Jia et al. Page 20

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

dramatically increases, as field size decreases. A multi-dose counter technique is recently

proposed to mitigate this problem (Jia et al., 2013). By allocating multiple dose counters and

assigning each dose deposition event randomly to a counter, the probability of the writing

conflict is reduced, improving computational efficiency.

4.3 Treatment optimization

The ultimate goal of radiation oncology is to deliver a prescribed amount of radiation dose

to tumorous targets while sparing surrounding normal tissues. Compared to conventional

trial-and-error forward planning process, advanced inverse planning strategies offer a more

effective way of designing plans. The large computational burden in this problem demands

high computational powers, especially in the context of adaptive radiotherapy (Yan et al.,

1997), where it is critical to solve the optimization problem in a timely fashion. Hence, GPU

has also been brought into this context to accelerate the problems.

While the available optimization models are ample, the basic principles behind them are

quite similar. In short, an objective function is first defined to quantify the quality of the

dose distribution as a function of the decision variables, e.g. fluence map, according to some

clinical considerations. By convention, the minimum of this objective function indicates the

best plan quality. A certain kind of optimization algorithm is then employed to solve this

optimization problem. As analytical approach for solving this type of questions is very rare,

iterative algorithms are usually utilized. In this process, evaluation of dose distribution based

on the current solution variables is the dominant part in terms of complexity, and

acceleration on this part is the main research focus.

Men et al. (2009) conducted the first investigation regarding the use of GPU for fluence map

optimization (FMO) problem. The objective function in this work is a simple quadratic

function. A dose deposition matrix D is first generated using the aforementioned FSPB

model (Gu et al., 2009), whose element at i, j represents the dose to the voxel i from the

beamlet j at its unit intensity. With this matrix, a dose distribution given the current fluence

map x is simply Dx. In essence, the computational bottleneck in this optimization problem

become matrix vector multiplications. In fact, the matrix D is sparse, as each beamlet only

contributes to a small subset of all voxels. This sparsity property has been utilized in the

GPU implementation, where the matrix was stored in a compressed sparse row (CSR)

format and a sparse matrix-vector multiplication function (Bell and Garland, 2008)

optimized for the GPU platform was employed. One complication in this strategy is that, the

CSR format is only suitable for the computation of Dx. However, a multiplication with DT

was needed in the optimization algorithm when evaluating gradient of the objective

function. Men et. al. simply stored both D and DT on GPU, both in CSR format, and use

them when necessary, which apparently increased the memory burden. On an NVIDIA

Tesla C1060 GPU card, the achieved speedup factor was 20–40 without losing accuracy,

compared to the results obtained on an Intel Xeon 2.27 GHz CPU. A problem for a typical

nine-field prostate IMRT case can be solved with in 2–3 seconds.

Based on this development, the same group also investigated a direct-aperture optimization

(DAO) problem (Men et al., 2010a), where beam apertures and intensities were directly

obtained. The objective function was again, taken as a quadratic form and was solved by a

Jia et al. Page 21

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

column generation algorithm (Men et al., 2007). At each iteration, a subproblem was first

solved to determine an aperture shape based on the objective function gradient at each

beamlet, and a subsequent master problem computed the intensity of each determined

aperture. For the sub-problem, the gradient evaluation was handled in the same way as in the

above FMO problem. The determination of the aperture shape was carried out by an

algorithm that searched each MLC row, which was parallelized by assigning one row to

each GPU thread. After the aperture was determined, the dose deposition matrix for the

aperture was inferred based on the involved beamlets. It, as well as its transpose, was again

stored in the CSR format, and the aperture intensity was determined in the master problem

using quadratic optimization, where the same sparse matrix functions were called.

The same column generation method was also utilized to solve VMAT optimization

problem (Men et al., 2010b). Yet, modifications of the algorithm were made to

accommodate special constraints in this problem. First, only one aperture can be added to a

beam angle subject to the restrictions posted by neighboring apertures due to maximum leaf-

travelling speed constraints. This was handled in the sub-problem, where each GPU thread

searches for leaf positions of the designated MLC leaf row with this constraint considered.

Second, beam intensity should vary smoothly among beam angles. A smoothness term was

hence added to the objective function, and was addressed in the master problem. An

extremely high efficiency has been achieved, such that it took 18~31 seconds on NVIDIA

C1060 GPU to generate a plan, in contrast to the computation time of 5~8 minutes on an

Intel Xeon 2.27 GHz CPU. Lately, Peng et al. (2012) refined the algorithm and developed

improved schemes to handle more realistic hardware constraints in a rigorous fashion.

However, the structure of the GPU-implementation remained the same. Computation time of

25~55 sec on an NVIDIA C1060 card was reported to generate a clinical realistic VMAT

plan of high quality.

Another optimization approach, called non-voxel-based broad-beam (NVBB) framework,

was developed by Lu (2010). This algorithm directly optimized with respect to machine

parameters. It computed the dose corresponding to the current machine parameters using the

aforementioned FCBB algorithm (Lu and Chen, 2010), and hence eliminated the necessity

of storing the dose deposition matrix. During the iteration process, a more accurate SC-

based dose calculation was frequently performed to compensate any inaccuracy introduced

by the FCBB algorithm. Because the whole algorithm involved repeated dose calculations,

the calculations greatly benefit from GPU. Using a single NVIDIA GTX295 card, it was

found that the NVBB optimization process for real clinical cases was speed up by up to ~16

times versus the one on a CPU cluster with 56 CPUs of 2.66GHz.

4.4 Gamma-index calculation

Gamma-index (Low et al., 1998; Low and Dempsey, 2003) is a useful utility in radiotherapy

for dose comparison. The computational intensive nature makes this metric clinically only

applicable in 2D dose comparison cases. Recently, Gu et al. (2011b) first utilized GPU to

substantially improve the computational efficiency, especially for 3D gamma-index

calculations. The basic idea behind this implementation was the geometric interpretation of

the gamma index (Ju et al., 2008), where the gamma index at a dose point on a reference

Jia et al. Page 22

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

dose grid is regarded as the minimum distance from this dose point to the surface formed by

the test dose distribution. Because of the independence between gamma index evaluations at

each dose point, it is natural to parallelize the computation with each thread for a dose grid

point. A radial pre-sorting technique was also invented to group the computations for voxels

with similar gamma index values together. This strategy ensured that concurrently launched

GPU threads had similar lifetime, avoiding losing computational efficiency due to few long-

living threads. It was found that the gamma-index calculations can be finished within a few

seconds for 3D cases on one NVIDIA Tesla C1060 card, yielding 45~75 times speed-up

compared to that on Intel Xeon CPU. Later, Persoon et al. (2011) conducted a similar study,

and the texture memory was utilized to improve memory access efficiency. Acceleration

factors of ~60 times were observed in phantom and patient cases using an NVIDIA Tesla

C2050 card compared to Intel Xeon 2.66GHz CPU.

5. GPU vs. other architectures

5.1 Other typical architectures

As discussed in this article, using GPU is a cost efficient method to implement very fast

solutions. However, there are alternative processor architectures that have been used to build

computer systems. The most prominent alternative is to exploit the capabilities of a modern

CPU.

Algorithms for the CPU have been developed since the early days of modern radiation

therapy (Webb, 1989). In those days, GPUs or similar parallel architectures have not

become popular. Serial processors dominated the market while the industry was focused on

steadily improving the clock cycle speed and functionality of the processors. This trend has

changed in the last decade due to a number of technical limitations. Nowadays, high

performance is achieved on account of their ability to process instructions in parallel on

several levels. Modern CPUs consists of multiple cores that are replicated together with a

dedicated L2-Cache on the processor die. Each core comprises both, a set of “classic”

integer and float pointing processing units and a unit for processing wide data in a SIMD

fashion, like GPUs do. Thus, CPUs are suited to solve serial, latency-oriented algorithms on

the one hand, while it is possible to achieve a much higher performance by exploiting its

parallel architecture. Several works have shown the parallel performance capabilities of the

CPU. Shackleford et al. (2010) found a speedup factor of only 1.88 comparing a GPU

implementation with an optimized multi-threaded CPU implementation for a B-spline

registration algorithm. Cabello et al. (2012) achieved a speedup of 2.5 for a 3D PET

reconstruction implementation. Hofmann et al. (2011) even could not get any performance

benefit using the GPU. In the field of treatment planning, there are only a few publications

that investigate the full performance of a single CPU. Weng et al. (2003) investigated a

vectorized implementation of an MC code for radiotherapy treatment planning dose

calculation. He could achieve a speedup of 1.5 using an early version of the SSE extension

on CPUs compared to using the conventional float point unit. Ziegenhein et al. (2013)

showed that IMRT treatment planning based on a quadratic objective function with pre-

calculated dose influence data is a strong memory bound problem on the CPU. He optimized

Jia et al. Page 23

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

the implementation on CPU and achieved over 90% of the theoretical peak performance of

the CPU-based planning system.

To yield a shorter runtime for a given problem, multiple CPUs are often configured within

one computer system. These systems could comprise 2, 4 or 8 processors which all share a

common main memory. Bangert et al. (2012) showed that the IMRT planning algorithm

introduced by Ziegenhein et al. (2013) scales on these shared memory systems, which

achieved clinical planning time of about 1 second. Configuring a system with more than 8

processors is not possible with common off-the-shelf CPU hardware. More parallel

processing resources can be employed by interconnecting many of these shared memory

systems via a fast network. Usually, in these cluster configurations, each node comprises

only 2 or maximally 4 CPUs for economic reasons. Lu (2010) mentioned a therapy planning

framework for Tomotherapy on such a distributed system. He introduced a non-voxel based

approach on GPUs that was compared to a commercial voxel based algorithm on a 14-node

cluster with 56 CPUs.

Some recent publications have also investigated the benefit of using cloud computing for

solving coarse-grained parallel problems in radiation therapy. Cloud computing (Armbrust

et al., 2010) has the advantage that computational resources are provided “on-demand”.

Keyes et al. (2010) first ported dose calculations into a cloud environment and the

computation time was explained by a theoretical model, demonstrating the efficiency

improvement using multiple nodes. Poole et al. (2012) found that the computation time

decreases approximately with 1/n, where n was the number of parallel machines used. The

simulation cost was found to be optimal when n was a factor of the total simulation time in

hours. Pratx and Xing (2011b) achieved a similar result by porting an MC321 MC package

to a cloud environment using MapReduce technique. They found a 1258x speedup on 240

cluster nodes compared to a single threaded MC program. In addition, this work showed that

cloud computing based on MapReduce technique was fault tolerant: Even if 50% of the

nodes were shut down, the cloud is able to compensate for that and delivers the correct

results.

In addition to CPUs, we would like to mention field-programmable gate arrays (FPGAs) as

another alternative architecture for high-performance computing. As the name suggests,

FPGAs contain fully configurable logic blocks. In contrast to conventional processors, no

additional software is needed, and the configurable logic implements the desired algorithm

itself. This leads to a high computing performance with low energy consumption and allows

for a very short response time to I/O interfaces. The potential of FPGAs was illustrated in

the work of Luu et al. (2009) for implementing a MC simulation of light absorption for

photodynamic cancer therapy. The authors reported a speedup of 28x compared to an Intel

Xeon 5160 server processor. In another work, Pasciak and Ford (2008) present an MC

electron transport simulation for microdosimetry and radiation biology on FPGAs. They

claimed a speed-up of more than 500 for a test case that simulates an electron pencil beam

incident on cell nuclei.

Jia et al. Page 24

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

5.2 Comparisons of GPU with other architectures

The most popular architecture for tackling radiation therapy problems is the CPU. The key

features of a GPU and a CPU are listed in Table 2 on the examples of NVIDIA’s K20 and

Intel’s Xeon E5-2687W server processor. While the GPU is a massively parallel architecture

employing thousands of arithmetic cores, the CPU comprises only a few of them. This pays

off in performance. The theoretical single precision performance of a GPU is about 3950

GFLOPS (giga floating point operations per second) while the CPU only achieves 486

GFLOPS. On the memory side, professional GPUs are equipped with a fast GDDR memory,

although the size is limited to a few GBs. In contrast, a CPU can be configured with several

hundred GB of memory. The clock speed of the GPU is relatively low in order to limit the

power consumption of this device. Therefore the energy efficiency is 12 times better.

By comparing the raw specifications of GPUs and CPUs, one can see that the GPU is

approximately 8 times (for computation-bound algorithms) and 5 times (for memory-bound

problems) faster than the CPU. These numbers reflect the theoretical comparison between

the two platforms in terms of computational capability. In other words, if there were an

algorithm that is suitable for both the GPU and the CPU platform, and it is implemented in

an optimal manner on both of them, the expected efficacy gain on GPU should be very close

to the above-mentioned numbers. Nonetheless, it is very rare, if not impossible, to find such

an algorithm. In fact, apart from some extreme cases, e.g. MC particle transport, many

problems in radiotherapy are very GPU-friendly. There usually exist some natural ways to

break the computations into small pieces, e.g. according to voxels or pixels. This fact allows

a straightforward implementation on GPU, which typically does not require deep level

tuning of the GPU code to achieve a decent speed up comparing to a simple CPU

implementation. It is true that carefully optimizing on the CPU side will also improve the

code efficiency there. Yet, the required effort is typically not less than optimizing a GPU

code, and the CPU code optimization also demands for the knowledge about the chip and

memory structure, which a typical medial physics researcher does not have.

A CPU cluster consists of multiple computer systems that are connected to each other via a

fast network. A fully equipped cluster is relatively expensive compared to a shared memory

system or a GPU and has to be maintained by a professional. Furthermore, most of the

cluster resources are not used all the time. It is believed that the utilization of clusters

employed in data centers ranges from 5% to 20% on average (Rangan, 2008; Siegele, 2008).

This is because a computer cluster at a service center is installed for a certain (estimated)

peak workload. Real-world average workloads are often smaller by a factor 2 to 10

(Armbrust et al., 2010), so that cluster resources are idle for a significant amount of time.

Moreover, unlike problems in fundamental sciences, radiotherapy problems are typically of

intermediate sizes. When putting them on a cluster, the data communication overhead may

occupy a significant portion of the total execution time, limiting the potential to achieve high

efficiency.

Cloud computing overcomes the low-utilization drawback of a cluster by its “pay-as-you-

go” policy. The user pays for time and the number of nodes that are requested. However, the

data communication overhead still remains. The available work (Keyes et al., 2010; Pratx

Jia et al. Page 25

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

and Xing, 2011b; Poole et al., 2012) showed that cloud computing is feasible for a MC dose

calculation. This was possible, because the MC dose calculation is an embarrassingly

parallel computing problem, in which inter-CPU data communication is very minimal. In

contrast, it is unlikely for problems that employ a more complex communication scheme to

largely benefit from the apparent infinite scaling in the cloud.

6. Discussions and Outlook

In retrospect, GPU has been employed in a wide spectrum of radiotherapy physics problems

and great success has been achieved in terms of accelerating those computationally

challenging problems. Despite its short history, the achievements are significant. The

observed efficiency, as well as the maintained accuracy, holds a great potential to bring

those previously computationally unaffordable tasks to routine clinical practice.

Nonetheless, we also keep in mind that GPU technology is still at its infant stage.

Challenges and opportunities co-exist. Before the conclusion of this paper, we would like to

discuss a few points regarding the future of this novel emerging technology in radiation

therapy.

6.1 Further requirements

Single-precision vs double-precision float point data—First of all, almost all of the

works discussed in this article used single-precision float point data type to represent

rational numbers. This is mainly because GPU has better support for single-precision

operations than double-precision ones in terms of efficiency. Take a widely used NVIDIA

Tesla C1060 card as an example, its double-precision processing power is only 77.8

GFLOPS, less than one tenth of the single-precision processing power of 933.1 GFLOPS.

This fact originates from the main function of GPU, namely computer graphics, for which

single-precision is sufficient to render high-quality images. Nevertheless, when GPU enters

the scientific computing regime, the relatively low precision becomes a concern. Especially

in some problems where repeated operations may amplify small errors caused by machine

precision, double-precision float number is of high desire. Examples include MC dose

calculations, where small amount of dose is deposited for billions of times, and solving a

large linear system in an iterative manner, where the final result precision is governed by

machine precision due to the inherent properties of the problem (Golub and van Loan,

1996). On the other hand, it is encouraging to observe that more and more GPU cards have

increasingly improved double-precision capability. Although the difference in processing

power between the two precisions is still large, it is not as astonishing as it was, especially

for those GPUs designed for scientific computing purpose. In a recent NVIDIA K10 GPU

card, the double-precision processing power is about one quarter of that of single-precision

(1.17 Tflops vs 4.11 Tflops). Given this fact, it will be feasible to develop some computation

tools with double-precision, particularly for those tasks whose resulting precision may be

critically dependent on the machine precision.

Further increase of efficiency—Another desire along the road of GPU adventure is to

keep improving computational efficiency. In general, it is quite straightforward to port an

existing CPU algorithm onto GPU and achieve acceleration to a certain degree. It is,

Jia et al. Page 26

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

nonetheless, quite hard to write a high-efficiency code that fully exploit the potential of a

GPU. The latter requires understandings of the GPU architecture and programming mode,

which allows for an optimization at a fine-grain level. Unfortunately, most of the researchers

in radiotherapy who are currently developing GPU codes are not trained in this regard. It

hence necessary to team up with computer science experts, particularly GPU experts, to

develop highly optimized codes.

As for practical ways of improving code efficiency, they are apparently problem-specific.

We have to analyze the algorithm structure in order to determine the corresponding GPU

implementation. Here we only list a few general rules that one should keep in mind. (1)

Design GPU-suitable algorithms. Algorithm acceleration is arguably the most effective way

of boosting computational efficiency. While there are usually many algorithms conquering a

given problem, selecting the one with a suitable structure for the SIMD processing mode of

a GPU is important to achieve the best performance. In light of the dramatically different

processing modes between CPU and GPU, it is also implied that some algorithms

abandoned previously on CPU due to inferior performance may find its way on GPU.

Hence, one has to specifically consider the GPU structure at the algorithm design stage. A

good example is radiation dose calculation. While MC simulations encounter its own

conflicts with the GPU’s SIMD mode, solving Boltzmann transport equation (Gifford et al.,

2006) may be a good alternative due to the full matrix operations, which are particularly

favored by GPU. (2) Reducing thread branching problem. This issue is and will remain the

central problem given the specific hardware structure and SIMD mode of GPUs. Effective

solutions vary among problems. It ranges from smartly coding to avoid if-else statements to

changing the whole simulation scheme to force synchronization among threads. (3) Memory

usage. Memory usage is another important aspect in GPU-based parallelization that

potentially limits the performance. It is hence critical to understand the properties of each

type of memory spaces on a GPU card and utilize them in an optimal fashion. For instance, a

beginner tends to put all the data in the global memory. A small modification of binding data

to texture memory would improve access efficiency by utilizing data caching. Sharing data

among GPU threads is another effective approach to remove redundant data access. A good

example is convolution operation of an image, where threads processing neighboring pixels

share the use of common pixel data. Putting data in GPU shared memory effectively reduces

the total number of memory visits to the slow global memory (Podlozhnyuk, 2007). Memory

writing conflict is sometimes encountered in parallel processing. Designing algorithms to

eliminate this issue is hence critical to avoid efficiency loss. For example, an inverse kernel

formulation is employed in SC dose calculations for this purpose (Jacques et al., 2008;

Jacques et al., 2011; Jacques et al., 2010). In addition, writing small GPU kernels is

sometimes helpful, as large kernel would run out available register space on a GPU

processor and directing those variables into global memory space will inevitably reduce the

code efficiency considerably.

Multi-GPU also gradually came into the scene recently as another way to further boost

computation efficiency, which adds one more layer of parallelization on top of the one

within each GPU. Given the low cost of GPU cards and the feasibility of placing up to four

cards in a workstation box, multi-GPU is practical. The parallelization among GPUs is very

Jia et al. Page 27

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

similar to conventional CPU-cluster-based processing. Hence, the programming can be

handled by, for example, message passing interface (MPI) (Dongarra et al., 1994), where

each CPU thread controls a corresponding GPU and inter-GPU data communication is

conducted through the CPU. Lately, CUDA version 4.0 added a new feature to support

multi-GPU parallelization by allowing universal addressing. This eliminates the need of

explicit control of inter-GPU data transfer. However, the total number of GPUs supported in

this scheme is limited. Similar to CPU-cluster based parallel processing, the efficiency gain

from the multi-GPU system critically depends on the overhead associated with inter-GPU

data communication. Among the very limited number of research projects on multi-GPU

system, MC is the one that achieves easy accelerations. An almost linear speed up with

respect to the number of GPU has been observed by Hissoiny et al. (2011a) and by Jia et al.

(2011b). On the other hand, it may not be quite straightforward to accelerate calculations on

other topics. In a recent paper reporting CBCT reconstruction using multiple GPUs, the data

communication is found to occupy a relatively large amount of total computation time,

limiting the advantages of multi-GPU (Wang et al., 2013). In short, the strength and

weakness of multi-GPU is very similar to that for a CPU-cluster. Only when data

communication overhead is small can we expect a large efficiency gain. It is a future topic to

investigate the feasibility of using multi-GPU system for other problems in radiotherapy

physics.

Portability—In terms of programming environment, CUDA developed by NVIDIA

currently dominates the applications of GPU in scientific computing, such that majority of

the works reviewed in this paper was developed in CUDA. Other languages/APIs employed

by researchers include shadder, Cg, etc., developed by different vendors to specifically

program their own GPUs. While these languages have fine controls of the associated

hardware system, the developed applications based on them are hardly compatible with

GPUs from different vendors. This fact poses large hardware dependence of the developed

applications and limits their practicality. To a large extent, the nature of specific hardware

and software dependence impedes the adoption of GPU technology into clinical practice,

since vendors of clinical software are very often reluctant to tie their products to a specific

hardware and software configurations. Recently, cross-platform programming language, e.g.

OpenCL, gradually came into the scene and has attracted a great amount of attention. The

supports of GPUs from different vendors, multi-CPUs, or even heterogeneous computing

with combined CPU and GPUs make them very attractive in terms of developing hardware-

independent solutions. Studies regarding the performance of OpenCL compared to other

APIs yield controversial conclusions. While some of them indicate efficiency in OpenCL is

hindered by the portability gain (Weber et al., 2011; Kakimoto et al., 2012; Pallipuram et

al., 2012), others show that the comparisons are mostly unfair, and OpenCL gives

comparable performance as long as all factors are considered for a fair evaluation (Fang et

al., 2011; Su et al., 2012). It is hence interesting to keep track the developments of OpenCL,

which may have a significant potential in achieving both portability and efficiency.

6.2 Clinical implementations

Despite the ample research developments in the past few years, clinical application of GPU

in routine practice is few and far between. Besides the short history of GPU, this fact can

Jia et al. Page 28

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

also be ascribed to the following reasons. (1) Clinic-oriented software development. It is the

ultimate objective to apply the developed tools in real clinical environments. Yet, very often

the software is too complicated to be used by a normal user. For instance, some tools rely on

fine-tuning of patient-specific parameters to yield a good result, which apparently unrealistic

in some busy clinical workflow. Developing robust and easy-to-use software with the aim of

clinical usage is of primary importance. (2) Clinical validations. The efficiency and

accuracy of the available applications are usually only reported by the developers through

publications. Systematic validations in clinically realistic contexts are hence needed to

further test the benefits of these projects, their capabilities, as well as the limitations.

Collaborative efforts are needed to draw fair conclusions. (3) System integration. The

developed software is usually a single piece in a long chain of a clinical workflow. It is of

importance to integrate it into the entire system to allow for clinical uses. As such, friendly

and safe interface of the software is critical. Meanwhile, clinical software vendors are

expected to play a key role in the clinical implementation process. Opening up interface with

GPU-based applications will greatly facilitate this work. Nonetheless, GPU, as a special

accelerator at its early age, has not received wide recognitions from vendors yet.

All of these issues call for serious efforts, combined from vendors, researchers, and clinical

users to conduct high-quality implementations and comprehensive validations of GPU-based

algorithms to permit the adoption of these potentially impactful researches in clinic.

6.3 Clinical impacts

Last, but not least, we believe that GPU will eventually find its fit into clinical practice of

radiotherapy physics. It is apparent that GPU is capable of improving computational

efficiency in a variety of problems. However, we believe the gains will be beyond merely

efficiency. In fact, accompanied with its high efficiency, GPU will allow physicians and

physicists in radiation therapy using more advanced but computationally intensive tools for

better imaging, planning, and treatment accuracy. It will empower us with capabilities to

accomplish tasks that were previously computationally prohibitive. It will also free us from

limited computational power and facilitate novel developments. All of these aspects will

potentially lead to measureable or even paradigm-shifting impacts. Here, we only list three

example problems at the frontier of radiotherapy physics that may largely benefit from

GPU-based processing.

The first example is low-dose CBCT reconstruction using iterative algorithms. Conventional

analytical reconstruction algorithms (Feldkamp et al., 1984) requires high quality x-ray

projection data acquired at a large number of directions, yielding too much radiation

exposure to patients. Despite the great promise of iterative CBCT reconstruction in terms of

dose reduction, the associated high processing time, e.g. hours, due to the repeated forward

and backward projection operations makes these approaches clinically infeasible. The

greatly reduced computation time using GPU, particularly multiple GPUs, have led to

processing time similar to that of the analytical reconstruction algorithm, e.g. tens of

seconds. This clears one of the most significant obstacles for the clinical introduction of

iterative CBCT reconstruction, which will potentially offer a much safer image guidance

technique to radiation therapy.

Jia et al. Page 29

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Another example is online adaptive radiation therapy (ART) (Yan et al., 1997). Because of

inter-fraction anatomical variations, e.g. tumor shrinkage in response to radiation treatment,

the treatment plan designed before the treatment course may lose its optimality as the

treatment continues. It is desirable to frequently re-optimize the treatment plan according to

the up-to-date patient anatomy. The technical challenges behind this idea is extremely large,

especially for online ART, where a treatment plan should be designed in minutes, while the

patient is laying on a treatment couch awaiting for the treatment. A sequence of operations,

including image reconstruction, registration, dose calculation, optimization and quality

assurance, are to be accomplished within this short scale of time. The recent developments

of SCORE (SuperComputing Online Replanning Environment) system shed a light to this

problem (Gautier et al., 2013). By integrating a series of GPU-based applications, all of

these tasks are accomplished in a few minutes. Even though there is still a long way to go

before SCORE is clinically adopted, online ART is likely realized with the aid of GPU

technology.

Last, interactive treatment planning has also been proposed recently. Conventional treatment

planning is a process iterating between a dosimetrist and a physician. A dosimetrist is

involved in this process mainly due to the long process necessary to design a treatment plan

and a physician cannot spend his valuable time to play with plan optimizations. It is,

however, desirable to have the physician directly conduct the planning, as it is he who will

evaluate the plan quality and make clinical decisions. The proposed interactive planning

process enables a physician to interactively modify the plan. The underlying GPU system

adjusts the plan to accommodate the physician’s specifications and display updated results

in real time. This intriguing technology will potentially dramatically change the current

treatment planning process.

In summary, GPU has offered us tremendous computational power to tackle problems that

were conventionally considered too challenging to be solved. Its suitability for medical

physics in radiotherapy and the great potential has generated ample research enthusiasm.

While technical and clinical challenges remain to be conquered in this venture, we believe

that GPU will play a critical role in the advancements of radiotherapy in near future.

Acknowledgments

This work is supported in part by NIH (1R01CA154747-01).

References

Agostinelli S, Allison J, Amako K, et al. GEANT4-a simulation toolkit. Nuclear Instruments &
Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated
Equipment. 2003; 506:250–303.

Armbrust M, Fox A, Griffith R, et al. A View of Cloud Computing. Communications of the Acm.
2010; 53:50–8.

Badal A, Badano A. Accelerating Monte Carlo simulations of photon transport in a voxelized
geometry using a massively parallel graphics processing unit. Medical Physics. 2009; 36:4878–80.
[PubMed: 19994495]

Bangert M, Ziegenhein P, Oelfke U. Characterizing the combinatorial beam angle selection problem.
Physics in Medicine and Biology. 2012; 57:6707–23. [PubMed: 23023092]

Jia et al. Page 30

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Bell, N.; Garland, M. NVR-2008–004. 2008. Efficient sparse matrix-vector multiplication on CUDA.
ed N T Report

Bian JG, Siewerdsen JH, Han XA, et al. Evaluation of sparse-view reconstruction from flat-panel-
detector cone-beam CT. Physics in Medicine and Biology. 2010; 55:6575–99. [PubMed: 20962368]

Cabello J, Gillam JE, Rafecas M. High Performance 3D PET Reconstruction Using Spherical Basis
Functions on a Polar Grid. International Journal of Biomedical Imaging. 2012; 452910:11, 11.

Candes EJ, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly
incomplete frequency information. Ieee Transactions on Information Theory. 2006; 52:489–509.

Chen GTY, Singh RP, Castro JR, Lyman JT, Quivey JM. Treatment planning for heavy ion
radiotherapy. International Journal of Radiation Oncology Biology Physics. 1979; 5:1809–19.

Chou C-Y, Chuo Y-Y, Hung Y, Wang W. A fast forward projection using multithreads for multirays
on GPUs in medical image reconstruction. Medical Physics. 2011; 38:4052–65. [PubMed:
21859004]

Dongarra J, Walker D, Lusk E, et al. Special issue-MPI- a message passing interface standard.
International Journal of Supercomputer Applications and High Performance Computing. 1994;
8:165.

Donoho DL. Compressed sensing. Ieee Transactions on Information Theory. 2006; 52:1289–306.

Fang J, Varbanescu AL, Sips H. A Comprehensive Performance Comparison of CUDA and OpenCL.
2011 International Conference on Parallel Processing. 2011:216–25.

Feldkamp LA, Davis LC, Kress JW. Practical cone beam algorithm. Journal of the Optical Society of
America A-Optics Image Science and Vision. 1984; 1:612–9.

Folkerts, M.; Jia, X.; Gu, X., et al. MO-FF-A4–05: Implementation and Evaluation of Various DRR
Algorithms on GPU. AAPM). 2010. p. 3367

Folkerts M, Jia X, Jiang SB. A fast GPU-optimized DRR calculation algorithm for iterative CBCT
reconstruction. 2012 in preparation.

Fujimoto R, Kurihara T, Nagamine Y. GPU-based fast pencil beam algorithm for proton therapy.
Physics in Medicine and Biology. 2011; 56:1319–28. [PubMed: 21297243]

Gao H, Li R, Lin Y, Xing L. 4D cone beam CT via spatiotemporal tensor framelet. Medical Physics.
2012; 39:6943–6. [PubMed: 23127087]

Gautier Q, Tian Z, Graves YJ, et al. Development of a GPU research platform for automatic treatment
planning and adaptive radiotherapy re-planning. Medical Physics. 2013; 40:534.

Gifford KA, Horton JL, Wareing TA, Failla G, Mourtada F. Comparison of a finite-element
multigroup discrete-ordinates code with Monte Carlo for radiotherapy calculations. Physics in
Medicine and Biology. 2006; 51:2253–65. [PubMed: 16625040]

Golub, GH.; van Loan, CF. Matrix computation. JHU Press; 1996.

Greef, Md; Crezee, J.; Eijk, JCv; Pool, R.; Bel, A. Accelerated ray tracing for radiotherapy dose
calculations on a GPU. Medical Physics. 2009; 36:4095–102. [PubMed: 19810482]

Gu X, Choi D, Men C, et al. GPU-based ultra-fast dose calculation using a finite size pencil beam
model. Physics in Medicine and Biology. 2009; 54:6287–97. [PubMed: 19794244]

Gu X, Dong B, Wang J, et al. A Contour-guided Deformable Image Registration Algorithm for
Adaptive Radiotherapy. Physics in Medicine and Biology. 2013; 58:1889–901. [PubMed:
23442596]

Gu X, Jelen U, Li J, Jia X, Jiang SB. A GPU-based finite-size pencil beam algorithm with 3D-density
correction for radiotherapy dose calculation. Physics in Medicine and Biology. 2011a; 56:3337–
50. [PubMed: 21558589]

Gu X, Jia X, Jiang SB. GPU-based fast gamma index calculation. Physics in Medicine and Biology.
2011b; 56:1431–41. [PubMed: 21317484]

Gu X, Pan H, Liang Y, et al. Implementation and evaluation of various demons deformable image
registration algorithms on a GPU. Physics in Medicine and Biology. 2010; 55:207–19. [PubMed:
20009197]

Hissoiny S, Ozell B, Bouchard H, Despres P. GPUMCD: A new GPU-oriented Monte Carlo dose
calculation platform. Medical Physics. 2011a; 38:754–64. [PubMed: 21452713]

Jia et al. Page 31

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Hissoiny S, Ozell B, Despres P. A convolution-superposition dose calculation engine for GPUs.
Medical Physics. 2010; 37:1029–37. [PubMed: 20384238]

Hissoiny S, Ozell B, Despres P, Carrier JF. Validation of GPUMCD for low-energy brachytherapy
seed dosimetry. Med Phys. 2011b; 38:4101–7. [PubMed: 21859010]

Hissoiny S, Raaijmakers AJ, Ozell B, Despres P, Raaymakers BW. Fast dose calculation in magnetic
fields with GPUMCD. Phys Med Biol. 2011c; 56:5119–29. [PubMed: 21775790]

Hofmann HG, Keck B, Rohkohl C, Hornegger J. Comparing performance of many-core CPUs and
GPUs for static and motion compensated reconstruction of C-arm CT data. Medical Physics. 2011;
38:468–73. [PubMed: 21361215]

Jacobs F, Sundermann E, de Sutter B, Christiaens M, Lemahieu I. A fast algorithm to calculate the
exact radiological path through a pixel or voxel space. Journal of Computing and Information
Technology - CIT. 1998; 6:89–94.

Jacques R, Taylor R, Wong J, McNutt T. Towards Real-Time Radiation Therapy: GPU Accelerated
Superposition/Convolution. Comput Methods Programs Biomed. 2010; 98:285–92. [PubMed:
19695731]

Jacques R, Wong J, Taylor R, McNutt T. Real-time dose computation: GPU-accelerated source
modeling and superposition/convolution. Medical Physics. 2011; 38:294–305. [PubMed:
21361198]

Jacques RA, Taylor RH, Wong JW, McNutt TR. Towards Real-time Radiation Therapy:
Superposition/Convolution at Interactive Rates. International journal of radiation oncology,
biology, physics. 2008; 72:S667.

Jaffray DA, Drake DG, Moreau M, Martinez AA, Wong JW. A radiographic and tomographic imaging
system integrated into a medical linear accelerator for localization of bone and soft-tissue targets.
International Journal of Radiation Oncology* Biology* Physics. 1999; 45:773–89.

Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA. Flat-panel cone-beam computed tomography for
image-guided radiation therapy. International Journal of Radiation Oncology* Biology* Physics.
2002; 53:1337–49.

Jahnke L, Fleckenstein J, Wenz F, Hesser J. GMC: a GPU implementation of a Monte Carlo dose
calculation based on Geant4. Physics in Medicine and Biology. 2012; 57:1217–29. [PubMed:
22330587]

Jia X, Dong B, Lou Y, Jiang SB. GPU-based iterative cone-beam CT reconstruction using tight frame
regularization. Physics in Medicine and Biology. 2011a; 56:3787–807. [PubMed: 21628778]

Jia X, Gu X, Graves YJ, Folkerts M, Jiang SB. GPU-based fast Monte Carlo simulation for
radiotherapy dose calculation. Phys Med Biol. 2011b; 56:7017–31. [PubMed: 22016026]

Jia X, Gu X, Sempau J, et al. Development of a GPU-based Monte Carlo dose calculation code for
coupled electron-photon transport. Phys Med Biol. 2010a; 55:3077. [PubMed: 20463376]

Jia X, Lou Y, Lewis J, et al. GPU-based Cone Beam CT Reconstruction via Total Variation
Regularization. J of x-ray Sci and Tech. 2011c; 19:139.

Jia X, Lou Y, Li R, Song WY, Jiang SB. GPU-based Fast Cone Beam CT Reconstruction from
Undersampled and Noisy Projection Data via Total Variation. Medical Physics. 2010b; 37:1757–
60. [PubMed: 20443497]

Jia X, Schuemann J, Paganetti H, Jiang SB. GPU-based fast Monte Carlo dose calculation for proton
therapy. Physics in Medicine and Biology. 2012a; 57:7783–97. [PubMed: 23128424]

Jia X, Schumann J, Paganetti H, Jiang SB. Development of gPMC v2.0, a GPU-based Monte Carlo
dose calculation package for proton radiotherapy. Medical Physics. 2013; 40:498.

Jia X, Tian Z, Lou Y, Sonke J-J, Jiang SB. Four-dimensional cone beam CT reconstruction and
enhancement using a temporal nonlocal means method. Medical Physics. 2012b; 39:5592–602.
[PubMed: 22957625]

Jia X, Yan H, Cervino L, Folkerts M, Jiang SB. A GPU Tool for Efficient, Accurate, and Realistic
Simulation of Cone Beam CT Projections. Med Phys. 2012c; 39:7368–78. [PubMed: 23231286]

Jia X, Yan H, Gu X, Jiang SB. Fast Monte Carlo simulation for patient-specific CT/CBCT imaging
dose calculation. Physics in Medicine and Biology. 2012d; 57:577–90. [PubMed: 22222686]

Jia et al. Page 32

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Ju T, Simpson T, Deasy JO, Low DA. Geometric interpretation of the gamma dose distribution
comparison technique: Interpolation-free calculation. Medical Physics. 2008; 35:879–87.
[PubMed: 18404924]

Kakimoto T, Dohi K, Shibata Y, Oguri K. Performance comparison of GPU programming frameworks
with the striped Smith-Waterman algorithm. Comput Archit News. 2012; 40:70–5.

Kawrakow I. Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the
new EGS4 version. Med Phys. 2000; 27:485–98. [PubMed: 10757601]

Keyes, RW.; Romano, C.; Arnold, D.; Luan, S. Radiation therapy calculations using an on-demand
virtual cluster via cloud computing. 2010. http://arxiv.org/abs/1009.5282

Kim, J.; Li, S.; Zhao, Y.; Movsas, B. Real-time intensity-based deformable fusion on PC graphics
hardware. International Conference on the use of Computers in Radiotherapy; 2007.

Kohno R, Hotta K, Nishioka S, et al. Clinical implementation of a GPU-based simplified Monte Carlo
method for a treatment planning system of proton beam therapy. Physics in Medicine and Biology.
2011; 56:N287–N94. [PubMed: 22036894]

Kohno R, Takada Y, Sakae T, et al. Experimental evaluation of validity of simplified Monte Carlo
method in proton dose calculations. Physics in Medicine and Biology. 2003; 48:1277–88.
[PubMed: 12812446]

Li JS, Shahine B, Fourkal E, Ma CM. A particle track-repeating algorithm for proton beam dose
calculation. Physics in Medicine and Biology. 2005; 50:1001–10. [PubMed: 15798272]

Li R, Jia X, Lewis JH, et al. Real-time volumetric image reconstruction and 3D tumor localization
based on a single x-ray projection image for lung cancer radiotherapy. Medical Physics. 2010;
37:2822–6. [PubMed: 20632593]

Li R, Lewis JH, Jia X, et al. 3D tumor localization through real-time volumetric x-ray imaging for lung
cancer radiotherapy. Medical Physics. 2011; 38:2783–94. [PubMed: 21776815]

Low DA, Dempsey JF. Evaluation of the gamma dose distribution comparison method. Medical
Physics. 2003; 30:2455–64. [PubMed: 14528967]

Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose
distributions. Medical Physics. 1998; 25:656–61. [PubMed: 9608475]

Lu W. A non-voxel-based broad-beam (NVBB) framework for IMRT treatment planning. Physics in
Medicine and Biology. 2010; 55:7175. [PubMed: 21081819]

Lu W, Chen M. Fluence-convolution broad-beam (FCBB) dose calculation. Physics in Medicine and
Biology. 2010; 55:7211–29. [PubMed: 21081826]

Luu, J.; Redmond, K.; Lo, WCY., et al. FPGA-based Monte Carlo computation of light absorption for
photodynamic cancer therapy. Proceedings of the 2009 17th IEEE Symposium on Field
Programmable Custom Computing Machines (FCCM 2009); 2009. p. 157-64.

Maier A, Wigstrôm L, Hofmann HG, et al. Three-dimensional anisotropic adaptive filtering of
projection data for noise reduction in cone beam CT. Medical Physics. 2011; 38:5896–909.
[PubMed: 22047354]

Men C, Gu X, Choi D, et al. GPU-based ultrafast IMRT plan optimization. Physics in Medicine and
Biology. 2009; 54:6565. [PubMed: 19826201]

Men C, Jia X, Jiang SB. GPU-based ultra-fast direct aperture optimization for online adaptive
radiation therapy. Physics in Medicine and Biology. 2010a; 55:4309. [PubMed: 20647601]

Men C, Romeijn HE, Jia X, Jiang SB. Ultrafast treatment plan optimization for volumetric modulated
arc therapy (VMAT). Medical Physics. 2010b; 37:5787–91. [PubMed: 21158290]

Men C, Romeijn HE, Tas ZC, Dempsey JF. An exact approach to direct aperture optimization in
IMRT treatment planning. Physics in Medicine and Biology. 2007; 52:7333–52. [PubMed:
18065842]

Moore GE. Cramming more components onto integrated circuits. Electronics. 1965; 38:114.

Mueller K, Yagel R. Rapid 3-D cone-beam reconstruction with the simultaneous algebraic
reconstruction technique (SART) using 2-D texture mapping hardware. Ieee Transactions on
Medical Imaging. 2000; 19:1227–37. [PubMed: 11212371]

Jia et al. Page 33

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://arxiv.org/abs/1009.5282

Mueller K, Yagel R, Wheller JJ. Anti-aliased three-dimensional cone-beam reconstruction of low-
contrast objects with algebraic methods. Ieee Transactions on Medical Imaging. 1999; 18:519–37.
[PubMed: 10463130]

Noel PB, Walczak AM, Xu J, et al. GPU-based cone beam computed tomography. Computer Methods
and Programs in Biomedicine. 2010; 98:271–7. [PubMed: 19782424]

Okitsu Y, Ino F, Hagihara K. High-performance cone beam reconstruction using CUDA compatible
GPUs. Parallel Computing. 2010; 36:129–41.

Pallipuram VK, Bhuiyan M, Smith MC. A comparative study of GPU programming models and
architectures using neural networks. J Supercomput. 2012; 61:673–718.

Park JC, Park SH, Kim JS, et al. Ultra-Fast Digital Tomosynthesis Reconstruction Using General-
Purpose GPU Programming for Image-Guided Radiation Therapy. Technol Cancer Res Treat.
2011; 10:295–306. [PubMed: 21728386]

Park JC, Song B, Kim JS, et al. Fast compressed sensing-based CBCT reconstruction using Barzilai-
Borwein formulation for application to on-line IGRT. Medical Physics. 2012; 39:1207–17.
[PubMed: 22380351]

Pasciak AS, Ford JR. High-speed evaluation of track-structure Monte Carlo electron transport
simulations. Physics in Medicine and Biology. 2008; 53:5539–53. [PubMed: 18780958]

Peng F, Jia X, Gu X, et al. A new column-generation-based algorithm for VMAT treatment plan
optimization. Physics in Medicine and Biology. 2012; 57:4569–88. [PubMed: 22722760]

Perl J, Shin J, Schumann J, Faddegon B, Paganetti H. TOPAS: An innovative proton Monte Carlo
platform for research and clinical applications. Med Phys. 2012 in press.

Persoon LCGG, Podesta M, van Elmpt WJC, Nijsten SMJJG, Verhaegen F. A fast three-dimensional
gamma evaluation using a GPU utilizing texture memory for on-the-fly interpolations. Medical
Physics. 2011; 38:4032–5. [PubMed: 21859001]

Podlozhnyuk, V. Image Convolution with CUDA. 2007. http://developer.download.nvidia.com/
compute/DevZone/C/html/C/src/convolutionSeparable/doc/convolutionSeparable.pdf

Poole CM, Cornelius I, Trapp JV, Langton CM. Radiotherapy Monte Carlo simulation using cloud
computing technology. Australasian Physical & Engineering Sciences in Medicine. 2012; 35:497–
502. [PubMed: 23188699]

Pratx G, Xing L. GPU computing in medical physics: A review. Medical Physics. 2011a; 38:2685–97.
[PubMed: 21776805]

Pratx G, Xing L. Monte Carlo simulation of photon migration in a cloud computing environment with
MapReduce. Journal of Biomedical Optics. 2011b; 16:125003. [PubMed: 22191916]

Rangan, K. Merrill Lynch. 2008. The Cloud Wars: $100+ Billion at Stake. Tech. Rep.

Salvat, F.; Fernández-Varea, JM.; Sempau, J. PENELOPE-2008: A Code System for Monte Carlo
Simulation of Electron and Photon Transport. Issy-les-Moulineaux, France: OECD-NEA; 2009.

Samant SS, Xia JY, Muyan-Ozcelilk P, Owens JD. High performance computing for deformable
image registration: Towards a new paradigm in adaptive radiotherapy. Medical Physics. 2008;
35:3546–53. [PubMed: 18777915]

Shackleford JA, Kandasamy N, Sharp GC. On developing B-spline registration algorithms for multi-
core processors. Physics in Medicine and Biology. 2010; 55:6329–51. [PubMed: 20938071]

Sharp GC, Kandasamy N, Singh H, Folkert M. GPU-based streaming architectures for fast cone-beam
CT image reconstruction and demons deformable registration. Physics in Medicine and Biology.
2007; 52:5771–83. [PubMed: 17881799]

Siddon RL. Fast calculation of the exact radiological path for a 3-dimensional CT array. Medical
Physics. 1985; 12:252–5. [PubMed: 4000088]

Sidky EY, Pan XC. Image reconstruction in circular cone-beam computed tomography by constrained,
total-variation minimization. Physics in Medicine and Biology. 2008; 53:4777–807. [PubMed:
18701771]

Siegele, L. Economist Newspaper. 2008. Let it Rise: A Special Report on Corporate IT.

Sonke JJ, Zijp L, Remeijer P, van Herk M. Respiratory correlated cone beam CT. Medical Physics.
2005; 32:1176–86. [PubMed: 15895601]

Jia et al. Page 34

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://developer.download.nvidia.com/compute/DevZone/C/html/C/src/convolutionSeparable/doc/convolutionSeparable.pdf
http://developer.download.nvidia.com/compute/DevZone/C/html/C/src/convolutionSeparable/doc/convolutionSeparable.pdf

Spoerk J, Bergmann H, Wanschitz F, Dong S, Birkfellner W. Fast DRR splat rendering using common
consumer graphics hardware. Medical Physics. 2007; 34:4302–8. [PubMed: 18072495]

Su, C-L.; Chen, P-Y.; Lan, C-C.; Huang, L-S.; Wu, K-H. Overview and comparison of OpenCL and
CUDA technology for GPGPU. 2012 IEEE Asia Pacific Conference on Circuits and Systems
(APCCAS 2012); 2012. p. 448-51.

Thirion JP. Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical image
analysis. 1998; 2:243–60. [PubMed: 9873902]

Tian Z, Jia X, Dong B, Lou Y, Jiang SB. Low-dose 4DCT reconstruction via temporal nonlocal means.
Medical Physics. 2011a; 38:1359–65. [PubMed: 21520846]

Tian Z, Jia X, Yuan K, Pan T, Jiang SB. Low-dose CT Reconstruction via Edge-preserving Total
Variation Regularization. Physics in Medicine and Biology. 2011b; 56:5949–67. [PubMed:
21860076]

Townson RW, Jia X, Tian Z, et al. GPU-based Monte Carlo radiotherapy dose calculation using phase-
space sources. Physics in Medicine and Biology. 2013; 58:4341–56. [PubMed: 23732697]

Tyagi N, Bose A, Chetty IJ. Implementation of the DPM Monte Carlo code on a parallel architecture
for treatment planning applications. Medical Physics. 2004; 31:2721–5. [PubMed: 15487756]

Wang X, Yan H, Cervino L, Jiang SB, Jia X. Towards the clinical implementation of iterative
conebeam CT reconstruction for radiation therapy using a multi-GPU system. 2013 Submitted to
Phys Med Biol.

Watt, A.; Watt, M. Advanced Animation and Rendering Techniques: Theory and Practice. Reading,
Massachusetts: Addison-Wesley; 1992.

Webb S. OPTIMIZATION OF CONFORMAL RADIOTHERAPY DOSE DISTRIBUTIONS BY
SIMULATED ANNEALING. Physics in Medicine and Biology. 1989; 34:1349–70. [PubMed:
2682694]

Weber R, Gothandaraman A, Hinde RJ, Peterson GD. Comparing Hardware Accelerators in Scientific
Applications: A Case Study. Ieee Transactions on Parallel and Distributed Systems. 2011; 22:58–
68.

Weng X, Yang Y, Shu H, et al. A vectorized Monte Carlo code for radiotherapy treatment planning
dose calculation. Physics in Medicine and Biology. 2003; 48:N111–20. [PubMed: 12701898]

Wu J, Kim M, Peters J, Chung H, Samant SS. Evaluation of similarity measures for use in the
intensity-based rigid 2D–3D registration for patient positioning in radiotherapy. Medical Physics.
2009; 36:5391–403. [PubMed: 20095251]

Xiao K, Chen DZ, Hu XS, Zhou B. Efficient implementation of the 3D-DDA ray traversal algorithm
on GPU and its application in radiation dose calculation. Medical Physics. 2012; 39:7619–25.
[PubMed: 23231309]

Xu, F.; Mueller, K. Towards a unified framework for rapid 3D computed tomography on commodity
GPUs. 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.
03CH37515); 2004. p. 2757-9.

Xu F, Mueller K. Accelerating popular tomographic reconstruction algorithms on commodity PC
graphics hardware. Ieee Transactions on Nuclear Science. 2005; 52:654–63.

Xu F, Mueller K. Real-time 3D computed tomographic reconstruction using commodity graphics
hardware. Physics in Medicine and Biology. 2007; 52:3405–19. [PubMed: 17664551]

Xu F, Xu W, Jones M, et al. On the efficiency of iterative ordered subset reconstruction algorithms for
acceleration on GPUs. Computer Methods and Programs in Biomedicine. 2010; 98:261–70.
[PubMed: 19850372]

Xu, W.; Mueller, K. Accelerating regularized iterative CT reconstruction on commodity graphics
hardware (GPU). 2009 IEEE International Symposium on Biomedical Imaging: From Nano to
Macro (ISBI); 2009. p. 1287-90.

Xu, W.; Mueller, K. Evaluating popular non-linear image processing filters for their use in regularized
iterative CT. 2010 IEEE Nuclear Science Symposium and Medical Imaging Conference (2010
NSS/MIC); 2010. p. 2864-5.

Yan D, Vicini F, Wong J, Martinez A. Adaptive radiation therapy. Physics in Medicine and Biology.
1997; 42:123–32. [PubMed: 9015813]

Jia et al. Page 35

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Yan H, Cervino L, Jia X, Jiang SB. A Comprehensive Study on the Relationship Between the Image
Quality and Imaging dose in Low-dose cone beam Ct. Physics in Medicine and Biology. 2012;
57:2063–20802080. [PubMed: 22459913]

Yan H, Godfrey DJ, Yin F-F. Fast reconstruction of digital tomosynthesis using on-board images.
Medical Physics. 2008; 35:2162–9. [PubMed: 18561691]

Yan H, Ren L, Godfrey DJ, Yin F-F. Accelerating reconstruction of reference digital tomosynthesis
using graphics hardware. Medical Physics. 2007; 34:3768–76. [PubMed: 17985622]

Yepes P, Randeniya S, Taddei PJ, Newhauser WD. Monte Carlo fast dose calculator for proton
radiotherapy: application to a voxelized geometry representing a patient with prostate cancer.
Physics in Medicine and Biology. 2009; 54:N21–N8. [PubMed: 19075361]

Yepes PP, Mirkovic D, Taddei PJ. A GPU implementation of a track-repeating algorithm for proton
radiotherapy dose calculations. Physics in Medicine and Biology. 2010; 55:7107–20. [PubMed:
21076192]

Zhen X, Gu X, Yan H, et al. CT to cone-beam CT deformable registration with simultaneous intensity
correction. Physics in Medicine and Biology. 2012; 57:6807–26. [PubMed: 23032638]

Zhuge Y, Cao Y, Udupa JK, Miller RW. Parallel fuzzy connected image segmentation on GPU.
Medical Physics. 2011; 38:4365–71. [PubMed: 21859037]

Ziegenhein P, Kamerling CP, Bangert M, Kunkel J, Oelfke U. Performance-optimized clinical IMRT
planning on modern CPUs. Physics in Medicine and Biology. 2013; 58:3705–15. [PubMed:
23656861]

Jia et al. Page 36

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 1.
The number of GPU-related research articles published in Physics in Medicine and Biology and Medical Physics in recent years.

Jia et al. Page 37

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 2.
Illustration of hardware structure of a workstation containing a GPU.

Jia et al. Page 38

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 3.
Illustration of GPU-based computation of π using Leibniz formula.

Jia et al. Page 39

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Jia et al. Page 40

T
ab

le
 1

Sp
ec

if
ic

at
io

ns
 o

f
G

PU
s

us
ed

 in
 r

es
ea

rc
h

pr
oj

ec
ts

 r
ev

ie
w

ed
 in

 th
is

 a
rt

ic
le

.

V
en

do
r

G
P

U
N

um
be

r
of

 c
or

es
C

lo
ck

 s
pe

ed
 (

G
H

z)
M

em
or

y
(M

B
)

M
em

or
y

ba
nd

w
id

th
 (

G
B

/s
)

P
ro

ce
ss

in
g

po
w

er
 (

G
F

L
O

P
S)

N
V

ID
IA

G
eF

or
ce

76
00

 G
S

12
0.

4
25

6
22

.4
N

/A
1

88
00

 G
T

X
12

8
1.

3
76

8
86

.4
51

8

95
00

 G
T

32
1.

4
51

2
25

.6
13

4

G
T

X
 2

80
24

0
1.

3
10

24
14

2
93

3

G
T

X
 2

95
2×

24
0

1.
2

2×
89

62
11

2
17

88

G
T

X
 4

80
48

0
1.

4
15

36
17

7
13

45

G
T

X
 5

70
48

0
1.

4
12

80
15

2
14

05

G
T

X
 5

80
51

2
1.

5
15

36
19

2
15

81

G
T

X
 5

90
2×

51
2

1.
2

2×
15

36
16

4
24

88

T
es

la

C
10

60
24

0
1.

3
40

96
10

2
93

3

C
20

50
44

8
1.

15
30

72
14

4
12

88

C
20

70
44

8
1.

15
61

44
14

4
12

88

1 Pr
oc

es
si

ng
 p

ow
er

s
of

 G
eF

or
ce

 7
60

0G
S

is
 n

ot
 a

va
ila

bl
e

in
 li

te
ra

tu
re

 to
 o

ur
 k

no
w

le
dg

e.

2 T
hi

s
ca

rd
 a

nd
 G

T
X

 5
90

 h
as

 d
ua

l G
PU

s,
 in

di
ca

te
d

by
 th

e
2×

 n
ot

at
io

n
he

re
. T

he
 p

ro
ce

ss
in

g
po

w
er

 r
ef

er
s

to
 th

e
to

ta
l p

ow
er

 o
f

th
e

tw
o

G
PU

s.

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Jia et al. Page 41

T
ab

le
 2

C
om

pa
ri

ng
 h

ig
h-

en
d

pr
od

uc
ts

 o
f

C
PU

 a
nd

 G
PU

.

#C
or

es
C

lo
ck

 S
pe

ed
(G

H
z)

M
em

or
y

Si
ze

 (
m

ax
)

(G
B

)
E

ff
ic

ie
nc

y
(G

F
L

O
P

S/
W

at
t)

M
em

or
y

B
an

dw
id

th
(G

B
/s

)
Si

ng
le

 P
re

ci
si

on
 P

er
fo

rm
an

ce
(G

F
L

O
P

S)
D

ou
bl

e
P

re
ci

si
on

 P
er

fo
rm

an
ce

(G
F

L
O

P
S)

In
te

l X
eo

n
E

5-
26

87
W

8
3.

1/
3.

8
75

0
1.

4
51

.2
48

6
24

3

N
V

ID
IA

 G
PU

 K
20

26
88

0.
73

2
6

16
.8

0
25

0
35

20
11

70

Phys Med Biol. Author manuscript; available in PMC 2015 February 21.

