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AIM
Lamivudine is used as first line therapy in HIV-infected children. Yet, like
many other paediatric drugs, its dose rationale has been based on limited
clinical data, without thorough understanding of the effects of growth on
drug disposition. Here we use lamivudine to show how a comprehensive
population pharmacokinetic model can account for the influence of
demographic covariates on exposure (i.e. AUC and Cmax).

METHODS
Data from three paediatric trials were used to describe the
pharmacokinetics across the overall population. Modelling was based on a
non-linear mixed effects approach. A stepwise procedure was used for
covariate model building.

RESULTS
A one compartment model with first order elimination best described the
pharmacokinetics of lamivudine in children. The effect of weight on
clearance (CL) and volume of distribution (V) was characterized by an
exponential function, with exponents of 0.705 and 0.635, respectively. For a
child with median body weight (17.6 kg), CL and V were 16.5 (95% CI 15.2,
17.7) l h−1 and 46.0 (95% CI 42.4, 49.5) l, respectively. There were no
differences between formulations (tablet and solution). The predicted
AUC(0,12 h) after twice daily doses of 4 mg kg−1 ranged from 4.44 mg l−1 h
for children <14 kg to 7.25 mg l−1 h for children >30 kg.

CONCLUSIONS
The use of meta-analysis is critical to identify the correct
covariate-parameter relationships, which must be assessed before a model
is applied for predictive purposes (e.g. defining dosing recommendations
for children). In contrast to prior modelling efforts, we show that the
covariate distribution in the target population must be considered.

WHAT IS ALREADY KNOWN ABOUT
THIS SUBJECT
• Lamivudine is recommended as first line therapy in

HIV-infected children.
• Previous investigations on the pharmacokinetics of

lamivudine have been performed on small populations
or consisted of somewhat large groups within narrow
age ranges.

• In most cases, the impact of developmental growth on
systemic exposure was assessed in subsets of the
paediatric population, by covariate analysis using a
fixed correlation between pharmacokinetic parameters
and demographic factors.

WHAT THIS STUDY ADDS
• Identification of the correct covariate–parameter

relationships is crucial to predict drug exposure
accurately across different age groups in the
population.

• Covariate stratification should be considered to prevent
hidden biases in the covariate model describing the
effects of developmental growth on pharmacokinetics
in children.

• Body weight was found to be the best descriptor of
changes in systemic exposure. It significantly affected
lamivudine clearance and volume of distribution.

• Based on the current dosing regimen, predicted
steady-state exposures showed a slight increase with
increasing body weight. Given that lamivudine is given
in combination with other antiretroviral agents, such
differences are unlikely to be clinically relevant.

• There were no differences in the pharmacokinetics of
lamivudine after administration of the solid or liquid
dosage form (i.e. tablet or solution).
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Introduction

Lamivudine (3TC) is a nucleoside reverse transcriptase
inhibitor (NRTI) widely administered as the nucleoside
backbone in combination with highly active antiretroviral
therapy to HIV-infected children. Lamivudine’s mechanism
of action is based on the competitive inhibition of the HIV
reverse transcriptase. It is phosphorylated to an active
metabolite that competes for incorporation into viral DNA.
According to the latest WHO guidelines [1], lamivudine is
administered as paediatric first line therapy in combina-
tion with abacavir (ABC), with either a non-nucleoside
reverse transcriptase inhibitor (NNRTI) or a protease inhibi-
tor (PI). In fact, given its excellent record of efficacy, safety
and tolerability in HIV-infected children lamivudine is con-
tained in practically all recommended combinations in
paediatric antiretroviral therapy. In addition, it is a fre-
quent component of fixed dose, including low cost, drug
combinations.

Lamivudine is rapidly absorbed after oral administra-
tion and it is excreted primarily in the urine as unchanged
drug [2–6]. The intracellular triphosphate has a long half-
life of 16 to 19 h, as compared with the plasma lamivudine
half-life of 5 to 7 h [7]. Lamivudine is currently adminis-
tered to HIV-infected children based on body weight
according to the dose of 8 mg kg−1 day−1 for children
lighter than 14 kg, 150 mg day−1 from 14 to 21 kg, 225 mg
day−1 from 21 to 30 kg and 300 mg day−1 thereafter, all
given twice a day.

Over the last years, various attempts have been made
to describe the effect of developmental growth on the
pharmacokinetics of antiretroviral drugs in children.
Tremoulet et al. performed an extensive population
pharmacokinetic analysis in infants between 3 days and 3
years [8]. Burger et al. also investigated the influence of
age on lamivudine pharmacokinetics in HIV-infected chil-
dren, showing that in children of 6 years of age and
younger, the recommended dose of 4 mg kg−1 twice daily
led to exposure levels lower than those observed in chil-
dren ≥7 years of age and adults [9]. These findings have
prompted additional evaluation of the effects of develop-
mental growth on the pharmacokinetics of lamivudine. In
this context, focus has been given to the use of allometric
models to characterize the effect of body weight on clear-
ance. Bouazza et al. described the covariate effects in a
large group of children (n = 580) aged between 2 days and
18 years [10], whilst Zhang et al. developed a population
pharmacokinetic model in young children between 0.5
and 4.5 years [11]. In all these studies, either small popula-
tions (i.e. group size) or narrow age ranges (i.e. population
inclusion criteria) were used or the relationship between
parameter and covariate was fixed a priori.

Bearing in mind the impact of covariate selection on
the dose rationale when dealing with small datasets, we
propose the use of a model-based meta-analysis for the
evaluation of covariate effects on systemic exposure. Here

we analyze data from three groups of HIV-infected chil-
dren who received daily doses of lamivudine as part of a
standard HIV protocol, focusing on the requirements for 1)
accurately assessing the correlation between demo-
graphic covariates and pharmacokinetic parameters and
2) balance in the covariate distribution across the groups,
without relying on a priori assumptions about the
parameter–demographic covariate correlation.

Given the need for a scientifically driven dose rationale
in paediatric diseases [12], it can be anticipated that the
correct identification of influential covariates on drug dis-
position is essential when a population pharmacokinetic
model is used for simulations and dosing recommenda-
tion purposes [13–15]. Dosing recommendations should
be therefore obtained without introducing bias due to
factors such as unbalanced distribution of the covariates,
or due to the small sample size available for data analysis.
Such a bias may result in suboptimal dosing across differ-
ent groups in the population and consequently lead to
increased risk of toxicity or reduced efficacy. Thorough
understanding of the correlation between the demo-
graphic covariates and pharmacokinetic parameters is still
required to assess the implications of developmental
growth on drug exposure and, as a consequence, on the
efficacy of lamivudine.

Methods

Patients and samples
This investigation was a retrospective pooled analysis
of data obtained from three studies: PENTA (Paediatric
European Network for the Treatment of AIDS) 13; PENTA
15 and ARROW (AntiRetroviral Research fOr Watoto). The
primary objectives of these studies were to compare the
pharmacokinetics of once daily vs. twice daily lamivudine
regimens in HIV type-1-infected children. PENTA 13 and
PENTA 15 were conducted in European children aged from
2–13 years and from 3 months–3 years, respectively. The
ARROW study was conducted in Uganda with children
aged 3–12 years.

The studies have been conducted in full conformance
with the principles of the Declaration of Helsinki and with
the local laws and regulations concerning clinical trials.
The protocol and the informed consent documents for
each study have been formally approved by the relevant
research ethics committee of each clinical site and by a
national ethics body.

In total data from 77 paediatric patients were available
(19 from PENTA 13 study [16], 18 from PENTA 15 study [17]
and 40 from the ARROW trial [18]). The analysis population
consisted of male and female patients across the age
range between 3 months and 13 years (median age 5.79
years), and weight between 7.43 and 61.3 kg (median
weight 17.6 kg). Demographic details are summarized in
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Table 1. In total 1184 blood samples were available for
pharmacokinetic modelling, with nine samples below the
quantification limit.

Assay of lamivudine
For the PENA13 and PENTA15 studies, plasma concentra-
tions of lamivudine were determined by high performance
liquid chromatography assay with u.v. detection (HPLC-
UV) with a lower limit of quantification (LLOQ) of
0.015 mg l−1 [19]. For the ARROW study, the high perfor-
mance liquid chromatography assay was used in con-
junction with a tandem mass spectrometry detection
(HPLC-MS/MS) method, which had a LLOQ of 0.0025 mg l−1.

Population pharmacokinetic analysis
The pharmacokinetic analysis was split into two steps:

1 Development of the population pharmacokinetic model
using a subset of two studies (PENTA 13 and PENTA 15
studies) to allow for an initial assessment of model sta-
bility and predictive performance.

2 Integrated pharmacokinetic analysis of the patient data
from all three studies, followed by model validation,
as implemented by standard graphical and statistical
methods.

Model building
Non-linear mixed effects modelling was performed in
NONMEM version 6.2 (Icon Development Solutions, USA)
[20]. Model building criteria included: (i) successful mini-
mization, (ii) standard error of estimates, (iii) number of
significant digits, (iv) termination of the covariance step,
(v) correlation between model parameters and (vi) accept-
able gradients at the last iteration [21].

Fixed and random effects were introduced into the
model in a stepwise manner. Inter-individual variability in

pharmacokinetic parameters was assumed to be log-
normally distributed. The parameter value of an individual
i (post hoc value) is therefore given by the following
equation:

θ θ η
i TV

ie= ×

in which θTV is the typical value of the parameter in the
population and ηi is assumed to be a random variable with
zero mean and variance ω2. Residual variability, which
comprises measurement and model error, was described
with a proportional error model. This means for the jth

observed concentration of the ith individual,the relation Yij:

Y F Wij ij ij= + ×ε

where Fij is the predicted concentration and εij the random
variable with mean zero and variance σ2. W is a propor-
tional weighing factor for ε.

Goodness of fit was assessed by graphical methods,
including population and individual predicted vs.
observed concentrations, conditional weighted residual
vs. observed concentrations and time, correlation matrix
for fixed vs. random effects, correlation matrix between
parameters and covariates and normalized predictive dis-
tribution error (NPDE) [22]. Comparison of hierarchical
models was based on the likelihood ratio test. A superior
model was also expected to reduce inter-subject variabil-
ity and/or residual error terms.

Covariate analysis
Continuous and categorical covariates were tested
during the analysis. The relationship between individual
pharmacokinetic parameters (post hoc or conditional esti-
mates) and covariates was explored by graphical methods
(plot of each covariate vs. each individual parameter).

Table 1
Summary of demographic characteristics

PENTA 13 PENTA 15 ARROW Full population

Subjects 19 18 40 77
Male 9 9 16 34

Female 10 9 24 43
Median age (years) 5.7 1.9 7.5 5.7

Minimum (years) 2.1 0.4 3.5 0.4
Maximum (years) 12.8 2.8 12.5 12.8

Median weight (kg) 21.7 11.7 20.1 17.6
Minimum (kg) 12.5 7.4 14 7.4

Maximum (kg) 61.3 16.1 30 61.3
Creatinine clearance (ml min−1) 81.7 59.9 63.8 95.5

Minimum (ml min−1) 41.2 31.9 50.4 31.9
Maximum (ml min−1) 199.5 87.5 168.3 199.5

Ethnicity 17 black, 2 others 14 black, 4 others 40 black 71 black, 6 others

Lamivudine pharmacokinetics in children
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Relevant demographic covariates (body weight, age,
height, creatinine clearance) were entered one by one into
the population model (univariate analysis). Given that dif-
ferent lamivudine formulations were administered in the
trials, formulation was also treated as a covariate. After all
significant covariates had been entered into the model
(forward selection), each covariate was removed (back-
ward elimination), one at a time. The model was run again
and the objective function recorded. The likelihood ratio
test was used to assess whether the difference in the
objective function between the base model and the full
(more complex) model was significant. The difference in –
2log likelihood (DOBJF) between the base and the full
model is approximately χ2 distributed, with degrees of
freedom equal to the difference in number of parameters
between the two hierarchical models. Because of the
exploratory nature of this investigation, for univariate
analyses, additional parameters leading to a decrease in
the objective function of 3.84 were considered significant
(P < 0.05). During the final steps of the model building, only
the covariates which resulted in a difference of objective
function of at least 7.88 (P < 0.005) were kept in the final
model.

Model validation
The validation of the final model was based on graphical
and statistical methods. Given the importance of the vali-
dation procedures for the subsequent use of a model for
simulation purposes, in this study we applied a wide range
of diagnostic methods to assess the accuracy of the
parameter estimates and the predictive performance of
the model. First, a bootstrap procedure was performed in
PsN v2.30 (University of Uppsala, Sweden) [23]. Bootstrap
was used to identify bias, stability and accuracy of the
parameter estimates (standard errors and confidence
intervals (CIs)). PsN does so by generating a set of new
datasets by sampling individuals with replacement from
the original dataset, and fitting the model to each new
dataset. Subsequently, parameter estimates were used to
simulate plasma concentrations in paediatric HIV patients
with similar demographic characteristics, dosing regimens
and sampling scheme as in the original clinical studies.
Mirror plots were then generated to evaluate the
variance–covariance structure of the parameters in the
model, which is reflected by the degree of similarity
between the original fit and the pattern obtained from
the fitting of the simulated data sets using the final
pharmacokinetic model.

In addition to the graphical analysis, posterior predic-
tive checks were performed using the area under the
plasma concentration vs. time curve (AUC) and peak
plasma concentration (Cmax) as a measure of model
performance. AUC and Cmax values were calculated non-
compartmentally by the trapezoidal method from simula-
tions of 1000 data sets with the same demographic

characteristics, dosing regimens and sampling schemes as
in the original clinical studies.

The distribution of model-predicted AUC and Cmax

values was presented as geometric mean, lower and upper
boundaries of the 95% CIs and compared with the findings
from non-compartmental analysis in the two clinical
studies. Model performance was assessed by the location
of the original estimates across the predicted distribution
(histograms).

Results

Population pharmacokinetic modelling
The results shown in this paper are derived from the
analysis of the combined datasets from three studies. A
one-compartment pharmacokinetic disposition model
with first-order absorption was fitted to the plasma con-
centration vs. time data from the three populations. Inter-
individual variability was identified for CL, V and Ka. In all
three studies used in our investigation the patients
received lamivudine according to once and twice daily
dosing regimens. Therefore inter-occasion variability on
CL and Ka was included in the model to quantify potential
differences in parameter estimates between the two
dosing regimens. The residual error was described using
a combined model including a weighting factor for the
variance estimate, which resulted in a better fit of the
data as compared with a simple combined error model.
CL and V were found to increase with body weight. An
exponential function best described the correlation
between these pharmacokinetic parameters and body
weight. The exponent for the effect of weight on CL was
0.705 and the exponent for the effect of weight on V was
0.635.

It should be pointed out that both body weight
and age showed an influence on lamivudine clearance
and volume of distribution. However, based on the
magnitude of the changes in objective function (i.e. sta-
tistical criteria used for model building), body weight was
found to be more influential than age on lamivudine
pharmacokinetics. In addition to the statistical criteria,
graphical diagnostics were used to assess the good-
ness of fit (see Figure S1 supplementary material for
details). Although concentrations below the quanti-
fication limit were present at time 0 and 24 h, the pre-
dicted mean concentrations did not significantly differ
from the observed mean concentrations (0.081 mg l−1 vs.
0.098 mg l−1 at time 0 h and 0.059 mg l−1 vs. 0.061 mg l−1 at
24 h after dose).

Model validation
The validation procedure has been performed for twice
daily and once daily data separately to ensure accurate
characterization of the data irrespective of the dosing
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regimen. The visual predictive check (VPC) indicated
model stability and absence of significant bias in the esti-
mates for fixed and random effects. Bootstrapping was
also performed as part of the validation procedure. All
runs carried out (n = 500) were successful. As shown in
Table 2, the final parameter estimates and their con-
fidence intervals were very similar to the original fitting.
Given that few patients between 3 to 24 months of age
were included in the analysis (n = 11), scatter plots of
observed vs. model predicted AUC and Cmax for these sub-
jects are shown to illustrate model performance in young
children (Figure 1).

The predictive performance of the model in subse-
quent simulations was deemed critical to achieve the
objective of our analysis. To this purpose, mirror plots were
used to assess whether the variance and covariance struc-
tures have been well characterized (Figure 2). Mirror plots
explore whether model parameters can accurately repli-
cate the findings in the original study, enabling therefore
further assessment of the covariate effects on dosing
regimen and dose recommendations.

To complete the validation, a graphical summary of
model performance across different weight ranges was
used to assess the predicted distribution for the variable of
interest [AUC (0,τ)]. As shown in Figure 3, the predicted
AUC distribution encompasses the exposure observed in
the original dataset.

Discussion

Pharmacokinetic model for the paediatric
population
A model-based approach has been applied in our study
to describe the pharmacokinetics of lamivudine in
HIV-infected children across a wide age range. A one-
compartment model with first-order absorption was found
to best describe lamivudine pharmacokinetics, which is
consistent with previous studies in adults and children [5,
8]. In our analysis body weight was the only covariate
found to influence lamivudine apparent clearance and
volume of distribution, which is also in agreement with
earlier investigations [5, 8, 10]. However, differently from
the study in adults, creatinine clearance was not found to
have an effect on lamivudine apparent clearance, probably
because its effect was confounded by body weight, and
patients were likely to have normal renal function. Appar-
ent clearance estimates in our study were very similar to
the literature findings in children (16.5 vs. 16.9 l h−1). In
addition, it was not possible to find a significant effect of
the formulation on relevant pharmacokinetic parameters
or to estimate a relative bioavailability of the two formula-
tions. Similar results were reported previously by Bouazza
et al. [24], whereas Kasirye et al. [25] showed in a study
with 19 children (aged between 1.8 and 4 years) that
lamivudine exposure was 55% higher after administration

Table 2
Summary of pharmacokinetic parameter estimates obtained from the final model. Results from the initial model built using data from PENTA 13 and PENTA
15 studies are not shown

Parameter Notation Population estimate* %CV Bootstrap mean (95% CI)

Clearance (CL)

CL/F = θ1 × (BW/med)∧ θ5

(intercept) l h−1 θ1 16.5 3.8 16.5 (15.2, 17.7)

(exponent) θ5 0.705 14.9 0.701 (0.498, 0.911)
Volume (V)
V/F = θ2 × (BW/med)∧ θ6

(intercept) l θ2 46.0 3.7 46.0 (42.4, 49.5)
(exponent) θ6 0.635 14.0 0.625 (0.461, 0.809)

Absorption rate constant (Ka) 1 h−1 θ3 3.68 15.9 3.86 (1.92, 5.43)
ALAG1 h θ4 0.755 4.5 0.755 (0.658, 0.851)

Weighing factor in $ERR θ7 −2.69 14.7 −2.73 (−4.13, 1.24)
Interindividual variability
ηCL/F variance ω1 0.0684 (26%†) 30.3 0.065 (0.032, 0.104)
ηV/F variance ω2 0.0368 (19%†) 52.8 0.035 (0.009, 0.06)
ηKa variance ω3 0.438 (66%†) 37.8 0.44 (0.098, 0.777)

Inter-occasion variability

OCCCL ω5 0.073 (27%‡) 27.2 0.072 (0.024, 0.121)

OCCKa ω7 0.53 (72%‡) 42.5 0.52 (0.173, 0.886)

OCCV ω9 0.04 (20%‡) 32.73 0.039 (0.011, 0.069)
Residual error
Additive error mg l−1 σ1 0.005 (7%) 21.48 0.005 (0.002, 0.007)

*Population parameter point estimates for the full one-compartment model are presented along with the %CV and 95% CI from a non-parametric bootstrap. †Value in parentheses
represents the interindividual variability of the PK parameters calculated as the square root of ω × 100%. ‡Value in parentheses represents the inter-occasion variability of the PK
parameters calculated as the square root of the ω × 100%.
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of the solid dosage form (i.e. tablet) as compared with the
liquid formulation. Such differences may be partly due to
dose approximation with the scored tablet as compared
with the precise dose administration of the solution.

Identification of covariates in lamivudine
pharmacokinetics in children
Our meta-analysis using three groups of HIV-infected chil-
dren (see Table 1) included model building and validation
steps to ensure predictive performance in subsequent
applications of the model, as for example in clinical trial
simulations. In contrast to common practice, an integrated

analysis of the full population was performed after prelimi-
nary model-building based on a subset of the full popula-
tion. Such a method was chosen to assess model stability
and confirm the selection and magnitude of the effect of
influential covariates. This approach can be particularly
useful in paediatric studies, given the difficulties in identi-
fying the correct demographic covariates, which are often
highly correlated with each other [13, 14, 26]. Given that a
wrong decision in covariate selection may affect future
dosing recommendations, special attention should be
paid to covariate model building. As shown in a previous
study, the stepwise approach commonly used for
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Figure 1
Scatter plots of observed vs. model predicted AUC(0,24 h) (top panels) and Cmax (bottom panels) for children younger than 24 months. Left panels depict
children from 0 to 12 months, whereas children from 12 to 24 months are shown on the right panels
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covariate selection may introduce selection and omission
bias in the model when the dataset used during the
analysis is small [27]. In fact, in small datasets the distribu-
tion of the covariates may not allow identification of a
correlation between the covariate and the pharmacok-
inetic parameters.

In our analyses, the initial lamivudine model accurately
predicted the pharmacokinetic profiles of the group which
was not used for initial model building (results not shown).
The same parameter–covariate correlations were identi-
fied when the model was re-evaluated using the full pae-
diatric population. It is important to point out that the
correlation between clearance and body weight was expo-
nential (Figure 4). For example, the apparent clearance
had a median value of 9.33 l h−1 for a child weighing 10 kg.
It increased to 16.55 l h−1 in children whose weight was
20 kg, but only increased by an additional 1.27 l h−1 in chil-
dren of 30 kg (17.82 l h−1).

A separate analysis of the data from the ARROW trial
(age range 3 to 12 years) was also performed and a one-

compartment model with first-order absorption and elimi-
nation was identified to describe best this subset of data.
Very interestingly, none of the demographic covariates
available was found to be significantly correlated with
the pharmacokinetic parameters. Furthermore, diagnostic
measures, such as the VPC of the model, were not able
to show any inaccuracy or bias in model-based predictions
of the data (Figure 5). These results suggest that the model
could be used subsequently for dosing recommenda-
tion purposes. However, its use would yield incorrect
model-based predictions in a different population since
the correct parameter–covariate relationship was not
identified during covariate model building. This finding
strongly underlines the importance of an integrated
data analysis and the risk of inaccurate covariate selection
when only a part of the full population is available for
analysis.

The limited availability of demographic information
does not imply that the proposed dosing regimen is inac-
curate. The data we have used reflect the information
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Figure 2
Mirror plots. Each panel shows the goodness of fit for the original data set (first on the top) and three randomly selected simulated data sets. On the left
panel the mirror plots depict population predictions vs. observations. On the right panel the mirror plots depict individual predictions vs. observations
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available in a typical study protocol in HIV-infected chil-
dren. On the other hand, we acknowledge that given that
not only differences due to body size are relevant across
wide age ranges, extrapolation of these findings to babies
and infants may be inappropriate. Also maturation
and potentially external factors may affect covariate–
parameter correlations. Unfortunately, we could not
explore the effects of renal function in the current study.
Patient showing varying degrees of renal function would
have enabled a more mechanistic description of the elimi-
nation of lamivudine. There are various examples in which
large discrepancies in exposure are observed in the target
population when doses are selected using information on
the covariate effect observed in a subgroup (e.g. linezolid)
[28]. Previous investigations with lamivudine have shown
a prolonged half-life in children immediately after birth,
with elimination increasing with renal function. Published

figures based on clearance normalized by body weight
(i.e. assuming linear correlation between parameter and
covariate) show clearance values of 0.19–0.25 l h−1 kg−1 on
day 1 up to 0.32–0.40 l h−1 kg−1 after 1 week of life, as com-
pared with 0.53 l h−1 kg−1 in older children [29, 30]. Based
on these findings dosing recommendation of 2 mg kg−1

twice daily has been proposed for neonates. Although
non-compartmental methods have been used in the afore-
mentioned publications, these figures are considerably
lower than the estimates we have obtained for clearance,
which would be approximately 0.93 l h−1 kg−1 if we incor-
rectly apply the same normalization method.

Limitations of current approaches in
paediatric dosing
Many examples are available in the literature of population
pharmacokinetic analyses based on less than 40 patients
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Figure 3
Distribution of the model-predicted area under the plasma concentration vs. time curve [AUC(0,∞)] (1000 replicate trials) compared with the original
dataset. The left panels show AUC(0,∞) predictions for children weighing less than 14 kg, middle panels show AUC (0,∞) predictions for children from 14 to
21 kg and right panels show AUC(0,∞) predictions for children weighting more than 21 kg. These weight boundaries were defined according to the dosing
recommendations available in the approved label. Predictions for twice and once daily doses are depicted in the upper and lower panels, respectively. The
solid red line represents the geometric mean of the observed AUC(0,∞) in the three sub-groups for each dosing regimen. AUC(0,∞) = AUC(0,12 h) for twice
daily and AUC(0,24 h) for once daily dosing
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[31–34]. In such small populations an unbalanced
covariate distribution may lead to the identification and

selection of wrong covariate–parameter relationships and,
in turn, to wrong model-based predictions when applying
the model to a different population (i.e. extrapolation).
Many experts in paediatric pharmacology claim to be
able to define the type and magnitude of the effect of a
covariate on pharmacokinetic parameters. However they
do not take into account that the parameter–covariate cor-
relation may be biased by the covariate distribution in that
particular group of children and as such should not be
used in a different population. In these circumstances, one
should talk about a data-driven approach, in the sense that
the model is able to describe correctly the data (as shown
in our analysis by the visual predictive check in Figure 5),
but is not able to predict correctly the variable of interest
in a different population. It is also worth mentioning that
such a hidden bias is not addressed by simply increasing
the sample size as often is the case in the pooled analysis
of patients undergoing therapeutic drug monitoring.
Meta-analyses should therefore be the preferred method
in paediatric pharmacokinetics to avoid model miss-
pecification and consequently expose children to subop-
timal drug concentrations or to a higher risk of toxicity.
When sufficient paediatric data are not available, one
should consider overcoming the limitations of small
populations by incorporating prior information from
pharmacokinetic parameters in adults and include them
in the model, as suggested by Cella et al. [12]. There are
also other research groups, who choose not to use
pharmacokinetic modelling for the analysis for drug expo-
sure and dose selection in children. Instead, they prefer to
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such a pattern in drug disposition is the need to assess carefully changes
in exposure when dosing regimens are defined on a mg kg−1 basis. It is
also clear from these curves that unbalanced distribution of the covariate
can lead to model misspecification

C
o

nc
en

tr
at

io
n 

(m
g 

l−1
)

C
o

nc
en

tr
at

io
n 

(m
g 

l−1
)

Time (h)

A B

Time (h)

0

0
1

2
3

4

0
2

4
6

8

5
6

5 10 15 0 5 10 15 20 25

Figure 5
Visual predictive check (VPC) of the population model for lamivudine using only the data from the ARROW trial. The dots represent observed concentrations,
whereas the dotted line represents the 95% CI of the simulated values. The solid blue line represents the median of the simulated profiles. Splitting of the
data sets based on dosing regimen reveals that approximately 95% of the dots lie within the expected boundaries for both twice daily (A) and once daily
(B) dosing. These results suggest absence of bias and accurate model performance irrespective of dosing regimen

Lamivudine pharmacokinetics in children

Br J Clin Pharmacol / 77:5 / 869



rely solely on non-compartmental analysis, ignoring the
issues highlighted above. The use of a model-based
approach presents significant advantages compared with
non-compartmental analysis, which cannot be overlooked
from a scientific and ethical point of view.

Clinical implications of an integrated
population analysis for accurate dosing
recommendation
Given that drug exposure drives efficacy, it should be clear
that model misspecification may lead to incorrect dosing
recommendations. The identification of the correct
covariate–parameter relationships is therefore crucial to
predict drug exposure accurately across different groups
in the paediatric population. Yet, this issue is further com-
pounded by current prescription practices. The role of
covariate–parameter correlations is apparently even more
important when exploring changes in dosing regimen. For
instance, we could not investigate the effect of obesity in
this population. However, given the low lipophilicity of
lamivudine (which is water soluble), we anticipate no
major impact of obesity on its pharmacokinetics. It is con-
ceivable that doses based on lean body mass might be
required for very obese patients, as drug distribution and
metabolism would not increase proportionally to total
body weight.

How to dose a drug in children remains a very debat-
able subject. Whereas normalization of the dose by body
weight makes prescription easy and reduces the risk
for prescription errors, deriving dose recommendations
without a thorough understanding of drug disposition in
children has been proven to be unsafe and harmful
[35]. Clearly, the effect of developmental growth on
pharmacokinetics is a nonlinear phenomenon and as such
it can be best described by a model-based approach.
However, modelling and simulation techniques should be
used with caution. Too little attention has been paid so far
to the implications of unbalanced covariate distributions
on pharmacokinetic analyses, as shown by the elevated
number of examples available in the literature. We are fully
aware of the challenges in performing paediatric trials and
in collecting clinical data in children. These difficulties
must not prompt us to neglect the problems caused by
small datasets, which may lead to the wrong dose selec-
tion. The use of meta-analyses, i.e. combined datasets from
available clinical trials in children, is strongly encouraged
to avoid erroneous predictions of the paediatric dose.

Limitations in our approach
It is important to mention that lamivudine plasma concen-
trations represent a limited marker of drug exposure, as it
is the intracellular lamivudine triphosphate metabolite
that becomes pharmacologically active. Unfortunately
adequate sampling for determination of intracellular
concentrations of nucleoside transcriptase inhibitor
triphosphate is logistically and technically difficult [36].

Furthermore the volume of blood needed to measure
intracellular lamivudine triphosphate concentrations with
current technology makes serial sampling impractical for
paediatric patients.

In conclusion, the clinical relevance of a pharma-
cokinetic model depends on the generalizability of the
covariate model across the overall population. Here we
have shown that covariate effects may be under or over-
estimated if the available data do not support accurate
identification of the correlation between parameters and
covariates. Unbalanced distribution of covariates may
result in hidden bias and yield inaccurate dosing recom-
mendations in children. In addition, our work shows that
the concept of pharmacokinetic bridging has been met for
lamivudine, in that the dosing corrected by body weight
does account for developmental growth, yielding compa-
rable systemic exposure throughout the population older
than 3 months of age.
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Figure S1
(A) Goodness of fit (left). Left upper panel shows the popu-
lation prediction (PRED) vs. observed concentration values
(DV). Right upper panel shows individual predictions (IPRE)
vs. observed concentration values (DV). Left lower panel
shows conditional weighted residuals (CWRES) vs. popula-
tion predictions (PRED). Right lower panel shows condi-
tional weighted residuals (CWRES) vs. time (TIME). Solid red
line represents the identity line. (B) Visual predictive check
(VPC) of the population PK model for lamivudine (right).
The dots represent observed concentrations; the dotted
red lines represent the 95% CI of the simulated values. The
solid blue line represents the median of the simulated pro-
files. The VPC of the data following twice daily (left) and
once daily (right) dosing shows that, approximately 95% of
the dots lie within the expected boundaries. These results
indicate that model predictions encompass the observed
data accurately irrespective of the dosing regimen
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