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Abstract

Oleanolic acid (OA, 3β-hydroxyolean-12-en-28-oic acid) is a ubiquitous pentacyclic

multifunctional triterpenoid, widely found in several dietary and medicinal plants. Natural and

synthetic OA derivatives can modulate multiple signaling pathways including nuclear factor-κB,

AKT, signal transducer and activator of transcription 3, mammalian target of rapamycin, caspases,

intercellular adhesion molecule 1, vascular endothelial growth factor, and poly (ADP-ribose)

polymerase in a variety of tumor cells. Importantly, synthetic derivative of OA, 2-cyano-3,12-

dioxoolean-1,9-dien-28-oic acid (CDDO), and its C-28 methyl ester (CDDO-Me) and C28

imidazole (CDDO-Im) have demonstrated potent antiangiogenic and antitumor activities in rodent

cancer models. These agents are presently under evaluation in phase I studies in cancer patients.

This review summarizes the diverse molecular targets of OA and its derivatives and also provides

clear evidence on their promising potential in preclinical and clinical situations.
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1. Introduction

Triterpenes have existed in nature from ancient times and have been identified in prehistoric

geological sediments [1]. Triterpenes are widespread in nature and are highly abundant in

medicinal plants especially in the leaves, bark, fruits and seeds of the herbs [2,3]. Based on

the number of isoprene units, triterpenes can be acyclic, mono-, bi-, tri-, tetra- and

pentacyclic. Pentacyclic triterpenes have six isoprene units with a basic formula of C30H48.

They are synthesized in plants by cyclization of squalene. Latest estimate indicates the

existence of approximately 20,000 different triterpene saponins from various sources [1,3,4].

The most studied triterpenes are the tetracyclic triterpenes, such as cycloartanes,

dammaranes, euphanes and protostanes, and pentacyclic triterpenes, such as gammaceranes,

hopanes, lupanes, oleananes and ursanes. In the past decade, numerous publications have

indicated the various bioactivities of pentacyclic triterpenoids. Pentacyclic triterpenes in

general possess unique biological properties. These bioactivities include antitumor, anti-

inflammatory, antiviral, antidiabetic, antimicrobial, antiparasitic, cardioprotective,

hepatoprotective, gastroprotective and wound healing effects [5]. The antitumor and anti-

inflammatory effects of pentacyclic triterpenoids have received the most attention and a

couple of synthetic oleanolic acid derivatives are now in clinical trials [3,4,6–9].

2. Oleanolic Acid

Oleanolic acid (OA, 3β-hydroxyolean-12-en-28-oic acid) (Fig. 1A) is a bioactive

pentacyclic triterpenoid belonging to the family Oleaceae and has been isolated from more

than 1,600 plant species, the majority of them are edible plants and medicinal herbs

[5,10,11]. OA is abundant in ginseng root [12] and in olive plant (Olea europaea) from

which the compound derives its name [13]. The olive plant is the primary commercial

source for the compound but other sources include Arctostaphyllos uva-ursi (Bearberry),

Calluna vulgaris (Heather), Crataeva nurvala (Three leaved caper) Ganoderma lucidum

(Reishi), Sambucus chinensis (Chinese elder), Solanum incanum (Sodom’s apple). OA

occurs in olive leaves as almost pure crystals that prevent fungal attack [14] and function as

a defense compound against herbivores or pathogens or as allelopathic agents. OA exists in

nature as the free acid, but also serves as an aglycone of triterpenoid saponins linked with

one or more sugar moieties to form glycosides [1,4–6]. Often OA and its isomer, ursolic

acid (UA) are found in combination and have similar pharmacological properties

[6,7,10,11]. UA is easily obtained in very high purity by methanol extraction of rosemary

leaf while OA can be easily obtained in high yield from olive pulp remaining after crushing

of the olive fruit and also from olive leaves [3,15]. Thus naturally abundant OA serves as

scaffolds for additional modifications to achieve semi-synthetic pentacyclic OA

triterpenoids. Among all the triterpenes, pentacyclic OA triterpenoid have been shown to

have unique biological activities such as anti-inflammatory, cardio-, hepato-, and gastro-

protective, antitumor, antiviral, antidiabetic, antimicrobial, antiparasitic, analgesic and

wound-healing effects as well as inducing apoptosis in cancer cells [5,16]. Major
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advancements in triterpenoid research during the current decade have been made in the

synthesis of synthetic triterpenoids. For example, the OA derivative, 2-cyano-3, 12-

dioxooleana-1,9(11)-dien-28-oic acid (CDDO, Fig. 1B) and its C-28 methyl ester (CDDO-

Me or bardoxolone methyl, Fig. 1B) and C28 imidazole (CDDO-Im) demonstrated potent

anti-inflammatory and antitumor activities [17,18]. In addition to these three derivatives,

others such as di-CDDO (nitrile at C17 position of CDDO) and various amides such as

CDDO-MA (methyl amide), CDDO-EA (ethyl amide), and CDDO-TFEA (trifluoroethyl

amide) were synthesized and tested for their antitumor properties. All these molecules affect

multiple intracellular processes such as blocking various pro-inflammatory cytokines and

chemokines, repressing tumor cell proliferation and inducing tumor cell apoptosis [16,19–

23] (Fig. 2). This review will mainly focus on OA and its derivatives.

3. In vitro effects of OA and its synthetic derivatives on cancer cells

3.1. Breast cancer

The role of triterpenoids in the chemoprevention and therapy of breast cancer has been

excellently reviewed previously [24]. OA isolated from Glossogyne tenuifolia showed weak

antitumor activity against MCF7 and MDA-MB-231 breast cancer cells [25]. Several

investigators confirmed antiproliferative effect of OA against several breast carcinoma cell

lines [26,27] (Table 1).

A novel synthetic OA derivative, achyranthoside H methyl ester (AH-Me) exhibited

significant cytotoxicity against human breast cancer MCF-7 and MDA-MB-453 cells, with

respective IC50 values of 4.0 and 6.5 μM. AH-Me-induced apoptosis was supported by dose-

and time-dependent increases in the sub-G1 population and activation of caspase-3 [28].

CDDO was shown to inhibit proliferation and induce peroxisome proliferator-activated

receptor-γ (PPAR-γ) in human epidermal growth factor receptor 2 (HER2) overexpressing

breast cancer cells [29,30]. CDDO-Im induced apoptosis in estrogen receptor negative and

BRCA1 null breast cancer cells, by inducing reactive oxygen species (ROS), and

subsequently DNA damage [31,32]. In another study, CDDO-Im in combination with

Gemini vitamin D analog, ABXL0124, potently inhibited HER2 or ErbB2 overexpressing

breast cancer cells and repressed downstream signaling proteins, such as pErk1/2, pAKT, c-

Myc, cyclin D1 and Bcl-2 [33]. CDDO-Im was shown to effectively block EGFR/signal

transducer and activator of transcription 3 (STAT3)/Sox-2 signaling pathway in tumor-

associated macrophages (TAMs) which are known to promote growth and metastasis of

breast cancer [34]. CDDO-Me inhibits the JAK/STAT3 pathway in MDA-MB-468 breast

cancer cells [35].

3.2. Glioma and glioblastoma

OA (25 μM) induced accumulation of ROS in 1321N1 astrocytoma cell line, resulting in

apoptosis [36]. One possible mechanism might be that generation of ROS triggers the

antioxidant cascade including nuclear factor E2-related factor 2 (Nrf2) over-expression. In

high grade glioma patients, TAMs polarized to the M2 phenotype promote tumor cell

proliferation and are always associated with poor prognosis. OA significantly inhibited the

proliferation in both U373 human glioblastoma cells and in human macrophages by
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inhibiting the expression of CD163, IL-10, M2 polarization of macrophages and STAT3

phosphorylation [37].

Glioblastoma and neuroblastoma are primary brain tumors that are unresponsive or weakly

responsive to chemotherapeutic agents. CDDO, CDDO-Me and CDDO-Im inhibited the

growth of glioblastoma cells (U87MG, U251MG) and neuroblastoma cells (SK-N-MC).

CDDO-Me and CDDO-Im showed equipotent anticancer activity, and induced apoptosis in

these cell lines [38]. All CDDO analogs such as CDDO-Me, CDDO-Im, CDDO-EA,

CDDO-TFEA, and CDDO-DE induced apoptosis by activating mitochondrial proteins and

caspase-3 in 22 pediatric solid tumor cell lines, including neuroblastoma,

rhabdomyosarcoma, osteosarcoma, and Ewing’s sarcoma [39].

3.3. Colorectal cancer

3-O-acetyloleanolic acid induced apoptosis in HCT-116 cells by an extrinsic caspase

signaling cascade and by up-regulation of death receptor 5 (DR5) [40].

3.4. Hepatocellular cancer

One of the noted effects of OA is its hepatoprotective effect by preventing chemically-

induced liver injury and the fibrosis and cirrhosis caused by chronic liver diseases

[10,11,41,42]. The liver specific chemopreventive and antitumor mechanism of triterpenoids

and OA in particular has recently been reviewed [43,44]. OA treatment increased the

expression of transcription factor Nrf2, a key transcriptional regulator of antioxidant and

detoxifying enzymes [45,46]. Nrf2 has been shown to be necessary for the upregulation of

genes involved in oxidative stress, such as glutathione S-transferase or superoxide

dismutase-containing antioxidant response element (ARE) [47]. In a recent study, it was

shown that OA binds to the ligand-binding domain of the farnesoid X receptor (FXR), a

ligand-regulated transcription factor that regulates the biosynthesis of bile acid and its

excretion from liver cells [48] and modulates the expression of FXR target genes, such as

CYP7A1 [49]. Hence a part of Nrf2-mediated hepatoprotective effect of OA may be partly

mediated through FXR and by inhibiting NF-κB activation pathway. OA is also reported to

have anti-inflammatory and anticancer effects [8,9]. OA was found to induce cell cycle

arrest by modulating ERK-p53 mediated cell cycle arrest and induced apoptosis in HCC

cells via the mitochondrial pathway [50]. OA induced apoptosis by modulating the

mitochondrial pathway and down regulating XIAP in HuH7 hepatocellular carcinoma cells

[51].

A series of furoxan and glycosyl-based nitric oxide releasing derivatives of OA have been

reported to have potent anticancer activity against HCC cell lines [52–54]. In another series

of O(2)-glycosylated diazeniumdiolate-based derivatives of OA were synthesized and

evaluated for their anti-HCC activity. In this series, one particular compound 6, (O2-β-D-

Galactopyranosyl 1-4-[(12-en-28-β-D-glucopyranosyloleanolate-3-yl-oxy)-succinyl-oxy]

piperidin-1-yldiazen-1-ium-1,2-diolate) induced HCC cell apoptosis, characterized by a

decrease in mitochondrial membrane potentials and Bcl-2 expression, with greater

cytochrome c release, Bax, caspase-3 and -9 expression in HCC cells [55,56]. Mallavadhani

et al. [57] synthesized a series of 17 OA C-17 ester chains consisting of olefinic, acetoacetyl,
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and bromoalkyl compounds and tested for its antiproliferative activity against SiHa and

HeLa (cervix), A-549 (lung), and IMR-32 (neuroblastoma) cancer cell lines. However, all

these compounds showed similar activity as their parent compound [57]. OA with

azaheterocyclic groups at the 2, 3 position of the A-ring was shown to have cytotoxic

activity against HCC line, BEL-7404 cells and induced apoptosis through down-regulation

of Bcl-2 and mitochondrial membrane potential, releasing cytochrome c, and upregulation of

Bax and caspase-3 [58]. A novel PABA/NO derivative of OA was shown to have significant

and selective activity against HepG2 cells and induced apoptosis by modulating ROS/

MAPK-mediated mitochondrial pathway [59]. OA derivative, with 1-en-2-cyano-3-oxo in

ring A and a nitro group at C-17, was shown to be important for its cytotoxicity against

HepG2 and Col-02 cells [60]. In the liver, most of the synthetic CDDO analogs also protect

against toxic insults such as acetaminophen, aflatoxin, concanavalin A, or cisplatin and

against injury from ischemia by up-regulating the Nrf2/ARE pathway [16,20].

3.5. Hematological malignancies

OA (80 μM) induced apoptosis in HL60 cells via activation of caspase-9 and caspase-3 and

induced cleavage of poly(ADP-ribose) polymerase [61].

Synthetic OA derivatives inhibited proliferation and induced apoptosis in vitro in a wide

variety of human tumor cells including leukemia cells. Olean-12-Eno[2,3-c] [1,2,5]

oxadiazol-28-oic acid (OEOA), synthetic derivative of OA, induced G1 cell cycle arrest as

well as differentiation in human leukemia cell lines, K562, HEL and JURKAT [62]. Three

new active oleanolic vinyl bornates inhibited the growth of leukemia cells (Jurkat and K562)

and Burkitt’s lymphoma cells (Jijoye) without concomitant inhibition of non-tumoral human

fibroblasts [63]. CDDO primarily activated the extrinsic apoptotic pathway in myeloid

leukemia cells [64]. In another study, CDDO, CDDO-Me and CDDO-Im suppressed the

growth of pediatric acute lymphoblastic leukemia. The observed cytotoxicity was

independent of induced ceramide synthesis in MOLT-4 cells [65]. CDDO and CDDO-Im

also displayed antitumor activity against chronic lymphocytic leukemia (CLL) derived from

patients and in a mouse model of CLL and small B cell lymphoma (SBL). In in vitro studies,

these triterpenoids induced apoptosis of CLL cells [66]. When CDDO was compared to

several PPAR-γ ligands, including BRL49653 (rosiglitazone) and 15-deoxy-Delta 12,14-

prostaglandin J(2), in leukemia (U937 and HL-60) and lymphoid cells (Su-DHL, Sup-M2,

Ramos, Raji, Hodgkin’s cells, and primary CLL), CDDO-induced differentiation and

apoptosis was of greater potency when compared to PPAR-γ ligand-induced apoptosis, and

it was characterized by loss of mitochondrial membrane potential and caspase activation

[67]. Similar results were reported in human diffuse large B-cell lymphoma (DLBCL) [68].

In another study, Lon protease inhibition was shown to mediate CDDO-induced B-lymphoid

cell apoptosis, a novel anticancer drug target [69]. Shishodia et al. [70] reported that CDDO-

Me inhibited human leukemia cell proliferation, inhibited constitutive and inducible NF-κB

activation, and NF-κB-regulated gene products, such as vascular endothelial growth factor

(VEGF), cyclooxygenase-2 (COX-2), and matrix metalloproteinase-9. In human U-937

myeloid leukemia cells, CDDO and CDDO-Me directly blocked IKK-β activity and thereby

the NF-κB pathway by interacting with Cys-179 in the IKK-β activation loop [71]. Many

reported studies showed that CDDO-Me and CDDO-Im are equipotent compared to CDDO,
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which has lower activity. The combination of CDDO-Me with 5-fluorouracil or paclitaxel,

or doxorubicin showed synergistic activity in leukemia [70] and in combination with

midostaurin (PKC412, an Fms-like tyrosine kinase-3 inhibitor in clinical trials) CDDO-Me

was effective in AML blast cells [72]. Aberrations in many intrinsic signaling pathways

contribute to chemoresitant leukemia. In Bcl-xL overexpressing leukemia cells (an intrinsic

inhibitor of apoptosis), CDDO-Me did not disrupt mitochondrial transmembrane potential

but CDDO-Im induced apoptosis by activating the mitochondrial pathway [73]. CDDO-Me

induced autophagy in imatinib-resistant chronic myelogenous leukemia cells by increasing

ROS, depleting glutathione and thus disrupting mitochondrial function [74]. In contrast,

CDDO-Im induced a transient phosphorylation of Akt in U937 leukemia cells [75].

3.6. Lung cancer

OA inhibited the growth of non-small cell lung cancer cell lines (NSCLC), such as A549

and H460, and their multidrug resistant variants, which expressed multidrug resistant protein

1 and ABCC1 protein. OA also induced apoptosis and decreased VEGF expression in

NSCLC as well as variety of multidrug resistant cancer cells [76,77]. OA treatment in

conjunction with radiation has been shown to inhibit cellular glutathione with simultaneous

reduction in gamma-glutamylcysteine synthase activity in C6 rat glioma and human A549

lung cancer cells. The combined treatment also caused a drastic decrease in the clonogenic

growth of tumor cells [78].

CDDO-Me induced cytochrome c release from the mitochondria leading to apoptosis in a

variety of cancer cells, such as U937, HL60, Jurkat T, HCT116, HCT116-Bax−/− and OCI-

AML3 cells [79]. In several lung tumor cells, CDDO-Me was shown to induce apoptosis by

rapidly down-regulating expression of FLICE-like inhibitory protein (FLIP), an endogenous

antagonist of caspase-8 [80], or by activating JNK and C/EBP homologous protein

transcription factor (CHOP), thus inducing expression of DR 5 and activation of caspase-8

[81].

3.7. Ovarian cancer

CDDO inhibited proliferation of a number of epithelial ovarian cancer cell lines, namely

2774, SKOV3, CAOV3, OVCAR3, NMP-1, HEY, 2008 and 2008.C13 [82]. CDDO-Im was

also shown to inhibit the proliferation of 2780 ovarian cancer cell line and its chemoresistant

derivatives, A2780/ADR and A2780/CISP, OVCAR3, SKOV3 and HEY cancer cell lines

and primary ovarian cancer cells and induced apoptosis by inhibiting the JAK/STAT3

pathway [9]. CDDO-Me significantly inhibited interleukin-6 (IL-6) secretion in paclitaxel

(OVCAR8(TR))- and cisplatin (A2780cp70)-resistant ovarian cancer cell line, repressed Src,

Jak2 and STAT3 phosphorylation, induced apoptosis by modulating STAT3-regulated

genes, BCL-xL, survivin and Mcl1 [83]. Gao et al. [84,85] demonstrated that CDDO-Me

induced ROS generation in OVCAR-5 and MDAH 2774 ovarian cancer cells and inhibited

the expression of p-AKT, p-mTOR, NF-κBp65 and NF-κB-regulated antiapoptotic proteins

Bcl-2, Bcl-xL, c-IAP1 and survivin.
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3.8. Osteosarcoma

Hua et al. [86] showed that dextrose-linked OA potently inhibited the proliferation and

induced apoptosis in MG-63, U2-OS, HOS and LM8 osteosarcoma cells.

3.9. Pancreatic cancer

OA inhibited cell proliferation and induced apoptosis via ROS-mediated mitochondrial

mechanism in pancreatic cancer Panc-28 cells [87]. In an earlier study, OA was shown to

potentiate 5-fluorouracil-induced cytotoxicity and also induced apoptosis of human

pancreatic cancer cells, Panc-28 [88].

In pancreatic cancer cell lines, MiaPaCa-2 and Panc-1, treatment with CDDO-me induced

production of ROS, hydrogen peroxide and superoxide anions and inhibited telomerase

activity and also downregulated p-Akt, p-mTOR, NF-κBp65 and human telomerase reverse

transcriptase (hTERT) [89–92]. Using transgenic pancreatic cancer cell lines derived from

LSL-Kras G12D/+, LSL-Trp53 R127H/+, and Pdx-1-Cre (KPC) tumors, CDDO derivatives

inhibited STAT3 and IKK activity and blocked constitutive IL-6 secretion, STAT3 and IKK

phosphorylation [23]. In another study, CDDO-Me stimulated the production of ROS

thereby increasing levels of the ZBTB10 protein repressor and suppressing the expression of

cell cycle regulating proteins, and angiogenic proteins in pancreatic cancer cells [93]. A

series of novel oleanane imidazole carbamates, N-acylimidazoles or N-alkylimidazoles

showed potent antiproliferative activity in AsPC-1 pancreatic cancer cells [94].

3.10. Prostate cancer

CDDO-Me- and CDDO-Im -induced inhibition of growth of LNCaP, ALVA31, Du145,

PC3, and PPC1 prostate cancer cells lines were associated with increased expression of DR4

and DR5, which act as cell surface receptors for TRAIL [95]. Treatment with CDDO-Me

inhibited LNCaP and PC3 prostate cancer cell proliferation and induced apoptosis, which

was associated with suppression of hTERT gene expression and inhibition of Akt/NF-κB/

mTOR pathway [96,97]. Hao et al. [98] described the antitumor activity of 12 derivatives of

OA which exhibited the most potent cytotoxicity against PC3 cancer cells. Deeb et al. [99]

show that CDDO-me inhibited hormone-refractory PC-3 (AR−) and C4-2 (AR+) prostate

cancer growth and progression by modulating p-Akt, p-mTOR, and NF-κB signaling

proteins and their downstream targets, such as p-Bad and p-Foxo3a (for Akt), p-S6K1, p-

eIF-4E and p-4E-BP1 (for mTOR), and COX-2, VEGF and cyclin D1 (for NF-kappaB) both

in vitro and in vivo. In yet another study, CDDO-M induced ROS in LNCaP and PC3 cells

from both non-mitochondrial and mitochondrial sources and induced apoptosis in these cells

[100].

3.11. Skin cancer

OA (IC50 of 4.8 μM) exhibited significant cytotoxicity as well as inhibited the growth of

B16 2F2 mouse melanoma cells and induced apoptosis in these cells [101]. The effect of

chemical modifications of the sugar moiety attached to the aglycone of OA on tumor cell

growth recently was reported by Liu et al. [102]. Both OA saponin and its synthetic saponins

showed potent cytotoxic activity against human melanoma cancer (A375) [102].
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Synthetic OA derivatives are potent inhibitors of cancer cell proliferation and inducers of

apoptosis in a variety of tumor cells obtained from various organs. CDDO promoted

apoptosis of COLO 16 human skin cancer cells in a dose- and time-dependent manner with

concomitant rise in cytoplasmic free Ca2+ [103]. In multidrug resistant multiple myeloma

cells which are resistant to melphalan (LR-5), doxorubicin and dexamethasone, CDDO and

CDDO-Im-induced apoptosis was associated with loss of mitochondrial membrane

potential, superoxide generation, release of mitochondrial protein (cytochrome c) and

activation of caspase-8 and caspase-9 and the executioner caspase-3 [19,104], inhibition of

STAT3 transcription factor and induction of the expression of endogenous STAT3 inhibitor

SHP1 and induction of apoptosis [105]. In another recent study, it was demonstrated that

CDDO-Im and CDDO-Me can protect human keratinocytes against toxicity from the sulfur

mustard analog, 2-chloroethyl ethyl sulfide, by inducing the synthesis of glutathione, which

is depleted by sulfur mustard [106].

4. In vivo antitumor activity of OA and its synthetic derivatives

In several reports, OA displayed potent in vitro inhibitory activity against tumor cell

proliferation and also powerful induction of apoptosis. However, to determine the in vivo

bioactivity, OA was tested in several rodent models of organ-specific cancer (Table 2).

4.1. Hepatocellular carcinoma

In a liver cancer model, OA inhibited HCC tumors in Balb/C mice [50]. In this study, mice

were randomly divided into three groups: control, low dose of OA and high dose of OA. In

OA-treated groups, mice were administered with 75 or 150 mg/kg/day OA intraperitoneally

respectively for 3 weeks. OA significantly inhibited the growth of HCC tumors [50].

Intraperitoneal administration of OA showed a LD50 of 1500 mg/ml in mice and a single

subcutaneous dose of 1000 mg/ml caused no toxic effects in rats [107].

Synthetic OA derivatives have been used to treat established tumors in experimental animal

models. Furoxan- and glycosyl-based nitric oxide releasing OA derivatives displayed low

acute toxicity in mice while significantly inhibiting the growth of HCC tumors in vivo

[53,54]. A series of O(2)-glycosylated diazeniumdiolate-based OA derivatives were tested

for their anti-HCC activity. Compound 6 in this series exhibited low acute toxicity (LD50 =

173.3 mg/kg) and potently inhibited HCC tumor growth in mice (3 mg/kg, iv) [55]. A novel

PABA/NO OA derivative showed potent antitumor activity and significantly reduced tumor

volume and tumor weight in a H22 solid tumor model [59]. CDDO-Im when administered

for 8 weeks was shown to reduce metastasized tumor burden in the liver after intravenous

inoculation of tumor cells [108]. In addition, short-and long-term clinical trials using OA for

acute and chronic hepatitis, respectively, demonstrated the safety of this compound [10].

4.2. Breast carcinoma

A novel synthetic oleanane triterpenoid (methyl-25-hydroxy-3-oxoolean-12-en-28-oate,

AMR-Me) when administered orally at doses of 0.8, 1.2 or 1.6 mg/kg, three times a week

for eighteen weeks inhibited the growth of 7,12-dimethylbenz(a)antracene (DMBA)-

initiated mammary carcinoma in rats [109]. AMR-Me downregulated the expression of
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estrogen receptor-α (ER-α), ER-β and cyclin D1 and diminished Wnt/β-catenin signaling

during DMBA mammary tumorigenesis in rats [110]. Very recently, it has been shown that

AMR-Me downregulated the expression of COX-2 and heat shock protein 90 (HSP90),

suppressed the degradation of inhibitory κB-α (IκB-α) and reduced the translocation of NF-

κB from cytosol to nucleus in DMBA-induced mammary tumors in rats [111].

In female BALB/c or FVB/NJ mice orthotopically implanted with breast tumor cells (4TO7

or MMTVB-neu), CDDO-Im formulated as nanoparticles when combined with HER-2 DNA

vaccine produced significant antitumor activity and was associated with parallel reduction in

the production of pro-inflammatory cytokines such as transforming growth factor-β, IL-6

and IL-10 and enhanced tumor-specific cytotoxic T-lymphocyte response [112]. When fed

with CDDO-Me mixed with diet beginning at 10 weeks of age, significantly delayed

mammary tumor growth by over 3 months in a mouse transgenic model with overexpressing

MMTV-neu (ErbB2/HER2) receptor tyrosine kinase [113]. In another breast cancer mouse

model with deletion of BRCA1 gene and a single allele mutation in p53 tumor suppressor,

CDDO-Me diet increased lifespan of mice by 5 weeks compared to control mice [114] and

induced tumor growth arrest in MDA-MB-435 ER, MDA-MB-468 ER and MCF7 ER

xenograft breast cancer mouse models [29,112,115]. Intraperitoneal injection of CDDO-Me

nanoparticles shown to inhibit invasion and metastasis to lungs in a spontaneously

developing mammary tumor derived from chemoresistant 4T1 breast cancer cells

subcutaneously implanted in Balb/c mice [30]. In a recent report, potent chemopreventive

activity was observed when CDDO-Im was administered orally in combination with

BXL0124 (Gemini vitamin D analog) in MMTV-ErbB2/neu mice [33]. In another model of

ER-negative breast cancer in MMTV- polyoma middle T (PyMT) mice fed with CDDO-Me

(50 mg/kg diet) at starting 4 weeks of age, CDDO-Me significantly increased the overall

survival by 5.2 weeks [116].

4.3 Colon carcinoma

Chemopreventive activity of OA was observed in rats subjected to chemical carcinogenesis.

Oral treatment of rats with OA (25 mg/kg body weight) prevented 1,2-dimethylhydrazine-

induced colon carcinoma [117,118].

4.4. Prostate carcinoma

CDDO and CDDO-Me prevented the progression of prostate cancer in the TRAMP mice

model [119]. In addition, inhibition of progression of pre-neoplastic lesions (i.e., low and

high-grade prostate intraepithelial neoplasms) to adenocarcinoma of the prostate by CDDO-

Me in TRAMP mice was associated with significant decrease in TERT and its regulatory

proteins in the prostate gland. These data provide evidence that telomerase is a potential

target of CDDO-Me for the prevention and treatment of prostate cancer [96,97].

4.5. Leukemia and lymphoma

Leukemia cells seem to be especially sensitive to triterpenoids. Liposome-formulated

CDDO or CDDO-Im triterpenoids reduced leukemia and lymphoma growth in vivo in a

TRAF2DN/Bcl-2 transgenic mouse model of chronic lymphocytic leukemia and small B-

cell lymphoma. CDDO-Im was more potent than CDDO and induced apoptosis of
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circulating B cells by 60 to 90% [66]. In another study, CDDO-Im was shown to be more

potent than CDDO in both B16 mice melanoma tumors in BDF1 mice and L1210 murine

leukemia. CDDO-Im was injected intraperitonially twice a day for 7 days, at doses of 50,

100, and 200 mg/kg. CDDO-Im induced significant dose-dependent decrease in tumor

burden [120]. Combination of all-trans retinoic acid and CDDO-Me significantly improved

survival in a syngeneic mouse model of acute promyelocytic leukemia [121].

4.6. Melanoma

OA was shown to inhibit mouse skin tumor promotion by 12-O-tetradecanoylphorbol-13-

acetate (TPA) [122]. Furthermore, OA decreased the development of melanoma-induced

lung metastasis [76]. OA when administered at doses of 5 or 10 mg/kg/day decreased

pulmonary metastasis on day 18 in groups of mice injected intravenously with B16F10

melanoma cells [76].

In SKH1 hairless mice, Di-CDDO (10 nM, twice/week for 17 weeks) applied topically to

the skin of mice significantly decreased the incidence of skin tumors induced by chronic

low-level UBV radiation [123].

4.7. Pancreatic carcinoma

In xenograft models of pancreatic cancer, oral administration of CDDO-Me (7.5 mg/kg)

daily for 4 weeks significantly decreased tumor volume and the expression of VEGF, cyclin

D1 and survivin [93]. In addition to their efficacy in various xenograft models, OA

derivatives also significantly delayed tumor development in transgenic models. In a

transgenic mouse model of pancreatic cancer with mutations (LSL-Kras G12D/+, LSL-

Trp53 R127H/+, Pdx-1-Cre) [KPC] synthetic OA derivatives increased survival of KPC mice

by 3 to 4 weeks. In this particular experiment, mice were fed powdered control diet or a diet

containing the triterpenoids, CDDO-Me (60 mg/kg diet) or CDDO-EA (400 mg/kg diet) or

their respective combinations [23].

4.8. Lung carcinoma

OA derivatives are also potent inhibitors of lung carcinogenesis. When mixed in diet and fed

to A/J mice one week after initiation with vinyl carbamate, CDDO-Me, CDDO-EA and

CDDO-MA significantly decreased lung adenocarcinoma tumor burden by 86 to 96%,

compared to controls [124].

4.9. Osteosarcoma

Synthetic OA derivative, dextrose-OA, dose-dependently inhibited LM8 osteosarcoma

growth in vivo [86]. Dextrose-OA (25, 50 and 100 mg/kg body weight) was intraperitoneally

administered for 4 weeks. At the end of the 4-week treatment, dextrose-OA significantly

inhibited the growth of tumor compared to vehicle control and inhibited metastasis of LM8

osteosarcoma tumor cells to lungs [86].
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5. Clinical trials of synthetic OA derivatives

CDDO, a multifunctional molecule with apoptosis-inducing activity in cancer cells, was

evaluated in a phase 1 clinical trial conducted by Speranza et al. [125]. In this clinical study,

seven patients were enrolled for phase I dose-escalation study to determine toxicity,

maximum tolerated dose (MTD), and pharmacokinetic profiles of CDDO. Following

administration of CDDO as a 5-day continuous infusion every 28 days in patients with

advanced cancers, this particular compound showed rapid increase in plasma concentration

and achieved steady-state plasma level within 48 h. Bardoxolone methyl, a novel synthetic

OA triterpenoid, exhibits potent anti-inflammatory activity and anticancer activity. Hong et

al. [126] evaluated the first-in-human phase I clinical trial of bardoxolone methyl in patients

with advanced solid tumor and lymphoma to delineate the dose-limiting toxicities, MTD,

and to characterize its pharmacokinetic and pharmacodynamics parameters. Bardoxolone

methyl was administered orally once a day for 21 days and showed a MTD of 900 mg/d

associated with the anti-tumor activity [126]. In earlier dose escalation study with

bardoxolone methyl in 34 or 47 patients with advanced refractory lymphoid solid tumors,

bardoxolone methyl was administered orally for 21 days at doses ranging from 5 mg/day or

1.3 g/day and modulated NF-κB, STAT3 and Nrf2 targets in these tumors. Bardoxolone

methyl was well tolerated in 91% of patients and showed minimal toxicity when

administered for up to 1 year in a phase 3 trial [16]. In all clinical trials, bardoxolone methyl

was relatively safe [127].

6. Preclinical and clinical pharmacokinetic studies of OA and its synthetic

derivatives

A highly sensitive HPLC-ESI-MS-MS method was developed by Song et al. [128] to

determine the bioavailability of OA in healthy Chinese male volunteers. Following

administration of oral OA capsules (40 mg/volunteer, single dose) to 18 male volunteers, the

mean values of Cmax, Tmax, AUC0-48, AUC0-infinity, t1/2, CL/F, and V/F were found to be

12.12±6.84 ng/ml, 5.2±2.9 h, 114.34±74.87 ng h/ml, 124.29±106.77 ng h/ml, 8.73± 6.11 h,

555.3±347.7 l/h, and 3371.1±1,990.1 l, respectively [128]. In another study, OA (0.5%)

mixed in diet was fed to C57BL/6 mice for 8 weeks and evaluated for its bioavailability,

tissue distribution, and its antioxidant activity. Results from this study showed that OA was

easily detected by HPLC-MS system and its bioavailability was 0.55 μg/ml in mice plasma,

1.7 μg/g in brain tissue, 4.2 μg/g in heart tissue, 10.3 μg/g in liver tissue, 5.5 μg/g in kidney

tissue, 6.0 μg/g in colon tissue and 3.7 μg/g in bladder tissue [129]. The dose-independent

pharmacokinetic behavior of OA was investigated after intravenous and oral administration

in rats with the doses ranging from 0.5–2 and 25–50 mg/kg, respectively [130]. Following

oral administration, the systemic absorption was extremely low (F¼ was 0.7%). The low

oral bioavailability of OA might be due to poor gastrointestinal absorption and subsequent

hepatic first-pass metabolism [15,130]. Different formulations of OA, such as freeze-dried

polyvinylpyrrolidone and sodium caprate OA, increased dissolution rate and intestinal

permeability when tested in vitro in Caco-2 cells and in vivo in Sprague-Dawley rats,

respectively [130,131]. Pharmacokinetic parameters of OA and other pentacyclic triterpene

saponins have been reported in detail including the metabolism of OA [132]. Cao et al. [133]
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synthetized numerous water-soluble amino acid analogues of OA and tested for their

bioavailability. Interestingly, aqueous solubility of OA increased from 0.012 μg/ml to 2.5–

3.1μg/ml and absolute oral bioavailability increased 2-fold [15,133]. In a recent study, Cao

et al. [134] showed that propylene glycol-linked amino acid/dipeptide diester prodrugs of

OA showed better stability, permeability, affinity, and bioavailability. In order to increase

OA bioavailability, sucrose-ester stabilized nanosuspension of OA was synthesized and

tested in in vitro cancer cell cultures and in vivo in mice [135]. The investigators found that

OA nanosuspension bioavailability in A549 human non-small-cell lung cancer cell line was

concentration-, temperature- and time-dependent and the formulation showed excellent in

vivo oral and intravenous bioavailability in rats [135] and in self-nanoemulsified drug

delivery systems [136].

7. Conclusions and perspectives

Pentacyclic triterpenoids obtained from natural plant materials have been shown to inhibit

tumor cell proliferation, induce apoptosis, increase the life span of tumor-bearing mice

compared to control group, as well as prevent angiogenesis, invasion and metastasis of

tumor cells to distant organ sites in preclinical models of cancer. They also exhibit multi-

functionality by targeting multiple tumor cell promoting extracellular and intracellular

protein targets and are thus named multifunctional compounds. In this review, we have

highlighted the significance of both natural and synthetic OA derivatives in various organ-

based tumor models and discussed the potential of these compounds in chemoprevention

and therapy. We have also summarized the reported chemopreventive and therapeutic

efficacy of pentacyclic triterpene OA in transgenic, orthotopic and xenograft tumor models.

Indications from both in vitro and in vivo studies suggest that OA can indeed suppress

multiple molecular targets that play a fundamental role in both development and progression

of chronic inflammation and cancer. In this decade alone, several synthetic OA derivatives

were synthesized that exhibited potent antitumor activity both in in vitro and in vivo studies

with phase-1 and phase-2 clinical trials reported for bardoxolone methyl. Bardoxolone

methyl seems promising with a good safety profile in human clinical trials. The evidence

also supports the similarity of inhibiting common molecular targets in addition to the novel

target proteins that play a pivotal role in tumor progression. Using several sensitive

instruments, OA absorption, distribution, metabolism and excretion profiles have been

reported. OA is bioavailable following oral administration in mice and human

pharmacokinetic and pharmacodynamics profiles of OA and its synthetic derivatives are also

discussed. All these studies uphold the traditional use of OA as well as its usefulness in

modern day traditional Chinese medicine clinics. Additional clinical trials are warranted to

bring these exciting molecules to clinical use for the benefit of mankind.
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Fig. 1.
The chemical structures of oleanolic acid and its derivatives. A, natural oleanolic acid; B, synthetic oleanane triterpenoids.
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Fig. 2.
Major inflammation-associated signaling pathways inhibited by synthetic derivatives of oleanolic acid. These pathways include

NF-κB, STAT3, TRAIL signal transduction pathways and the Keap1/Nrf2/ARE activation cascade that have been shown to be

modulated both in vitro and in vivo.
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Table 1

In vitro anticancer effects of natural and synthetic oleanolic acid.

Molecules Biological effects References

Breast cancer

OA Inhibits proliferation of human breast cancer cell lines MCF-7 and MDA-
MB-231

[26]

OA Induces apoptosis in MCF7, T47D, SKBR3 cells and in tomoxifen resistant
MCF7 cells

[27]

AH-Me Induces apoptosis in MCF7 and MDA-MB 435 cells [28]

CDDO Inhibits proliferation and induce PPARγ in HER2 overexpressing cells [29,30]

CDDO-Me Inhibits JAK/STAT pathway in MDA-MB-468 cells [35]

CDDO-Im Induces apoptosis in estrogen receptor negative and in BRCA1 null cells;
Inhibits EGFR/STAT3/Sox-2 pathway

[31–34]

Glioma and glioblastoma

OA Induces apoptosis of astrocytoma cells [36]

Inhibits proliferation of U373 glioblastoma cells and suppresses STAT3
phosphorylation

[37]

CDDO; CDDO-Me; CDDO-Im Inhibits proliferation of glioblastoma cells U87MG and U251MG and
neuroblastoma cells (SK-N-MC)

[38]

All CDDO analogs Induces apoptosis in 22 pediatric solid tumor cells [39]

Hepatocellular cancer

OA Activates Keap1-Nrf1-ARE pathway; Exhibits hepatoprotective and
chemopreventive effects

[16,20,41–44]

Furoxan- and glycosyl-based NO releasing
OA

Induces apoptosis in HCC cells [50–52]

O(2)-glycosylated diazeniumdiolate-OA Decreases mitochondrial membrane potential and induces apoptosis in
HCC cells

[55,56]

Azaheterocyclic-OA Exerts cytotoxic activity in BEL-7404 cell line [58]

PABA/NO-OA Modulates ROS/MAPK pathway [59]

Leukemia and lymphoma

OEOA Induces G1 cell cycle arrest and differentiation in K562 HEL and JURKAT
cells

[62]

OA vinyl boronates Inhibits proliferation of JURKAT, K562 and Jijoye cells [63]

CDDO; CDDO-Me; CDDO-Im Induces apoptosis in myeloid leukemia cells, pediatric acute lymphoblastic
leukemia, MOLT-4, chronic lymphocytic leukemia, U937, HL-60, in
diffuse large B-cell lymphoma cells; Inhibits NF-κB activation in U-937
cells and induces autophagy in imatinib resistant chronic myelogenous
leukemia cells

[64–68,74]

Lung cancer

OA Induces apoptosis of normal and multidrug resistant non-small cell lung
cancer cell line

[77]

CDDO-Me Induces apoptosis by modulation of mitochondrial membrane potential in
lung cancer cells

[79–81]

Ovarian cancer

CDDO Inhibits proliferation of 2774, SKOV3, CAOV3, OVCAR3, NMP-1, HEY,
2008 and 2008.C13 ovarian cancer cells

[82]
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Molecules Biological effects References

CDDO-Im Induces apoptosis and inhibits JAK/STAT activation in normal 2780,
SKOV3, OVCAR3, HEY and multidrug resistant variants

[9]

CDDO-Me Inhibits IL-6 secretion, STAT3-regulated gene products in paclitaxel and
cisplatin resistant cells and in OVCAR-5 and MDAH2774 cells

[83–85]

Osteosarcoma cancer

Dextrose-OA Induces apoptosis in MG-63, U2-OS, HOS and LM8 cells [86]

Pancreatic cancer

OA Combination with 5-fluorouracil exhibits synergistic cytotoxic effect in
Panc-28 cells

[88]

CDDO-Me Inhibits NF-κB in MiaPaCa-2 and Panc1 cells; Inhibits IL6 secretion and
STAT3 phosphorylation in transgenic pancreatic cancer cells

[89–91]

CDDO-Im Induces apoptosis by modulating mitochondrial glutathione [92]

Oleanane imidazole carbamates; N-
acylimidazoles; N-alkylimidazoles

Inhibits proliferation in AsPC-1 cells [94]

Prostate cancer

CDDO-Me; CDDO-Im Increases DR4 and DR5 expression; Inhibits the growth of LNCaP,
ALVA31, PC3 and PPC1 cells

[95–97,99]

Skin cancer

OA Induces apoptosis of B16F2 melanoma cells [101]

CDDO Increases cytoplasmic fee calcium and induces apoptosis of COLO16 cells [103]

CDDO-Im Induces apoptosis of melphalan, dexamethasone and doxorubicin resistant
cells; Inhibits STAT3 phosphorylation

[104,105]
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Table 2

In vivo antitumor activities of natural and synthetic oleanolic acid.

Molecules Tumor model Dose References

OA Inhibits TPA-induced skin tumors in
mice

2.5, 5 or 10 μmol/0.2 ml/mouse; 30
min pretreatment

[122]

Inhibits HCC tumors in Balb/c mice 75 or 150 mg/day, i.p.; 3 weeks [50]

Inhibits 1,2-dimethyhydrazine
induced colon carcinoma in rats

25 mg/kg, oral; 4 weeks [117]

Inhibits melanoma-induced lung
metastasis

5 mg/kg/day or 10 mg/kg/day, i.v. ;
18 days

[76]

CDDO Inhibits leukemia and lymphoma
growth in TRAF2DN/Bcl2 transgenic
model of CLL and SBL

5, 10 or 20 mg/kg, nine
administrations; 21–25 days

[66]

CDDO-Me Inhibits breast cancer growth in a
MMTV-neu (ErbB2/HER2)
transgenic mouse model

60 or 100 mg/kg, diet; 45 weeks [113]

Inhibits breast cancer growth in
BRCA1 null mice model

50 mg/kg, diet; 18–24 weeks [114]

Inhibits MDA-MB-435 ER, MDA-
MB-468 ER and MCF7 ER
xenografts in mice

20 mg/kg/mouse/day, i.v., thrice
weekly; 3 weeks

[29,112,115]

Inhibits ER-negative breast cancer in
PyMT mice

50 mg/kg, diet; various time points [116]

Inhibits the progression of prostate
cancer in transgenic TRAMP mice
model

7.5 mg/kg, oral, 5 days/week; 20
weeks

[119]

Significantly improves survival in a
syngenic acute promyelocytic
leukemia mice model

5 mg/kg; 2 day intervals for 23
days

[121]

Inhibits pancreatic tumor growth in a
xenograft mouse model

7.5 mg/kg/day, oral; 4 weeks [93]

Inhibits pancreatic tumor growth in a
transgenic mouse model of pancreatic
cancer

60 mg/kg, diet; variable time points [23]

Inhibits lung carcinogenesis in A/J
mouse model

CDDO-Me 60 mg/kg, diet; CDDO-
EA 400 mg/kg, diet; 15 weeks

[21,124]

CDDO-Me nanoparticles Inhibits subcutaneously implanted
4T1 breast cancer growth in Balb/c
mice

200 μg/mouse, i.v.; 2 days interval,
5 injections

[30]

CDDO-Im Inhibits hepatocellular carcinoma and
reduces metastatic tumor burden

800 mg/kg, diet; 5 days/week for
56 days

[33,108]

Exerts chemopreventive effect when
administered in combination with
BXL0124 to MMTV-ErbB2/neu
mice

BXL0124 (0.3 μg/kg), oral, for 56
weeks; CDDO-Im (3 μmol/kg); 6
times/week for 3 weeks

[33]

Inhibits melanoma tumors in BDF1
mice and L1201 murine leukemia

50, 100 or 200 mg/kg, i.p.; Twice a
day for 7 days

[120]

CDDO-Im nanoparticles Inhibits orthotopically implanted
breast tumor cells (4TO7 or
MMTVB-neu) in female Balb/c nude
mice or FVB/NJ mice

200 ml PBS (1.36 ×1013 particles),
i.v.; 8 times in 46 days

[112]

Inhibits leukemia and lymphoma
growth in TRAF2DN/Bcl2 transgenic
model of CLL and SBL

5, 10 or 20 mg/kg, i.p.; 21–25 days [66]
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Molecules Tumor model Dose References

Dicyano - CDDO Inhibits UV-irradiated skin tumor in
SKH1 hairless mice

10 nM, topically; Twice/week for
17 weeks

[123]

Furoxan- and glycosyl-based OA Inhibits SMMC-7721 HCC tumors in
mice

12.5 or 25 mg/kg, i.p.; 3 times/
week for 21 days

[53,54]

O(2)-glycosylated diazeniumdiolate-based OA Inhibits SMMC-7721 HCC tumor in
mice

3 mg/kg, i.v.; 3 times/week for 3
weeks

[55]

PABA/NO-based OA Inhibits H22 solid tumors in mice 10, 20 or 40 mg/kg/day, i.p; 14
days

[59]

AMR-Me Inhibits DMBA- induced breast
tumors in rats and interferes with
Wnt/β-catenin and NF-κB signaling

0.8, 1.2 or 1.6 mg/kg, oral; 3 times/
week for 18 weeks

[109–111]

Dextrose OA Suppresses LM8 osteosarcoma
growth and lung metastasis in mice

25, 50 or 100 mg/kg i.p.; 4 weeks [86]
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