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Low voltage-activated T-type calcium channels were originally cloned in the 1990s and much research has since focused on identifying
the physiological roles of these channels in health and disease states. T-type calcium channels are expressed widely throughout the
brain and peripheral tissues, and thus have been proposed as therapeutic targets for a variety of diseases such as epilepsy, insomnia,
pain, cancer and hypertension. This review discusses the literature concerning the role of T-type calcium channels in physiological and
pathological processes related to epilepsy. T-type calcium channels have been implicated in pathology of both the genetic and
acquired epilepsies and several anti-epileptic drugs (AEDs) in clinical use are known to suppress seizures via inhibition of T-type
calcium channels. Despite the fact that more than 15 new AEDs have become clinically available over the past 20 years at least 30% of
epilepsy patients still fail to achieve seizure control, and many patients experience unwanted side effects. Furthermore there are no
treatments that prevent the development of epilepsy or mitigate the epileptic state once established. Therefore there is an urgent need
for the development of new AEDs that are effective in patients with drug resistant epilepsy, are anti-epileptogenic and are better
tolerated. We also review the mechanisms of action of the current AEDs with known effects on T-type calcium channels and discuss
novel compounds that are being investigated as new treatments for epilepsy.

Basic physiology and molecular
biology of T-type calcium channels

Nomenclature
Nomenclature for ion channels and receptors referred to in
this review conform to the guidelines outlined by the
British Journal of Pharmacology [1].Voltage-gated calcium
channels are a class of integral membrane proteins that
form pores that selectively and rapidly allow calcium ion
entry to cells. Calcium channels are broadly defined as
either high voltage-activated (HVA) or low voltage-
activated (LVA) depending on whether they first activate
and allow calcium entry at more depolarized (generally
>−40 mV) or hyperpolarized (∼−70 to −60 mV) membrane
potentials, respectively (Figure 1) [2]. The HVA channels in
mammals are described by seven classes of α1 subunit
(CaV) proteins that exhibit distinct biophysical, pharmaco-
logical and second messenger dependent modulatory
characteristics: L-type (CaV1.1, CaV1.2, CaV1.3, CaV1.4), P/Q-
type (CaV2.1), N-type (CaV2.2) and R-type (CaV2.3). The LVA

calcium channels are also known as ‘T-type’ due to their
tiny and transient calcium conductance in comparison
with typical HVA channels. T-type calcium channels are
widely expressed throughout the body including the
heart, central and peripheral nervous systems, kidney,
smooth muscle, reproductive organs and endocrine
organs. In mammals, T-type channels are classified into
CaV3.1, CaV3.2 and CaV3.3 isoforms, each with unique bio-
physical, pharmacological and regulatory properties [3].
While the expression, biophysical and modulatory proper-
ties of the HVA CaV subunits can be regulated by a number
of ancillary proteins (β, α2δ and γ subunits), as yet there is
little evidence that functional T-type channels require
ancillary subunits.

Biophysical properties
Depolarization of the cell membrane past the T-type
channel activation threshold potential induces a shift from
the channel closed state to an open calcium ion conduct-
ing state (Figure 1). The voltage dependence of channel
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activation varies between the three T-type calcium
channel subtypes (hyperpolarized CaV3.1 ≥ CaV3.2 > CaV3.3
depolarized) as does the kinetic rate of channel activation
(fastest CaV3.1 >> CaV3.2 > CaV3.3 slowest) [4–6]. Once in
the open state one or more intrinsic inactivation mecha-
nisms initiate to prevent further calcium conductance.The
voltage-dependence (hyperpolarized CaV3.1 = CaV3.2 >
CaV3.3 depolarized) and kinetic rate (fastest CaV3.1 >>
CaV3.2 > CaV3.3 slowest) of the inactivation processes also
occur in a subtype-specific manner. Once inactivated,
T-type channels can only de-inactivate (revert to the
closed state and once again become available for
depolarization-mediated opening) by hyperpolarization of
the membrane potential below that which induces inacti-
vation (Figure 1). This process, known as recovery from
inactivation, also varies between the T-type channel sub-
types (fastest CaV3.1 > CaV3.3 > CaV3.2). Additionally, should
the membrane potential hyperpolarize back to a point
below that which induces activation before the channel
inactivates (e.g. while still open), it will change confirma-
tion to the closed state. This deactivation also occurs with
subtype specificity (fastest CaV3.3 >> CaV3.1 > CaV3.2). The
voltage dependencies of activation and inactivation occur
over a range of membrane potentials for a population of
channels from fully closed to fully open and from fully
inactivated to fully de-inactivated.These ranges overlap to
a degree for each of the three T-type calcium channels,
which can result in a small yet measurable net inward
calcium flux in the range of overlapping membrane poten-
tials and known as a ‘window current’ [7, 8].

In the nervous system, the three T-type calcium chan-
nels are often expressed in the same cell types to varying
degrees. Thus a wide repertoire of different net LVA
calcium currents can be generated depending on the rela-
tive contribution from each subtype [9, 10]. In addition, the
genes encoding the three T-type calcium channels (CaV3.1:
CACNA1G, CaV3.2: CACNA1H, CaV3.3: CACNA1I) possess a
number of sites that are subject to alternative splicing,
adding further functional complexity to the overall spec-
trum of T-type currents [11–17]. Finally, distinct T-type
channel isoforms exhibit a differential distribution across
somatic, dendritic and axonal compartments, suggesting

that they make unique contributions to excitability and
cellular output as a result of a complex interplay between
subtype specific biophysical and modulatory properties
together with compartmental considerations [10, 18–20].

Physiological roles of T-type
calcium channels

T-type calcium channels in sleep
At the physiological level, extensive studies have charac-
terized the critical role played by T-type calcium channels
in the neuronal firing modalities associated with the oscil-
lations observed on electroencephalogram (EEG) record-
ings during non-REM sleep, including delta waves, sleep
spindles and k-complexes [21, 22]. There is a well-
established inter-connection between sleep and epilepsy.
Sleep deprivation is a common precipitant for seizures and
seizures in many patients occur preferentially during sleep
or soon after awakening [23–26]. Conversely, patients with
chronic epilepsy have a high incidence of sleep-disordered
breathing and other sleep disorders such as parasomnias,
insomnia and enuresis [23, 27, 28]. Furthermore certain
anti-epileptic drugs, including lamotrigine, felbamate and
levetiracetam, have been reported to adversely affect
sleep quality [23]. This raises the prospect that there is a
relationship between the physiological cerebral oscilla-
tions that occur during sleep and the pathological oscilla-
tions that underlie epileptic seizures.

Sleep-related cerebral oscillations arise in the
thalamocortical system, comprising a loop of reciprocal
glutamatergic connections between corticothalamic layer
V-VI pyramidal neurons and thalamocortical relay neurons.
These cortex-thalamus connecting neurons additionally
innervate GABAergic neurons in the reticular thalamic
nucleus, which in turn project to the thalamocortical
neurons generating the hyperpolarization required to
maintain T-type channel de-inactivation in thalamocortical
neurons during oscillations. Burst firing is a key firing prop-
erty of reticular thalamic and thalamocortical neurons
during the non-REM sleep EEG oscillations, and this firing
modality is dependent upon activation of highly-

Figure 1
Biophysical properties of T-type calcium channels. (A) Representative current traces generated by high voltage-activated (HVA; left panel, top) and low
voltage-activated (LVA ‘T-type’; right panel, top) calcium channels. HVA calcium channels generally require a greater depolarization to activate than T-type
calcium channels (−40 mV compared with −60 mV, respectively). Activation in response to depolarization and subsequent inactivation in response to
prolonged depolarization is denoted on current traces. (B) Representative T-type calcium current trace demonstrating the deactivation (closing) process
that occurs when the cell is repolarized while the T-type channels are activated (and before inactivation occurs). (C) Representative T-type calcium current
trace demonstrating the time-dependent process of recovery from inactivation. A prolonged depolarizing pre-pulse is applied to induce inactivation of the
T-type calcium channels. The cell is then repolarized to allow the channels to recover from inactivation before a test pulse is applied. The T-type calcium
current is smaller in response to the test pulse than to the pre-pulse because the repolarization time is not sufficient to allow full recovery from inactivation
in this example. (D) Schematic representation of the thalamocortical system, showing the proposed expression patterns of the three T-type calcium channel
subtypes. (E) Representative electroencephalography (EEG) traces showing activity recorded over the primary somatosensory cortex during resting
wakefulness (upper panel) and during an absence seizure (lower panel) in the GAERS absence epilepsy model and demonstrating 7–9 Hz spike-wave
discharges
◀
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expressed T-type calcium channels [21]. Small membrane
depolarizations induce T-type calcium channel activation,
causing a cascade depolarization of the neuron and pro-
ducing a low threshold calcium potential (LTCP), peaking
around −40 mV, lasting between 50 to 100 ms, and allow-
ing the generation of a burst of high frequency sodium
channel-mediated action potentials upon its crest. These
bursts are predicted to generate synchronization of neural
networks and recruit additional neurons to the burst firing
state, spreading and propagating the oscillations.

Distinct to the burst firing mode seen in reticular
thalamic and thalamocortical neurons, which results from
large scale T-type calcium channel activation generated
LTCPs, the T-type window current is thought to contribute
to slow oscillations seen in slow wave sleep [7, 29]. The
window current is relatively small, predicted to be rarely
more than around 1% of the maximal T-type current in a
cell [8]. When the window current is active, the resulting
depolarization, assisted by hyperpolarization-activated
and calcium-activated non-selective cation currents, pro-
duces an ‘up-state’ with action potential firing lasting up to
several seconds, until leak currents hyperpolarize the
neuron to the ‘down-state’ below the range of window
current activation.

The transition between up- and down-states produces
intrinsic slow (<1 Hz) oscillations in thalamocortical
neurons and critically contributes to slow wave sleep. Mice
in which the CaV3.1 channel is genetically deleted globally
exhibit both increased latency to non-REM sleep and an
increased number of brief waking periods during non-REM
sleep [30]. Interestingly, mice with a thalamic region-
specific deletion of CaV3.1 display similar sleep distur-
bances to globally deleted animals, whereas mice with
cortical region-specific deletion of CaV3.1 display normal
sleep patterns. Together, these data confirm a key role in
sleep for thalamic but not cortical CaV3.1 T-type channels.
Counter-intuitively, systemic administration of TTA-A2, a
pan-T-type calcium channel blocker promotes slow wave
sleep in mice [31, 32]. Conversely, systemic administration
of a different pan-T-type calcium channel blocker, Z944,
does not display obvious effects on slow wave sleep, sug-
gesting that TTA-A2 may exert some of its effects via a
different mechanism from Z944 or in a distinct CNS region
where Z944 has no effect [33].

T-type calcium channels and
epilepsy

Classification of seizures, epilepsy and
epileptogenesis
A seizure is as transient symptomatic neurological event of
abnormal excessive or synchronous neuronal activity in
the brain. Many people in their lifetime will experience a
seizure but not necessarily go on to develop epilepsy. Epi-
lepsy is a group of chronic neurological disorders charac-

terized by spontaneous recurrent seizures. Epilepsy
encompasses many different disorders, which can be sub-
classified by aetiology, as genetic and structural/metabolic
[34]. The structural/metabolic group includes epilepsy
such as temporal lobe epilepsy (TLE), caused by tumours,
stroke, head trauma, hypoxia, febrile seizures and meta-
bolic disorders. The genetic group of epilepsies includes a
diverse array of syndromes including childhood absence
epilepsy, juvenile myoclonic epilepsy and Dravet syn-
drome [34]. Epilepsy affects 50 million people worldwide
[35] and approximately 30% of patients do not achieve
adequate seizure control with the currently available anti-
epileptic drugs (AEDs) [36]. Surgery is an option for a
minority of these patients with drug resistant epilepsy, but
requires the origin of the seizures to be able to be localized
accurately to a region of the brain that can be safely
resected.

In addition to the costs associated with treating epi-
lepsy patients, there are additional burdens on the sufferer.
There is the social stigma associated with the disease as
epilepsy patients may not be able to hold down a job or
drive a car and epilepsy patients also have to deal with
additional comorbidities such as anxiety, depression and
an increased risk of sudden death. All of these factors make
it all the more important to find ways to prevent or reverse
the epileptic state rather than just treat the symptoms. A
number of multifactorial neurobiological processes are
triggered after a brain insult that progressively changes
the neuronal network excitability culminating in the gen-
eration of spontaneous recurrent seizures. This period is
referred to as epileptogenesis, and the neurobiological
processes occurring during this time include
neurodegeneration, neurogenesis, gliosis, changes in gene
expression, mossy fibre sprouting and damage to the
blood–brain barrier.

T-type calcium channels in seizures and
epileptogenesis
T-type calcium channels are believed to play a critical role in
the generation of the hypersynchronous oscillatory
thalamocortical activity that underlies absence seizures
[37–39] and of the intrinsic burst firing of hippocampal
pyramidal neurons in TLE [40–42].The three T-type calcium
channels (CaV3.1,CaV3.2 and CaV3.3) are widely but differen-
tially expressed in the thalamocortical circuitry implicated
in absence seizures (Figure 1). Further, alterations in func-
tion and expression of T-type calcium channels have been
reported in animal models of both genetic generalized
epilepsy (GGE) and acquired TLE, further implicating these
channels as key players in regulating neuronal excitability.

T-type calcium channels in models of acquired
temporal lobe epilepsy
In the kindling model of TLE, whereby repeated electrical
stimulations are applied to a brain region (such as the
hippocampus or amygdala) resulting in increasing inten-
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sity and severity of seizures, T-type calcium currents were
significantly larger in CA1 pyramidal cells of animals that
had experienced nine class V seizures (the most severe of
kindled seizures) compared with controls, and these
current changes persisted up to 6 weeks after the cessa-
tion of kindling [43]. In another model of TLE (post-status
epilepticus), administration of the muscarinic receptor
agonist, pilocarpine, induced a period of continuous sei-
zures (status epilepticus) which was followed by a latent
seizure-free period and then the development of sponta-
neous recurrent seizures. The post-status epilepticus
model of acquired TLE parallels human TLE closely in
regards to the initial brain insult, latent period, develop-
ment of spontaneous convulsive seizures, with similar AED
profile and limbic histopathological changes [44]. Several
studies investigating the role of T-type calcium channels
during epileptogenesis after pilocarpine induced status
epilepticus found that there was a selective and transient
increase in CaV3.2 mRNA expression in CA1 pyramidal
neurons coupled with an up-regulation of T-type calcium
currents [40, 41, 45, 46]. Additionally, hippocampal sclerosis
and mossy fibre sprouting, histopathological hallmarks of
TLE in humans and animal models, was absent in CaV3.2
knockout mice and these mice were resistant to the devel-
opment of chronic seizures induced by pilocarpine [41].

T-type calcium channels in humans and
animal models of genetic generalized epilepsy
There is also substantial evidence in the literature from
human and animal studies linking T-type calcium channels
to the pathogenesis of GGEs. Mutations in the gene encod-
ing human CaV3.2, CACNA1H, have been identified in
patients with a variety of GGE syndromes [47, 48], in par-
ticular childhood absence epilepsy, with the mutations
shown in vitro to affect channel kinetics, gating and mem-
brane expression of CaV3.2 leading to hyperexcitability [49,
50]. Additionally, a mutation in the rat CaV3.2 gene
(R1584P) has been identified in the Genetic Absence Epi-
lepsy Rats from Strasbourg (GAERS) animal model of GGE
with absence seizures which was shown to have a splice
variant-specific gain of function effect on the channel [51].

In Chinese Han populations no mutations in CACNA1G
or CACNA1I have been identified in patients with GGE [52,
53]. However several variants in CACNA1G have been iden-
tified in a Japanese population but only one variant was
not observed in control samples and in vitro functional
analysis of these mutations failed to show any difference in
channel properties and kinetics [54]. Further evidence
implicating CaV3.1 in GGE comes from studies on mutant
mice. CaV3.1 knockout mice lack the burst firing mode of
action potentials in thalamocortical neurons, seen during
absence seizures, whereas the normal tonic mode of firing
was unaffected [39]. Additionally, CaV3.1 knockout mice
were resistant to the development of synchronous and
bilateral spike and wave discharges (SWDs) in response to
GABAB receptor activation but had the same susceptibility

as wild type mice when treated with a GABAA receptor
antagonist, bicuculline [39]. Conversely, transgenic mice
overexpressing CaV3.1 show increased functional thalamic
T-type calcium currents and frequent bilateral rhythmic
SWDs that can be blocked by treating with ethosuximide
[38]. However, while the role of T-type calcium channels in
the pathophysiology of GGE is well established, the contri-
bution of CaV3.1 T-type calcium currents to the generation
of absence seizures is still under debate. Increased CaV3.1
T-type calcium currents have been reported to be suffi-
cient to induce pure absence epilepsy [38] whereas in a
study utilizing CaV2.1 mutant mice double crossed with
CaV3.1 mutant mice it was found that increased thalamic
CaV3.1 T-type calcium currents were not essential for the
generation of absence seizures [55].

Changes in the expression of T-type calcium channels
are also evident in animal models of GGE. CaV3.1 mRNA
expression is increased in the lateral geniculate nucleus
and centrolateral nucleus of the intralaminar nuclei in
WAG/Rij [56] and in the ventral posterior thalamic relay
nuclei of adult GAERS [57]. Increased CaV3.1 and CaV3.2
mRNA expression in the thalamus and T-type calcium
currents have been reported in GAERS [37, 57] and WAG/Rij
rats [56]. Additionally, CaV3.3 mRNA expression is increased
in the reticular nucleus of the thalamus and the
centrolateral nucleus of the intralaminar nuclei in WAG/Rij
[56]. Taken together, it is clear that increases in any of the
T-type calcium channels are important factors in contrib-
uting to the epilepsy phenotype of GGE in these animal
models.

T-type calcium channel antagonists
as anti-seizure and
anti-epileptogenesis agents

Current therapeutic treatment for epilepsy with AEDs is
symptomatic, aimed solely at suppressing seizures, but
these drugs have no disease modifying effects on
epileptogenesis. There is an urgent need to develop treat-
ments that prevent epilepsy in identified individuals at risk,
whether they are at risk from genetic or acquired factors,
and to mitigate the condition once established [58]. There
have been recent developments investigating current
AEDs as potential modifiers of epileptogenesis in GGE
models. Blumenfeld and colleagues found that orally treat-
ing WAG/Rij rats with ethosuximide long term (from 3
weeks to 5 months), a drug which is believed to act in part
via suppressing T-type calcium channels, suppressed sei-
zures even up to 3 months after the cessation of treatment,
indicating that the treatment had had an anti-
epileptogenic effect [59]. Our group has recently demon-
strated a similar anti-epileptic effect for chronic
ethosuxamide treatment in the GAERS model [60]. Addi-
tionally another study found that zonisamide, a novel and
new generation AED which has multiple mechanisms of
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action including blocking T-type calcium channels, as well
as ethosuximide, administered orally from 1 month to 5
months resulted in a significant reduction in the number
and duration of absence seizures in WAG/Rij rats 6 weeks
after treatment had been discontinued [61,62].Despite the
fact that T-type calcium channels have been implicated in
epileptogenesis in acquired models of TLE [41, 45], studies
into the effectiveness of AEDs as modifiers of epilepto-
genic processes in acquired epilepsy models have not
been undertaken.

The implication of T-type calcium channels in many
different disease states coupled with the need to identify
truly selective T-type calcium channel antagonists has led
to the emergence of drug discovery programmes and
novel, potent and more selective T-type calcium channel
blockers have been developed and are being tested in vitro
and in animal models in the hope of identifying drugs with
promising clinical use in the epilepsy field. We will review
the current AEDs that are known to act on T-type calcium
channels as well as discuss the effectiveness of the new
T-type calcium channel antagonists in the treatment of
epilepsy.

Clinically used AEDs that act on
T-type calcium channels

Succinimides (ethosuximide: Zarontin®,
methsuximide: Celontin®)
The two anti-convulsant succinimides currently in clinical
use are ethosuximide and, to a lesser extent, methsuximide
[63]. The succinimides block T-type calcium channels in a
state-dependent manner, having preference for open and
inactivated states [64]. Ethosuximide is the first line drug
used to treat patients with GGE [65]. While ethosuximide
was originally thought to act primarily via T-type calcium
channels [66, 67], evidence now exists which shows that
ethosuximide also has effects on the persistent sodium
and calcium-activated potassium currents [68–70].

Zonisamide (Zonegran®)
Zonisamide, a new generation AED introduced in America
in 2000 and in Europe in 2005, is effective as an adjunctive
therapy in adults with partial onset seizures, infantile
spasms, myoclonic, absence generalized tonic-clonic sei-
zures and tonic/atonic seizures, and has been shown to be
effective in patients whose seizures are resistant to other
AEDs [71, 72]. Zonisamide has a unique mechanism of
action, it blocks T-type calcium channels in a voltage
dependent manner, having a higher affinity for the inacti-
vated state of the channels as well as blocking voltage-
gated sodium channels and in doing so raises the
threshold for the generation of an action potential [73].
Through this combined effect on sodium and calcium
channels, zonisamide blocks the propagation of seizures
by stabilizing neuronal membranes and suppresses

neuronal hypersynchronization [74, 75]. Zonisamide has
also been reported to enhance directly the synthesis and
degradation of dopamine,serotonin [76] and acetylcholine
[77] as well as inhibiting evoked glutamate release [78] and
modulating GABA and glutamate transporter levels [79].
Additionally, zonisamide shows potential in alleviating
central pain after stroke [80] and the symptoms of Parkin-
son’s disease [81, 82].

Valproate (Depakote®)
Valproate is a widely used broad spectrum AED and mood
stabilizer that has been in clinical use for over 40 years but
its mechanism of action still remains controversial [83], but
given its wide spectrum of efficacy against different
seizure types and other psychiatric disorders it will
undoubtedly have multiple and complex modes of action.
Compared with other AEDs, valproate has a very different
structure with an achiral short branched fatty acid with
eight carbons that does not contain a nitrogen or a cyclic
ring [84]. The anti-epileptic properties of valproate have
been attributed to increasing brain GABA concentrations
but the mechanisms by which this occurs remain to be
determined [85–87]. Valproate has been found to block
T-type calcium currents in acutely isolated thalamocortical
neurons from WAG/Rij and ACI control rats,with the degree
of block being greater in WAG/Rij rats than in control rats
(53% vs. 20%) [70]. Valproate also has effects on L-type
calcium channels, sodium channels and voltage gated
potassium channels [88] as well as attenuating NMDA-
mediated excitation [89, 90]. Valproate has been identified
as being a histone deacetylase (HDAC) inhibitor, which has
opened up avenues for research into clinical uses of
valproate beyond epilepsy and psychiatric disorders [91].
Histone acetylation plays an important role in the regula-
tion of gene expression with histone deacetylases trans-
forming chromatin into a transcriptionally inactive form.
Thus inhibition of HDAC would therefore promote gene
transcription [92].

Phenytoin (Dilantin®)
Phenytoin became available as an AED in 1938 and is used
to treat partial and generalized seizures. Phenytoin’s
primary mechanism of action is to inhibit sodium chan-
nels, however effects on T-type calcium channels have also
been reported. Phenytoin voltage-dependently inhibits
T-type calcium currents in HEK293 cells expressing CaV3.1
or CaV3.2 [93], native T-type calcium currents in neuroblas-
toma N1E-115 cells [94] and in dorsal root ganglion
ND7-23 cells [95].However it has been shown that effective
inhibition of T-type calcium currents requires close to the
maximal therapeutic concentrations of phenytoin [96].

Mibefradil (Posicor®)
Mibefradil was originally marketed in 1997 as a selective
T-type calcium channel blocker effective as an anti-
hypertensive agent [97] but subsequent studies have
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revealed that it also acts on sodium, potassium, chlorine
and L-type calcium [98] and store-operated calcium chan-
nels [99]. Mibefradil was withdrawn from the clinical
market in 1998 due to drug interactions leading to irregu-
lar heart rhythms. Despite this, mibefradil has recently
been shown to block completely T-type calcium currents
and low threshold calcium spikes in acutely isolated
thalamocortical neurons and supress absence seizures in
WAG/Rij rats when focally administered bilaterally into the
ventrobasal nucleus of the thalamus [70].

Novel T-type calcium channel
antagonists

Merck and Zalicus Pharmaceuticals have identified and
characterized numerous potential novel selective T-type
calcium channel antagonists with several of these com-
pounds showing promise in pre-clinical epilepsy studies.
Z941 and Z944 are piperazine analogues developed by
Zalicus Pharmaceuticals that have nanomolar affinities for
the inhibition of human CaV3.2 channels (Z941 IC50 =
120 nM; Z944 IC50 = 50 nM) in the FLIPR assay and have
greater potency than ethosuximide and valproate. Z944
has similar affinity at all three human T-type calcium chan-
nels (IC50 ranges from 50–160 nM) and blocks thalamic
burst firing. In vivo assessment of Z941 and Z944 revealed
that both drugs suppressed absence seizure number and
duration in GAERS more potently and by a mechanism
distinct from that of ethosuximide [33]. Z944 is
currently in phase 1 clinical trials to determine its safety,
pharmacokinetics and to identify possible side effects.
Merck have identified a series of piperidine-containing
T-type calcium channel antagonists including TTA-P1
and TTA-P2. TTA-P1 was found to be a potent state-
independent compound that inhibited human T-type
calcium channels in the nanomolar range (IC50 = 32 nM)
and was found to have good brain penetrance and to be
effective at suppressing seizures in the WAG/Rij model of
GGE [100]. Further optimization of TTA-P1s selectively and
stability led to the identification of TTA-P2 which is a
potent and selective antagonist at all three T-type calcium
channels (IC50 = 84 nM in the depolarized FLIPR assay) and
showed efficacy at suppressing seizures in WAG/Rij rats
[101]. Importantly,TTA-P2 does not have any action on HVA
calcium currents, sodium currents, action potentials,
glutamatergic or GABAergic currents [8]. Another novel
series of compounds (TTA-A) identified by Merck are struc-
turally different from the TTA-P compounds. The amide
analogue TTA-A2 selectively and potently blocks T-type
calcium channels (IC50 = 9.4 nM eith depolarized FLIPR
assay) by preferentially interacting and stabilizing the inac-
tivated forms of the channels [31, 102]. TTA-A2 was mod-
erately effective at suppressing absence seizures in WAG/
Rij (∼40% reduction) but the duration of efficacy was
prolonged when TTA-A2 was co-administered with the

quinazolinone T-type calcium antagonist TTA-Q4 [102].
Twelve hours after administration of the drugs, TTA-A2
alone no longer suppressed seizures. However TTA-A2
together with TTA-Q4 still suppressed seizures by approxi-
mately 25%.There is currently no indication that any of the
Merck compounds have progressed into human clinical
trials.

Conclusions

T-type calcium channels play a critical role in the genera-
tion of the pathological neuronal network oscillations and
neuronal burst firing that underlies seizures. Increasing evi-
dence from animal models and human studies indicate
that T-type calcium channels play an important role in
both genetic and acquired epileptogenesis, and represent
a promising approach for anti-epileptogenic therapies,
one of the key unmet needs for epilepsy.While a number of
currently clinical used AEDs have effects on T-type calcium
channels, novel compounds in the drug development
pathway are more specific and potent, and represent
highly promising new treatments for epilepsy which have
potential to be both anti-epileptogenic as well as anti-
seizure. A complicating factor in finding a truly selective
T-type calcium channel blocker may be that the three
T-type calcium channels (CaV3.1, CaV3.2 and CaV3.3) are
widely expressed and contribute to physiological func-
tions across the nervous, cardiovascular and endocrine
systems. Additionally, multiple isoforms of each T-type
channel are generated by alternative splicing and exhibit
both distinct spatial distributions and biophysical proper-
ties. Thus there are likely a limited number of actual func-
tional targets relevant to epileptogenesis. In order to
maximize therapeutic ratios it will likely be necessary to
develop new AEDs that exhibit both state-dependent
T-type channel blockade and selectivity against the indi-
vidual T-type isoforms.
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