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Abstract

Background—There is notable heterogeneity in the clinical presentation of patients with COPD.

To characterize this heterogeneity, we sought to identify subgroups of smokers by applying cluster

analysis to data from the COPDGene Study.

Methods—We applied a clustering method, k-means, to data from 10,192 smokers in the

COPDGene Study. After splitting the sample into a training and validation set, we evaluated three

sets of input features across a range of k (user-specified number of clusters). Stable solutions were

tested for association with four COPD-related measures and five genetic variants previously

associated with COPD at genome-wide significance. The results were confirmed in the validation

set.

Findings—We identified four clusters that can be characterized as 1) relatively resistant smokers

(i.e. no/mild obstruction and minimal emphysema despite heavy smoking), 2) mild upper zone

emphysema predominant, 3) airway disease predominant, and 4) severe emphysema. All clusters

are strongly associated with COPD-related clinical characteristics, including exacerbations and

dyspnea (p<0.001). We found strong genetic associations between the mild upper zone

emphysema group and rs1980057 near HHIP, and between the severe emphysema group and

rs8034191 in the chromosome 15q region (p<0.001). All significant associations were replicated

at p<0.05 in the validation sample (12/12 associations with clinical measures and 2/2 genetic

associations).

Interpretation—Cluster analysis identifies four subgroups of smokers that show robust

associations with clinical characteristics of COPD and known COPD-associated genetic variants.

Background

The clinical presentation of chronic obstructive pulmonary disease (COPD) is

heterogeneous. Smoking-related damage manifests as airway wall thickening, loss of small

airways, emphysematous lung destruction, and a range of extrapulmonary manifestations.

However, these specific manifestations may vary in individual smokers. COPD

heterogeneity has been broadly characterized as emphysema-predominant and airway
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predominant disease, 1;2 and the varying amounts of airway obstruction and emphysema

present in an individual can be described with quantitative computed tomography (CT)

measures. In addition to the emphysema-airway characterization, additional subtypes have

been proposed in an effort to further refine our understanding of smoking-related lung

damage. Some of these, such as upper lobe predominant emphysema and the “frequent-

exacerbator” subtype, have important consequences for clinical management.3–5

The most widely accepted current definition of COPD is that of the Global Initiative for

Chronic Obstructive Lung Disease (GOLD 2007).6 Based primarily on spirometry, GOLD

2007 confirms the diagnosis of COPD based on FEV1/FVC and classifies disease severity

based on FEV1. This simplicity has arguably led to improved recognition, diagnosis and

treatment of the disease.6;7 However, the GOLD 2007 criteria do not fully describe the

heterogeneity of COPD,8;9 and the most recent GOLD 2011 criteria add clinical

characteristics to define new classes.10 GOLD provides clear cutoffs to define presence/

absence of COPD based on FEV1 and FEV1/FVC; however spirometric measures, as well as

associated CT scan characteristics such as emphysema have a continuous distribution in the

population, indicating that the smoking-related damage characteristic of COPD is likely a

continuous process that can also be present in subjects who have not yet developed airflow

obstruction meeting standard criteria.

One rationale for the simplicity of the GOLD 2007 criteria is that there is substantial overlap

between different disease characteristics and among proposed subtypes. It is a challenge to

synthesize the various smoking-related subtypes proposed in the literature, because subtypes

may overlap or be defined in ways that are not complementary. In an effort to derive data-

driven COPD classifications, investigators have recently employed unsupervised machine

learning approaches.11–13 The benefit of such approaches is that they employ quantitative

methods to define subtypes, but the challenge in applying these approaches for clinical

subtype identification is that they are designed primarily for data exploration rather than

specific hypothesis testing. As a result, the generalizability and reproducibility of machine-

learned COPD subtype classifications in independent data samples has been largely

unexplored.

We hypothesized that k-means, a widely used unsupervised clustering method, would

identify novel, clinically relevant subtypes when applied to quantitative chest computed

tomography (CT), spirometric, and clinical measures from the COPDGene study. The

COPDGene study is a large epidemiologic and genetic study of over 10,000 current and

former smokers with and without COPD that includes demographic and clinical information,

spirometry, genome-wide SNP genotyping data, and inspiratory and expiratory CT scans.

We specified a priori a set of clinically relevant clinical and genetic variables that would be

used only to evaluate and interpret (but not to generate) clusters, and we split our data into a

training and validation set to provide rigorous assessment of the reproducibility of our

results.
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Results

The characteristics of the training and validation samples are shown in Table 1, and the

samples are comparable. The difference in sample size between the training and validation

samples is due to differences in missing data (see Supplement).

Defining Feature Subsets

Factor analysis on the comprehensive feature set identified four factors that individually

accounted for at least 5% of the variance in the data. Features with the top loadings for these

factors were functional residual capacity (FRC) % predicted, FEV1 % predicted, CT-

quantified emphysema at −950 Hounsfield units (HU), and bronchodilator responsiveness as

a % of FEV1. For the core feature set, correlation filtering yielded a set of four features -

FEV1 % predicted, CT-quantified emphysema, segmental wall area %, and emphysema

distribution (log ratio of upper third/lower third emphysema).

Prioritizing Clustering Solutions by Cluster Stability

Cluster stability for the three feature sets is shown in Figure 1. Seven stable clustering

solutions with NMI > 0.9 were prioritized for further evaluation. We examined the clinical

and genetic associations of these seven solutions in the training sample. For the

comprehensive and top factor feature sets, the highest stability results were for k=2. These

solutions largely replicated the traditional COPD case-control distinction and were likely

driven by the case-control design and recruitment strategy of COPDGene.

For the core feature set, highly stable clustering was observed for a range of k from 2 to 5.

Figure 2 shows the characteristics of the clustering features for the k=3 to k=5 solutions and

the pattern in which clusters emerge as k increases. Based on the strong pattern of cluster-

specific clinical and genetic associations, the k=4 core feature (CF4) solution was selected

for further validation.

Cluster Characteristics

Cluster characteristics for the CF4 solution are shown in Table 2. The four clusters can be

characterized as low susceptibility smokers, mild upper zone emphysema predominant,

airway predominant, and severe emphysema.

Cluster 1 – Relatively Resistant Smokers—Cluster 1 represents 38% of the

COPDGene training sample and is characterized by heavy smoking exposure with no or

minimal airflow obstruction, as well as lower emphysema (p<0.001 for comparison with

Clusters 2 and 4) and airway wall thickness (p<0.001 for all cluster comparisons) compared

to the more severely affected clusters. The majority of individuals in the relatively resistant

cluster are control smokers or GOLD Stage 1 (Figure 3).

Cluster 2 – Mild Upper Zone Predominant Emphysema—Cluster 2 represents 15%

of the training sample and is characterized by mild airflow obstruction and mild emphysema

with marked upper zone predominance (p-values compared to other clusters <0.001). The

average amount of emphysema in this group is modest (mean emphysema=3.31%), though
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the range is broad and nearly a quarter of this cluster has greater than 5% emphysema. As is

shown in Figure 3, most of the individuals in the mild upper zone emphysema cluster are

control smokers or GOLD Stages 1–2, with 15% unclassifiable by GOLD criteria.

Compared to the relatively resistant cluster, this cluster was more likely to experience an

exacerbation, have a higher MMRC dyspnea score and BODE index, and more likely to

have used the emergency room or been admitted to the hospital for a respiratory issue (Table

3). The NHW subjects in this group show a strong genetic association with rs1980057 near

the HHIP gene (p=4.4×10−6). This cluster has a higher proportion of African-Americans

than the airway predominant and severe emphysema clusters (p <0.001) and a higher

proportion of women compared to the relatively smoking resistant and severe emphysema

clusters (p <0.001).

Cluster 3 – Airway Predominant Disease—Cluster 3 represents 27% of the training

sample and is characterized by thicker airway walls, the lowest average emphysema of all

clusters, and high BMI (p <0.001 for all measures). The overall distribution of GOLD 2007

stages in this group is similar to the mild upper zone emphysema cluster, with the exception

of a higher proportion of GOLD Stage 3 and unclassifiable individuals (Figure 3).

This cluster is more likely than the relatively smoking resistant cluster to report COPD

exacerbations and lung-related healthcare utilization, and they have higher MMRC score

and BODE index (Table 3). It has a significantly higher proportion of women than the

smoking resistant and severe emphysema clusters (p <0.001), and the overall strength of

genetic associations between this cluster and COPD SNPs is weak.

Cluster 4 – Severe Emphysema—Cluster 4 represents 20% of the sample and is

characterized by high emphysema, gas trapping and severe airflow obstruction (p <0.001 for

all measures). This group consists primarily of GOLD 2–4 individuals. It has the lowest

BMI, highest lifetime pack- years exposure, oldest average age (p <0.001 for all measures),

and it is the most severely affected cluster in terms of COPD-related measures. The effect

sizes of the associations between the severe emphysema cluster and the four COPD-related

clinical variables are roughly twice as large as those observed for the upper zone

emphysema and airway predominant clusters.

This cluster is strongly associated with rs1980057 (p=0.001) near HHIP and rs8034191

(p=5×10−8) in the Chromosome 15q locus that includes the nicotinic receptor genes

CHRNA3 and CHRNA5 as well as IREB2 (Table 3). It has a significantly higher proportion

of NHWs than all other clusters and a higher proportion of male subjects than the mild upper

zone emphysema and airway predominant clusters (p values <0.001).

Validation of the CF4 Clustering Solution

To validate the CF4 clustering solution, we examined the characteristics and associations of

CF4 clusters in the validation data sample. The characteristics of the CF4 clusters in the

training and validation samples were similar (Table 2), demonstrating that the clusters can

reliably be reproduced in a separate data sample.
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The associations in the training and validation sample between CF4 clusters, COPD-related

clinical measures and COPD SNPs are shown in Table 3. For the clinical variables, all 12 of

the associations are highly significant in training and validation. For the genetic risk factors,

the two associations in the training sample with p-values below the Bonferroni-determined

threshold of p=0.0007 were both replicated at p<=0.05 in the validation sample.

Furthermore, of the 11 genetic associations observed with p<=0.05 in the training sample, 7

were replicated at p<=0.05 in validation.

Robustness of CF4 Clusters After Adjustment for GOLD Stage

To determine whether the associations observed with these clusters and COPD-related

clinical and genetic variables were driven by severity of airflow obstruction, we repeated the

cluster association tests adjusting for GOLD 2007 stage and GOLD 2011 classes A–D

(Supplemental Tables 2 and 3). All of the associations with clinical measures remained

significant (p<=0.001). This suggests that the discovered clusters provide information

independent from COPD severity as defined by GOLD.

In regard to genetic associations, the cluster associations showed divergent behavior in

response to adjustment for GOLD 2007 stage and GOLD A–D classes. The genetic

associations with cluster 4 were attenuated, whereas the strong association observed

between cluster 2 (upper zone emphysema) and rs1980057 near HHIP was unaffected,

suggesting that this association is due to properties of this cluster that are distinct from

disease severity as assessed by severity of airflow obstruction.

Discussion

Using a large sample of smokers with a wide range of airflow obstruction and well-

characterized with respect to COPD features, cluster analysis identified solutions

demonstrating strong association with clinically relevant COPD-related measures and high

repeatability in cross-validation. A filtered subset of input features yielded a four cluster

result that is informative beyond the traditional COPD case-control distinction. These

clusters can be described as: 1) relatively smoking resistant individuals, 2) individuals with

mild upper zone predominant emphysema and airflow obstruction, 3) individuals with

airway predominant disease, and 4) individuals with severe obstruction and emphysema. In

addition to being relevant clinically, some of these clusters are strongly associated with

known COPD-associated variants. These clusters and associations were validated in a

second data sample from the same study population.

This analysis presents novel findings about smoking-related pulmonary subtypes. We

describe a mild upper zone emphysema predominant cluster that has not been extensively

described in previous studies, and we demonstrate that membership in this cluster is

associated with a genetic variant in the HHIP gene. This cluster was identified in our study

population for at least three reasons: first, our study population included CT scans from a

range of smokers, including those with mild or no obstruction; second, we included

emphysema distribution as an input feature for clustering; and third, our sample size is

substantially larger than previously reported COPD cluster analysis studies. Our work also

adds to the field by explicitly addressing the reproducibility of cluster analyses and by using
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intrinsic (i.e. cluster stability) and extrinsic (i.e. clinical and genetic associations) criteria for

assessing multiple potential clustering solutions.

These results confirm some of the findings from previous subtyping efforts in COPD. First,

most studies have identified a severely affected group, though the severity of emphysema

and airway wall thickness in this group has been variable.12;21–23 Second, these findings

affirm the concept of emphysema-predominant and airway-predominant COPD while

providing additional insight regarding the role of emphysema distribution in COPD

heterogeneity.2;5;13;21;22;24;25 The identification of emphysema and airway predominant

groups, however, has not been universal. Garcia-Aymerich et al did not identify an airway

predominant group, and instead identified a group with elevated BMI and increased

comorbidities but with less prominent airway wall thickness on CT scan.12 In our study, the

high average BMI and overrepresentation of women in the airway predominant group is of

clinical and epidemiologic interest, and the female airway predominance recapitulates

observations by Martinez et al in NETT.26

We examined the association of clusters with known COPD GWAS SNPs. While the

directionality of associations varied between clusters for some SNPs, the analyzed SNPs did

show a consistent direction of effect compared with the previous COPD susceptibility

association literature in the comparison of the relatively smoking resistant cluster to the

severe obstruction/emphysema cluster. The weak associations in our airway-predominant

group are consistent with the findings in the ECLIPSE cohort, where no associations were

identified with Pi10.27 In contrast, consistent associations with the HHIP and 15q loci were

found for both the severe and mild upper lobe predominant emphysema group. This

association in the latter group is particularly notable since the airway predominant group,

with similar average lung function to the upper lobe predominant group, shows no strong

genetic associations. These results are congruent with ECLIPSE where the associations of

these loci with radiologist-scored emphysema were stronger than that for FAM13A.27

Together, these findings suggest that genetic associations in COPD may be subtype

dependent.

This work has some limitations. It focuses primarily on continuous spirometric and

quantitative CT measures; however, other aspects of COPD such as biomarker

measurements and comorbidities were not included due either to their absence from our data

or limitations of the k-means clustering method, which can yield spurious results when

applied to a mixture of continuous and categorical variables. In the future, approaches that

evaluate a range of clustering methods and a wider set of variables will be of interest.

However, as this work demonstrates, the inclusion of more input features does not

necessarily yield better clustering results. The optimal selection of features for clustering

(i.e. feature selection), is a critical area for the application of unsupervised learning to

disease subtyping that requires further exploration. This analysis is cross- sectional, and it is

possible that these results may be confounded by differences in disease severity. This is an

important limitation for all clustering efforts using cross-sectional data that could be

addressed through analyses of longitudinal data or through the development of novel

clustering methods. A number of subjects from the overall study were excluded from the

clustering analysis due to missing data, primarily from CT scan-related variables, and there
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is some bias in the clustering subset compared to the excluded subjects. This limits the

generalizability of the sample on which clustering was performed, though the included

sample is large and consists of a broad spectrum of smoking-related disease.

In summary, k-means clustering in the COPDGene Study identifies four groups of smokers

that are associated with important COPD-related measures even after adjustment for GOLD

stage. Genetic association analysis with known COPD-associated variants shows strong,

cluster-specific associations with these known genetic risk factors. This clustering approach

is reproducible in independent data sets, facilitating the further study and characterization of

these groups of smokers.

Methods

Data Collection

Quantitative measures of emphysema and airway wall thickness were generated with

SLICER (http://www.slicer.org) and VIDA software (VIDA Diagnostics, Iowa City, IA;

http://www.vidadiagnostics.com), respectively.(1) Dyspnea and lung disease-specific quality

of life measures were obtained through the use of previously validated questionnaire items.

(2;3)

Cross-Validation Estimates of Cluster Stability

To assess the stability of various cluster solutions, we used five-fold cross validation to

derive estimates of cluster stability as quantified by the average normalized mutual

information (NMI). Normalized mutual information quantifies the dependency between

variables, and it ranges from 0 (no dependency) to 1 (high dependency). Unlike Pearson

correlation, NMI captures nonlinear in addition to linear dependency between variables.

This procedure was carried out entirely in the training portion of the data. Four-fifths of the

training sample served as the cross-validation training set (CV Train) and the remaining one-

fifth of the data served as cross-validation test set (CV Test). Using the learned centroids

from the CV Train set, clusters were predicted in the CV Test set and then compared to the

cluster results for that fold obtained by running k-means on the entire (original) training

sample. NMI quantified the degree of agreement, and the average NMI results obtained from

each of the five rounds of cross-validation were used to prioritize cluster solutions by

stability.

Genetic Association Testing

Genetic associations were performed in non-Hispanic white (NHW) subjects only using

additive genetic coding and adjusted for principal components of genetic ancestry. A

Bonferonni-adjusted statistical significance of p=0.0007 for genetic associations in the

training set was defined based on 70 genetic association tests performed. The threshold for

validation in the independent sample was p=0.05.

Missing Data

We employed a complete cases approach and excluded individuals from analysis who were

missing data in any of the variables used for clustering, cluster association testing or
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interpretation. There was no difference in age of pack-years between included and excluded

subjects (Supplemental Table 8). There was statistically significant but relatively minor

differences in FEV1 and FEV1/FVC, and there were significant differences in gender and

racial composition. Subjects with missing data were more likely to be female and African-

American. Of the 10,300 individuals enrolled in COPDGene, 108 non-smokers were

excluded from analysis, as well as 63 individuals with inadequate spirometry data. Of the

remaining 10,129 individuals, 511 did not receive an inspiratory or expiratory scan. An

additional 953 subjects failed quality control for either the inspiratory or expiratory scan,

and 64 subjects were excluded for an FRC/TLC ratio >1. Of the remaining 8,601 subjects,

143 had incomplete data for emphysema distribution. An additional 170 individuals were

excluded due to missing data for the following variables: airway wall thickness (n=4), gas

trapping (n=44), resting oxygen saturation (n=2), MMRC dyspnea score (n=11), and BODE

(n=109).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Imaging Core: David Lynch, MB, Joyce Schroeder, MD, John Newell, Jr., MD, John Reilly,
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Akhavan, Douglas Stinson

PFT QA Core, LDS Hospital, Salt Lake City, UT: Robert Jensen, PhD

Biological Repository, Johns Hopkins University, Baltimore, MD: Homayoon Farzadegan,
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MD, Charles Trinh, MD, Mustafa Atik, MD, Hasan Al-Azzawi, MD, Marc Willis, DO,
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Frigini, MD, Carlos Farinas, MD, David Katz, MD, Jose Freytes, MD, Anne Marie Marciel,

MD
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Brigham and Women’s Hospital, Boston, MA: Dawn DeMeo, MD, MPH, Craig Hersh, MD,

MPH, George Washko, MD, Francine Jacobson, MD, MPH, Hiroto Hatabu, MD, PhD, Peter

Clarke, MD, Ritu Gill, MD, Andetta Hunsaker, MD, Beatrice Trotman-Dickenson, MBBS,

Rachna Madan, MD
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Robert Brown, MD, Gregory Diette, MD, Karen Horton, MD

Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Los Angeles,

CA: Richard Casaburi, MD, PhD, Janos Porszasz, MD, PhD, Hans Fischer, MD, PhD, Matt

Budoff, MD, Mehdi Rambod, MD

Michael E. DeBakey VAMC, Houston, TX: Amir Sharafkhaneh, MD, Charles Trinh, MD,

Hirani Kamal, MD, Roham Darvishi, MD, Marc Willis, DO, Susan Pinero, MD, Linda Fahr,

MD, Arun Nachiappan, MD, Collin Bray, MD, L. Alexander Frigini, MD, Carlos Farinas,

MD, David Katz, MD, Jose Freytes, MD, Anne Marie Marciel, MD

Minneapolis VA: Dennis Niewoehner, MD, Quentin Anderson, MD, Kathryn Rice, MD,

Audrey Caine, MD

Morehouse School of Medicine, Atlanta, GA: Marilyn Foreman, MD, MS, Gloria Westney,

MD, MS, Eugene Berkowitz, MD, PhD

National Jewish Health, Denver, USA: Russell Bowler, MD, PhD, Adam Friedlander, MD,

David Lynch, MB, Joyce Schroeder, MD, John Newell, Jr., MD, Valerie Hale, MD, John

Armstrong, II, MD, Debra Dyer, MD, Jonathan Chung, MD, Christian Cox, MD, Hakan

Sahin, MD

Temple University, Philadelphia, PA: Gerard Criner, MD, Victor Kim, MD, Nathaniel

Marchetti, DO, Aditi Satti, MD, A. James Mamary, MD, Robert Steiner, MD, Chandra

Dass, MD, Libby Cone, MD

University of Alabama, Birmingham, AL: William Bailey, MD, Mark Dransfield, MD,

Michael Wells, MD, Surya Bhatt, MD, Hrudaya Nath, MD, Satinder Singh, MD

University of California, San Diego, CA: Joe Ramsdell, MD, Paul Friedman, MD
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University of Iowa, Iowa City, IA: Geoffrey McLennan, MD, PhD, Edwin JR van Beek, MD,

PhD, Brad Thompson, MD, Dwight Look, MD, Alejandro Cornellas, MD

University of Michigan, Ann Arbor, MI: Fernando Martinez, MD, MeiLan Han, MD, Ella

Kazerooni, MD

University of Minnesota, Minneapolis, MN: Christine Wendt, MD, Tadashi Allen, MD

University of Pittsburgh, Pittsburgh, PA: Frank Sciurba, MD, Joel Weissfeld, MD, MPH,

Carl Fuhrman, MD, Jessica Bon, MD, Danielle Hooper, MD

University of Texas Health Science Center at San Antonio, San Antonio, TX: Antonio

Anzueto, MD, Sandra Adams, MD, Carlos Orozco, MD, Mario Ruiz, MD, Amy

Mumbower, MD, Ariel Kruger, MD, Carlos Restrepo, MD, Michael Lane, MD
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Key Messages

What is the key question?

Can distinct subtypes of pulmonary damage be identified in smokers?

What is the bottom line?

Cluster analysis in the COPDGene study identifies four clusters of smokers with distinct

patterns of airway wall thickness, emphysema and emphysema distribution, and these

subtypes show strong association with relevant clinical measures and known COPD-

associated genetic variants.

Why read on?

This paper demonstrates robust, data-driven clustering results that identify clinically

important subgroups of smokers in the largest COPD subtyping study to date.
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Figure 1.
Cluster stability as measured by average normalized mutual information (NMI) by number of clusters across the three input

feature sets. High NMI values indicate high cluster stability. For the comprehensive and top factor feature sets, stability is

greatest for the k=2 solution. For the core feature set very high stability is observed up to k=5. Dots and standard errors bars

represent average NMI and standard errors over five-fold cross validation, respectively. Dots are slightly offset to improve

visualization.
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Figure 2.
Average values of clustering features from core feature set solutions k=3 through 5. Arrows indicate relationships between these

k-means derived clusters that share large numbers of individuals.
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Figure 3.
Proportion of individuals in each GOLD 2007 stage by Core Feature Set Clustering Solution (k=4). Cluster 1 (relatively

smoking resistant individuals) consists largely of control smokers and GOLD 1–2 individuals. Cluster 4 (severe emphysema)

consists largely of GOLD 2–4 individuals. Clusters 2 and 3 (upper zone emphysema and airway predominant) consist largely of

control smokers, GOLD 1–2 and GOLD unclassifiable (GOLD U) individuals.
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Table 1

Baseline Characteristics of the Training and Validation Data

Training Validation

N 4187 4101

Age 59.5 (9.0) 59.7 (9.0)

Gender, % female 46.7 45.9

Race, % African-American 32.0 31.4

FEV1, % of predicted 76.9 (25.2) 77.1 (25.2)

FEV1/FVC 0.67 (0.16) 0.67 (0.16)

Pack-Years, median (IQR) 39.3 (28.0) 39.7 (27.0)

BMI 28.9 (6.3) 28.9 (6.1)

Emphysema at −950HU, median (IQR) 1.8 (5.8) 2.0 (6.1)

Upper/Lower Emphysema Ratio (IQR) 0.8 (1.1) 0.8(1.2)

Segmental Airway Wall Thickness 61.4 (3.2) 61.4 (3.3)

Upper/Lower Lobe Emphysema Difference (IQR) −0.17 (2.0) −0.14 (2.2)

Gas Trapping (IQR) 14.5 (24.8) 14.7 (25.3)

GOLD Unclassifiable*, % 12.0 12.6

Smoking controls, % 43.8 43.8

GOLD 1, % 8.3 7.7

GOLD 2, % 19.2 19.4

GOLD 3, % 11.3 11.3

GOLD 4, % 5.4 5.3

Values are mean (SD) unless otherwise noted.

Smoking Intensity – average cigarettes smoked per day

*
GOLD unclassifiable refers to subjects with a FEV1% predicted <80 but FEV1/FVC > 0.7.
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