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Abstract: Human motion is a daily and rhythmic activity. The exoskeleton concept is a 

very positive scientific approach for human rehabilitation in case of lower limb 

impairment. Although the exoskeleton shows potential, it is not yet applied extensively in 

clinical rehabilitation. In this research, a fuzzy based control algorithm is proposed for lower 

limb exoskeletons during sit-to-stand and stand-to-sit movements. Surface electromyograms 

(EMGs) are acquired from the vastus lateralis muscle using a wearable EMG sensor. The 

resultant acceleration angle along the z-axis is determined from a kinematics sensor. 

Twenty volunteers were chosen to perform the experiments. The whole experiment was 

accomplished in two phases. In the first phase, acceleration angles and EMG data were 

acquired from the volunteers during both sit-to-stand and stand-to-sit motions.  

During sit-to-stand movements, the average acceleration angle at activation was 11°–48° 

and the EMG varied from −0.19 mV to +0.19 mV. On the other hand, during stand-to-sit 

movements, the average acceleration angle was found to be 57.5°–108° at the activation 

point and the EMG varied from −0.32 mV to +0.32 mV. In the second phase, a fuzzy 

controller was designed from the experimental data. The controller was tested and 

validated with both offline and real time data using LabVIEW. 
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1. Introduction 

The power exoskeleton is one of the most salutary inventions of modern science. Immense progress in 

medical science has decreased death rates and as a result, the number of elderly persons has increased. 

Unfortunately, many of them suffer from neuromuscular disorders, e.g., hemiplegia [1,2], tremors [3,4] etc. 

Exoskeletons are designed to provide support for human movement. The support that is provided by this 

device is not only useful in human neuromuscular rehabilitation, but can also be exploited to augment 

the strength of healthy people [5,6]. 

Research on exoskeletons has been conducted since 1960 [7]. The Berkeley Lower Extremity 

EXoskeleton (BLEEX) was proposed by researchers at the University of California, Berkeley [8]. 

They came up with seven degree of freedom (dof) per leg system. The Hybrid Assistive Limb (HAL) 

calculated virtual torque to assist lower limb movement through surface EMG data [9]. The Active Leg 

EXoskeleton (ALEX) is able to assist stroke survivors by providing Robotic Assistive Gait Training 

(RAGT) [10]. Another device, the Cable-driven Arm EXoskeleton (CAREX) has been described in [11]. 

A gravity balancing exoskeleton is also designed and reported in [12]. Veneman et al. have described a 

LOwer extremity Powered ExoSkeleton (LOPES) which functions as a kinaesthetic interface [13]. 

Many techniques have also been developed to ensure proper human-robot interaction [14,15]. Another 

proposed exoskeleton which was able to reduce the metabolic cost significantly is proposed in [16]. 

Metabolic adaption has been described and reduction of metabolic cost of around 9% has been 

achieved by Galle et al. [17]. Positives outcomes have been found in EMG analysis of the Tibion 

Bionic Leg (TBL) [18]. 

Information about human movements can be obtained from the brain, brain stem or spinal  

cord [19]. Achieving that information from the last terminal i.e., from the muscles, is also an 

appropriate idea, therefore the electromyography (EMG) signal is considered as the most powerful 

biological signal to detect human motion intentions [20,21]. Since the surface EMG is contaminated 

with noise during acquisition, it is important to process that raw EMG signal [22]. 

Given that the human body is full of signal fuzziness, surface EMG signals are also affected by 

fuzziness [23]. Consequently, to develop a power assist exoskeleton, an intelligent control system is 

required. A neuro-fuzzy controller for upper limbs was proposed in [23–26]. A neuro-fuzzy controller 

for a lower limb exoskeleton has been described in the literature [7]. For lower limbs, a torque 

controller has been proposed by Christian and Günter [19]. Chan et al. described a fuzzy EMG 

classifier for prosthesis control [27]. They compared their throughput with another Artificial Neural 

Network (ANN)-based classifier using the same data set as well as the same features. Their findings 

showed that the fuzzy classifier was superior to the ANN one, because of a higher recognition rate, 

insensitivity to overtraining, as well as a comparatively consistent throughput. 

Hence, a fuzzy based control system demands the investigation of its feasibility for designing a 

robotic exoskeleton. Per our knowledge, such a type of controller has not been reported yet. In this 
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paper, a fuzzy controller for sit-to-stand and stand-to-sit movements is proposed. Wearable EMG and 

kinematic sensors are used to accomplish the experiment. An algorithm is developed for data 

acquisition and filtering of raw EMG signals as well as accelerometer data. Five randomly selected 

subjects were used to validate the controller employing real time data. The results support the 

hypothesis which expresses that the developed controller can detect human motion and drive the motor 

in a necessary direction. Section 2 describes the experimental methodology along with the acceleration 

angle measurement, EMG signal processing, and a short discussion of the experiments. Section 3 

includes a brief description of the design of a fuzzy controller. The results are presented and discussed in 

Section 4. Finally, conclusions have been drawn by combining all of the important points of the study. 

2. Experimental Methodology 

The study has been completed in two phases. In the first phase, acceleration angle and EMG data 

are collected from the selected subjects. The acceleration angle measurement technique and the EMG 

data processing are described in this section. In the second phase, a fuzzy controller is designed and 

validated with the data acquired in the first phase. Figure 1 illustrates the block diagram of whole process. 

Figure 1. Overall block diagram of the study. 
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2.1. Acceleration Angle Measurement 

Measuring acceleration angle is the first step to detect the human movement intentions through 

muscle activation. Three components of acceleration are shown in Figure 2. The direction cosines [28] 

of the resultant acceleration along three axes are calculated from following equations: 
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where, Ax, Ay and Az are the three components of resultant acceleration ܣԦ along x, y and z axes. θx, θy 

and θz are the angle between resultant acceleration ܣԦ and the component Ax, Ay and Az respectively. 

Figure 2. Acceleration components in three axes. 

 

An accelerometer is a device which measures the acceleration generated because of gravitational 

and inertial forces as well as profoundly applied in gait analysis [29–31]. A kinematics sensor 

(Shimmer Technology, Dublin, Ireland) integrated with an accelerometer was used to measure the 

acceleration. The sensor is 53 mm × 32 mm × 19 mm in dimension and weighs 27 g. The coordinate 

system of the sensor is illustrated in Figure 3. 
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Figure 3. Coordinate system of the kinematics sensor [32]. 

 

The sensor was attached on the thigh so that it could be placed on the xy-plane. When the person 

intends to move, i.e., the movement between sit to stand or stand to sit, it was rotated around the  

y-axis. Figure 4a shows the angle calculated from the direction cosines of the resultant acceleration 

during sit to stand and Figure 4b shows the same during stand to sit along the x, y and z axes with 

respect to time. The acceleration angle along the x axis was decreasing with time whereas the angle 

along the z axis was increasing during sit to stand. On the contrary, during the stand to sit movement 

the acceleration angle along the x axis was increasing and the angle along the z axis was decreasing 

with respect to time. The acceleration angle along the y-axis remained the same in both cases. 

Figure 4. Changes of acceleration angle with respect to time when the sensor rotates 

around y-axis during (a) sit-to-stand; (b) stand-to-sit. 
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Figure 4. Cont. 

 

2.2. EMG Signal Processing 

EMG is a technique which involves recording and analyzing the electrical activities of muscles at rest 

and throughout contraction. A wearable EMG sensor (Shimmer Technology) was used to ascertain the 

muscle activity. The dimensions of the sensor are 53 mm × 32 mm × 23 mm, its weight is 32 g and it is 

connected to a positive, negative and neutral electrode. 

Naturally raw EMG signals are random in shape due to the constant changes of the actual sets of 

recruited motor units. EMG signals can be affected by many other issues, e.g., different thickness of 

tissues, noisy electrical environments, lower grade electrodes, etc. that can add noise, but the EMG 

signal contains very important information about muscle innervations. The noise frequencies that 

contaminate raw EMG have to be properly filtered out. To remove noise, a Butterworth third order low 

pass filter was used in this experiment. The cutoff frequency was set at 25 Hz. Figure 5a illustrates the 

raw EMG signal and Figure 5b shows the filtered signal. 

Figure 5. EMG signal processing (a) raw EMG; (b) filtered EMG. 
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Figure 5. Cont. 

 

2.3. Experiments 

In order to identify the lower limb muscle activation with the change of acceleration angle along the 

z axis, twenty volunteers (age 23–30, all male) were picked randomly from a pool of candidates. 

Participants were asked to complete an informed consent form before the experiment. The consent 

form included their age, gender, diseases or disabilities, etc. Subjects that suffered from any previous 

neuromuscular injury were excluded from the experiments. 

For the purpose of detection of movement intention, the muscle named vastus lateralis was selected 

as the EMG source. The surface of the muscle was cleaned with sanitizer to remove any inhibitory 

particles and the hair was shaved to get the best readings. One EMG sensor was placed and bound on 

the thigh and positive and negative electrodes were positioned on the vastus lateralis. The neutral 

electrode was set at the knee. One kinematics sensor was put on the same thigh so it could rotate 

around the y-axis during sit to stand and stand to sit movements. The positioning of the sensors and 

electrodes is shown in Figure 6. 

Figure 6. Positioning of the sensors and electrodes. 
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The experiments were performed like people’s everyday movement when standing up from a chair 

or sitting down on a chair. Two legs were placed parallel and subjects were asked to get up without 

holding anything in their arms. They were also encouraged to put same weight in their two feet during 

the experiments. Volunteers were apprised to perform sit to stand and stand to sit movements as 

naturally as possible to have to the best results. All movements were performed on the same chair 

(height 40 cm). 

Furthermore, data acquisition was performed using LabVIEW (National Instruments, Austin, TX, 

USA). Only the accelerometer data was extracted from the kinematics sensor over the accelerometer 

range ±1.5 g. The EMG and the accelerometer data was taken at a 51.2 Hz sampling rate. Figure 7 

illustrates the EMG signal during sit-to-stand movement with respect to the resultant acceleration angle 

along the z axis (θz) for all participants. Similarly the EMG signal throughout the stand-to-sit 

movements with the change of the same acceleration angle (θz) is depicted in Figure 8. The Graphs 

were plotted by LabVIEW as well. The findings from the experiments are described in Table 1. 

Figure 7. EMG signals of the vastus lateralis muscle during sit-to-stand. (a) Subjects 1–3; 

(b) Subjects 4–6; (c) Subjects 7–10; (d) Subjects 11–13; (e) Subjects 14–16;  

(f) Subjects 17–20. 
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Figure 7. Cont. 
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Figure 7. Cont. 

 

Figure 8. EMG signals of the vastus lateralis muscle during stand-to-sit. (a) Subjects 1–3; 

(b) Subjects 4–6; (c) Subjects 7–10; (d) Subjects 11–13; (e) Subjects 14–16;  

(f) Subjects 17–20. 
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Figure 8. Cont. 
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Figure 8. Cont. 

 

Table 1. Range of acceleration angle and corresponding EMG values during sit-to-stand 

and stand-to-sit movements. 

Volunteers 
Height 

(cm) 

Weight 

(kg) 

Sit to stand Stand to sit 

Acceleration angle 

during activation 

Approximate EMG 

at activation (mV) 

Acceleration angle 

during activation  

Approximate EMG 

at activation (mV) 

Subject 1 162.5 68 18°–25° ±0.08 65°–69° ±0.12 

Subject 2 167 71 16°–25° ±0.15 73°–79° +0.1 

Subject 3 165 76 26°–40° ±0.07 66°–75° ±0.2 

Subject 4 167 70 27°–32° −0.1 64°–75° −0.08 

Subject 5 166 72 20°–53° −0.1 75°–86° −0.1 

Subject 6 165 69 32°–43° ±0.12 65°–68° −0.07 

Subject 7 160 67 18°–21° ±0.15 70°–73° +0.1 

Subject 8 162.5 70 33°–45° −0.12 76°–87° −0.12 

Subject 9 175 74 37°–45° +0.1 60°–68° ±0.08 

Subject 10 165 71 21°–32° +0.17 90°–108° ±0.32 

Subject 11 168 69 16°–27° −0.1 90°–107° ±0.15 

Subject 12 171 73 22°–26° −0.13 87°–100° −0.19 

Subject 13 167.5 71 32°–48° −0.16 81°–103° −0.18 

Subject 14 166 68 17°–38° +0.1 87°–102° −0.09 

Subject 15 169 67.5 14°–40° +0.1 105°–108° ±0.1 

Subject 16 172 76 24°–28° +0.1 83°–86° −0.09 

Subject 17 171 70 32°–43° ±0.18 79°–85° −0.09 

Subject 18 167 69 13°–22° −0.1 77.5°–95° −0.08 

Subject 19 166.5 68.5 30°–43° −0.12 74°–85° ±0.08 

Subject 20 170 72 11°–43° ±0.19 57.5°–92° ±0.19 

When the subjects intended to stand up or sit down, the range of immediate acceleration angles 

were selected based on the maximum EMG values. The maximum EMG values in those ranges are 

presented in Table 1. During sit-to-stand the acceleration angle varied from 11° to 48° and the 

maximum EMG values were ±0.19 mV, but in the stand-to-sit movement the acceleration angle varied 
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from 57.5° to 108° and maximum EMG was found to be ±0.32 mV. This data was considered when 

designing the fuzzy controller which is explained in the following section.  

3. Designing a Fuzzy Controller 

A fuzzy controller is an intelligent control system due to having ability of tolerance in membership 

degree ranging between 0 to 1 where as traditional Boolean logic is either 0 or 1. Fuzzy control was 

originally proposed by Mamdani and Baaklini [33] and was originally conceptualized by Zadeh in 

1965. Being an easy method to express the ambiguous terms of daily life, the fuzzy controller quickly 

became popular. Eventually a large number of interesting applications have been proposed, e.g., in 

energy storage [34], in renewable energy [35], in sustainable manufacturing assessment [36], in 

vehicle control [37–39], in medical science [40], and even in the education sector [41–44]. EMG data 

is very unpredictable and contains a lot of fuzziness. Therefore, the fuzzy controller is an ideal 

approach for developing an EMG-based exoskeleton control system. 

3.1. Defining Linguistic Variables and Membership Function 

The proposed controller consisted of two input linguistic variables: EMG signal and acceleration 

angle and one output linguistic variable: motor status. The linguistic variable EMG signal included the 

linguistic terms negative high, low and positive high. The other linguistic variable input, the 

acceleration angle, comprises two linguistic terms named low and high. The output linguistic variable, i.e., 

motor status, contains anti-clockwise rotation, no rotation and clockwise rotation linguistic terms. The 

membership functions of those variables were defined from the data that are given in Table 1. The 

graphical representation of all membership functions is shown in Figure 9. 

Figure 9. Input and output membership functions (a) EMG signal; (b) Acceleration angle; 

(c) Motor status. 
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Figure 9. Cont. 

 

 

3.2. Defining Fuzzy Rule Base 

Fuzzy rules express the relationship between input and output linguistic variables in terms of 

linguistic terms. The antecedent part, i.e., the If portion and the consequent part, i.e., the Then portion 

have to be specified as well as the contradictory rules should be avoided due to achieve consistent rule 

base. If P1, P2, P3 ….. PN are the linguistic terms of input variables, the total possible rules N can be 

written as: 

N = P1 × P2 × P3 ….. × PN (4) 

Therefore, six rules (3 × 2) can be applied in the proposed controller. The rule base in a matrix form 

is shown in Table 2. 

Table 2. The rule base of the fuzzy controller. 

 
EMG Signal 

Negative High Low Positive High 

Acceleration Angle 
Low Anti-clockwise Rotation No Rotation Anti-clockwise Rotation 

High Clockwise Rotation No Rotation Clockwise Rotation 
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3.3. Defuzzification 

Defuzzification is a technique that converts the degree of membership of the output variables into a 

crisp value within their linguistic terms. Several mathematical methods are proposed for defuzzification, 

such as, center of area (CoA), modified center of area (mCoA), center of sums (CoS), center of 

maximum (CoM), mean of maximum (MoM) etc. To defuzzify the output variable of the proposed 

fuzzy controller, the modified center of area (mCoA) method was used. This method considers the full 

area under the scaled membership functions and calculates the geometric center of that area using the 

following equation: 

ܣܥ݉ ൌ
ݔ݀ݔሻݔሺ݂

 ݂ሺݔሻ݀ݔ
 (5) 

3.4. Testing the Controller 

The above mentioned fuzzy system was designed in LabVIEW. To validate the rule base, a “Test 

System” page was used. The input values for two inputs were put randomly and found the appropriate 

invoked rules. Hence, the system worked deservedly. An example of this test is depicted in Figure 10. 

Figure 10. Offline data testing through “Test System”, when “EMG Signal” value is 

−0.107 and “Acceleration Angle” is 80°, Motor Status is Clockwise Rotation. 
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4. Results and Discussion 

The analysis of the EMG signals aimed to investigate how the degree of membership for the 

controller could be defined. Secondly, after devising the controller, it was important to test the 

controller with real time data to assess its effectiveness. To corroborate the developed fuzzy controller, 

five subjects were selected (male gender, height 162, 165, 171, 168 and 169.5 cm and weight 69, 66, 

72, 67.5 and 70 kg, respectively). They were asked to perform the same experiment described in 

Section 2.3. Sensors were placed in the same manner on the same muscle while the same precautions 

were taken. Figure 11 shows the controller output during sit to stand and Figure 12 illustrates the 

throughput of the controller during the stand to sit movement of Subject 1. The acceleration angle, 

EMG value, controller output and the status of motor rotation those were captured during real time 

tests of five subjects are given at Table 3. In Table 3 the instantaneous values of EMG and acceleration 

angle as well as their corresponding controller output and motor status during sit-to-stand and stand-to-sit 

movements of the five randomly selected subjects when the controller is tested in real time are presented. 

For Subject 1, during sit-to-stand movement the EMG magnitude is 0.0272 mV and the acceleration 

angle is 22.53° for an instant which generates a controller output of 0.00048 and causes no motor 

rotation. This motor status means the subject is still at sitting down condition. 

Figure 11. Real time testing of the controller during Sit-to-Stand (a) on sit down condition 

LabVIEW front panel shows the motor status as “No Rotation”; (b) when intended to stand 

up the motor status is changed to “Anti-clockwise Rotation”. 
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Figure 11. Cont. 

 

Figure 12. Real time testing of the controller during Stand-to-Sit (a) on stand up condition 

LabVIEW front panel shows motor status as “No Rotation”; (b) when intended to sit down 

the motor status is changed to “Clockwise Rotation”. 
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Figure 12. Cont. 

 

Table 3. Throughput of the real time tests. 

Subjects 

Sit-to-Stand Stand-to-Sit 

EMG (mV) Acceleration 

Angle (deg) 

Controller

Output 

Motor 

Status 

EMG 

(mV) 

Acceleration 

Angle (deg) 

Controller 

Output 

Motor 

Status 

Subject 1 0.0272 22.53 0.00048 NR 0.0483 88.88 0.00000 NR 

0.254 33.23 −0.50023 ACR −0.121 65.42 0.49990 CR 

Subject 2 −0.005 14.8 0.00199 NR 0.0232 79.84 0.00093 NR 

 0.1100 40.31 -0.4993 ACR 0.1720 83.75 0.48967 CR 

Subject 3 −0.016 28.48 0.00168 NR 0.0088 103.72 0.00199 NR 

 −0.104 26.23 −0.50013 ACR 0.1036 74.59 0.49904 CR 

Subject 4 −0.003 20.27 0.00199 NR 0.0038 104.607 0.00199 NR 

 −0.207 24.86 −0.50013 ACR 0.0947 73.31 0.49872 CR 

Subject 5 0.0198 5.70 0.00131 NR -0.056 100.76 0.00569 NR 

 0.1592 48.62 0.49673 ACR 0.1052 76.97 0.49904 CR 

NB: NR, ACR and CR stand for ‘No Rotation’, ‘Anti-clockwise Rotation’ and ‘Clockwise Rotation’ respectively. 

On the contrary, when the subject intends to stand up, the EMG magnitude increased to 0.254 mV 

and the acceleration angle became 33.23°, which produces a controller output of −0.50023 and 

changed the motor rotation to “Anticlockwise Rotation”. Likewise for the same subject during  

stand-to-sit movement, the EMG magnitude and acceleration angle for an instant are 0.0483 mV and 

88.88°, respectively, which make controller output 0.00000 and motor status remains at “No Rotation”. 

This status indicates that the subject is standing up. When the subject intends to sit down the EMG 

magnitudes and acceleration angle change simultaneously to −0.121 mV and 65.42°, respectively. 
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These changes reset the controller output to 0.49990 and the motor status to “Clockwise Rotation”. 

Similar patterns are found for the other subjects as well. 

The experimental results show that the designed controller performed properly for the five subjects, 

thus the proposed controller is capable of detecting the human intention through surface EMG signals. 

By employing the relation between EMG and acceleration angle it can control the motor direction as 

required. EMG-based controllers for the upper or lower limb exoskeletons have been widely 

investigated for the last few decades. Each researcher has come up with his or her own intelligent 

control system, e.g., fuzzy, ANN, neuro-fuzzy controller, etc. This study emphasized the fuzzy 

controller for a sit to stand and stand to sit movement. Yin et al. [7] proposed another human machine 

interface (HMI) neuro-fuzzy controller for lower limbs. They established an extended physiological 

proprioception (EPP) feedback system for lower limb exoskeletons, but it was not validated for sitting 

and standing movements. 

On the contrary, Christian and Günter [19] evaluated their developed exoskeleton for sit-to-stand 

movements, but the control algorithm was based on torque control which was estimated from the EMG 

signals. Another important feature was the use of six channels to acquire EMG signals whereas  

the proposed fuzzy controller uses only one channel, hence a much simplified controller is developed 

in this research. 

5. Conclusions 

In this paper, a fuzzy controller for lower limb exoskeletons has been presented. In order to ensure 

the simplicity of the hardware, wearable sensors were used. The EMG data acquisition is completed 

through a single channel which makes the controller handier. In the first phase of the experiment 

acceleration angles and EMG data were collected from twenty volunteers. The acceleration angles 

varied from 11° to 48° during sit-to-stand movements and the maximum EMG is ±0.19 mV whereas 

during stand-to-sit movements the acceleration angle varied from 57.5° to 108° and the maximum 

EMG is found to be ±0.32 mV. Using this data, the fuzzy controller is proposed and tested with  

offline data. 

The developed fuzzy controller is also tested using real time data. Five randomly selected subjects 

were used in the test and the experimental results show the power of the controller. The controller 

output for sit-to-stand from the real subjects falls within the range of either 11° to 48° acceleration 

angles or EMG values ±0.19 mV. In the same way during stand-to-sit movement the controller output 

for the same subjects falls within the range of either a 57.5° to 108° acceleration angle or EMG values 

±0.32 mV. This study can be considered as the initial part of building a prototype exoskeleton for 

lower limb impairment.  

In order to have a precise and stable control, some other EMG signal processing technique, e.g., 

root mean square (RMS), moving average (MAV), or wavelet analysis, etc. need to be introduced. 

Future work will aim to develop the controller to increase the degree of freedom (dof) range of human 

movement as well as to be compatible with robust application. 
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