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Abstract

Once a backwater in medical sciences, aging research has emerged and now threatens to take the

forefront. This dramatic change of stature is driven from three major events. First and foremost,

the world is rapidly getting old. Never before have we lived in a demographic environment like

today and the trends will continue such that 20% percent of the global population of 9 billion will

be over the age of 60 by 2050. Given current trends of sharply increasing chronic disease

incidence, economic disaster from the impending silver tsunami may be ahead. A second major

driver on the rise is the dramatic progress that aging research has made using invertebrate models

such as worms, flies and yeast. Genetic approaches using these organisms have led to hundreds of

aging genes and, perhaps surprisingly, strong evidence of evolutionary conservation among

longevity pathways between disparate species, including mammals. Current studies suggest that

this conservation may extend to humans. Finally, small molecules such as rapamycin and

resveratrol have been identified that slow aging in model organisms, although only rapamycin to

date impacts longevity in mice. The potential now exists to delay human aging, whether it is

through known classes of small molecules or a plethora of emerging ones. But how can a drug that

slows aging become approved and make it to market when aging is not defined as a disease. Here,

we discuss the strategies to translate discoveries from aging research into drugs. Will aging

research lead to novel therapies toward chronic disease, prevention of disease or be targeted

directly at extending lifespan?

Introduction

While the quest for immortality goes back thousands of years, critical thinking about why

we age begins, it can be argued, with Darwin and natural selection. If only the fittest

survive, why would an organism age, lose functional capacity and die. Yet aging occurs in

almost every species (1). Alfred Rüssel Wallace proposed an early version of group

selection, where it would be beneficial for older individuals to be eliminated so that the

reproducing younger individuals can have access to a larger allotment of available resources.
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The evidence for group selection with respect to aging is limited, but the question was right

and the apparent answer at least in part comes from data on life expectancy. Essentially,

average life expectancy among humans was under 25 and very few people died from age-

related diseases (2). More prevalent causes of mortality were infectious disease, childbirth

and malnutrition. There was no selective pressure to extend reproductive capacity or life

expectancy since very few people lived long enough for it to matter. While beyond the scope

of this review, evolutionary theories of aging have continued to evolve, with elegant

hypotheses such as antagonistic pleiotropy and the disposable soma theory emerging (3, 4).

Readers are encouraged to seek out the following reviews (5-7).

What is worth considering here is whether the aging process is fixed or malleable? All data

collected from the wild and from experimental organisms indicates the latter: life

expectancy and the intrinsic aging process are relatively easily altered. For instance, similar

species in the wild can have widely divergent life expectancies based on requirements

imposed by evolutionary life history traits and other environmental factors (8). Moreover,

hundreds of genetic mutants have been identified with longer lifespan and often longer

healthspan, the disease free and highly functional period of life (9).

Against this backdrop, a dramatic change in demography has occurred within the last two

centuries. Never before have humans been so old. Life expectancy has surpassed 80 in many

countries and, coupled with a declining birthrate in many of those same countries, the

percentage of seniors is skyrocketing. In the near future, up to 40% of the Japanese and

Korean populations will be over 65 and the rest of the developed world will not be far

behind (http://www.who.int/ageing/publications/global_health.pdf). Using current

projections, two of the nine billion people on the planet in 2050 will have lived at least six

decades.

Older people offer experience and wisdom, but are also increasingly beset with chronic

disease. Aging itself is the biggest risk factor for most of the leading causes of disease

burden and mortality, including cardiovascular and neurodegenerative disease, metabolic

syndromes and most forms of cancer. Add to that societal changes leading to over nutrition,

lack of exercise and stress and the result is that most people over 65 in the US have 1-3

chronic diseases (http://www.who.int/ageing/publications/global_health.pdf). This reduces

their productivity and dramatically escalates health care costs. In summary, the silver

tsunami threatens to leave wrecked economies in its wake.

One partial solution is to keep people healthy longer and aging research may have much to

offer. By delaying aging, it may be possible to prevent the onset of chronic diseases and

increase healthspan. Healthy seniors could work longer at high rates of productivity and

would certainly reduce the burden of healthcare. But aligning medical research on aging

with prevention has its challenges. How do drugs that slow aging make it to market when

aging is a slow process and not even recognized as a disease by the FDA. Prevention trials

for chronic diseases are also slow and often expensive. Will drugs that slow aging be

effective for treatment of chronic diseases? It is not obvious that a drug which slows aging

will have any impact after an age-related disease is already creating havoc.
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In this review, we cover briefly the progress in studies on the genetics of aging and then turn

to small molecules that modulate aging. The two best studied, rapamycin and resveratrol

will be discussed in some detail. Finally, we return to the question of the potential utility of

aging drugs, making the argument that they will be effective therapeutic agents for disease

states, but maybe not for the reasons that are most obvious.

The Genetics of Aging

Before active pursuit of aging in invertebrates began in earnest, much of our understanding

of the molecular and genetic events driving aging was based on correlative studies of young

and old animals. However, starting in the 1960s, genetic studies of aging Drosophila

melanogaster and Caenorhabditis elegans, simpler and cheaper model organisms, began to

yield insights (10-14). Studies in yeast replicative aging, the number of times one mother

cell can divide and produce a daughter (15, 16), date back to 1959 and turned to genetics as

well (17, 18). Yeast chronological aging, the survival of yeast cells in a post-replicative

environment (15, 19), has also proven highly informative. It was clear from these studies

that extending lifespan was possible through methods such as mutagenesis and screening

(10, 12, 20), or through selection, for instance, by isolating flies that maintain late

reproductive capacity over many generations (13, 21).

The first longevity mutants began to be isolated in C. elegans and for yeast replicative aging

in the 1990s and this field of research has gained steam in dramatic fashion ever since (11,

20). Worms and yeast have led the way in part because they are amenable to whole genome

screening for longevity and hundreds of genes whose reduced expression lead to lifespan

extension in both organisms have been identified (22-30). Critically, in many cases ortholog

families have been identified that modulate aging across multiple species (31, 32). In

addition, quantitative evidence has been generated that longevity pathways are conserved

between C. elegans and yeast (replicative aging) (33). These results provide a demonstration

that the aging process has significant overlap between disparate species, although there will

certainly be unique features as well. By studying the conserved ones, it is likely possible to

gain major insights into the human aging process.

Indeed research is starting to bear out this assertion. Four of the major pathways known to

influence aging are insulin/IGF signaling (IIS) (11, 34-36), Target of Rapamycin (TOR) (22,

23, 37-40), the protein kinase A (PKA) pathway (41, 42) and the protein deacetylase SIR2

(43-45). All four of these were defined first in invertebrates but evidence for the first three

affecting aging has since followed in mice and even humans. The case for SIR2 and its

orthologs is more complex, but also promising (see below). Mice with reduced IIS, mTOR

or PKA signaling all have extended lifespan and a majority of evidence suggests they are

healthier and protected from many age-related diseases (46-51).

For humans, most evidence comes from genetic studies of centenarians. Mutations in the

FOXO3A gene, encoding a transcription factor downstream of IIS signaling have been

associated with enhanced longevity (52-57). Further linking the IIS pathway to human

longevity, centenarians are more likely to have IGF receptor mutations (58). In this case,

these mutations are known to be hypomorphic, IGF signaling is reduced when they are
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introduced into cells in culture. With respect to the PKA pathway, Zhao et al. identified

hypomorphic mutations in the β-adrenergic receptor, ADRB2, that are predicted to lead to

reduced PKA signaling (59). All of these findings are consistent with the theory that

longevity pathways are conserved among eukaryotes, implying that interventions to slow

aging in animal models may have a similar effect in humans. In the next sections, we

examine the two primary pharmacological interventions that affect aging and age-related

disease in animal models.

Rapamycin and the Tor Pathway

The story of rapamycin starts with a wide-ranging scientific expedition by a group of

Canadians to Easter Island in the 1960s and a soil sample that proved to have an activity

capable of killing eukaryotic cells. That activity was later attributed to a small molecule,

rapamycin, which was produced by bacteria (60). Since its discovery, rapamycin has been

the focus of intense research both from academics and pharmaceutical companies. Clinical

trials have been performed with rapamycin and derivatives (rapalogs) in a wide range of

disease conditions and while side effects of treatment are significant, the class of drugs has

been approved for several disease indications (61, 62).

A major discovery that advanced the field involved the identification of the Target Of

Rapamycin (TOR) kinase and the vast biology that emerged from this line of investigation.

Here we will not cover TOR signaling in depth and readers are directed to several recent

reviews (63, 64). The finding that reduced TOR signaling enhanced longevity in yeast,

worms and flies suggested that reduced TOR signaling might have a similar effect in

mammals (22, 23, 37-40). The NIA Intervention Testing Program tested the small molecule

during mouse aging and rapamycin turned out to be the first robust hit, extending lifespan by

15% in females and 10% in males, even when administered relatively late in the lifespan of

a mouse (20 months) (47). Rapamycin has also been reported to extend lifespan in another

mouse strain (48), as has deletion of the downstream TOR target, S6 kinase 1 (S6K1) (65).

Moreover, in physiological aging studies, rapamycin is reported to delay a subset of age-

associated pathologies, including neurodegenerative diseases, age-related cardiac

hypertrophy and others (66-71). It is not a panacea for chronic disease, however as chronic

administration does not affect phenotypes including kyphosis and may accelerate others

such as cataracts (66, 70).

There are two TOR complexes, and the majority of evidence indicates that it is reduced

TORC1, and not TORC2, activity that promotes longevity (61, 63). Rapamycin primarily

inhibits TORC1 but upon chronic administration can inhibit TORC2 signaling as well (72).

TORC1 is ideally suited to modulate aging processes. Among upstream regulatory pathways

that control TORC1 activation are extracellular nutrient levels including carbohydrates

(mediated through the IIS pathway) and amino acids (63, 64, 73). High nutrients and

activated TORC1 translates to rapid cell growth and proliferation. A rapamycin-mediated

reduction in TORC1 signaling may thus phenocopy dietary restriction, known to enhance

longevity in a wide range of organisms for many decades. The jury remains out on this

hypothesis and perhaps the best interpretation of current data is that dietary restriction and

rapamycin-mediated TORC1 inhibition extend lifespan through overlapping but non-
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identical effects (74, 75). Other inputs controlling TORC1 activation include stress sensors

such as MAP kinase and AMP kinase signaling (76, 77).

Downstream of TORC1 are a range of pathways that permit control of cell growth and

proliferation, as well as stress response pathways. For instance, activated TORC1 leads to

enhanced protein translation and cell cycle entry, whereas reduced TORC1 activity instead

enhances autophagy and proteasome-mediated turnover (63, 64, 73). Thus, TORC1 is poised

to integrate environmental signals and modulate downstream responses accordingly.

Although likely something of an oversimplification, high TORC1 equates to rapid growth,

reproduction and aging whereas reduced TORC1 signaling delays growth and enhances

cellular stress response pathways leading to enhanced longevity.

Rapamycin and derivatives have been and continue to be tested in a wide range of clinical

trials for numerous chronic disease indications, and the drugs have already been approved

for uses in cancers including renal carcinomas and to inhibit restenosis after implantation of

stents during angioplasty (61). It is also used to prevent organ transplant rejection in

combination with other potent immunosuppressants such as cyclosporine A (78). In

addition, chronic rapalog administration results in a range of side effects such as

hyperglycemia and dyslipidemia. Interestingly, at least some of the side effects appear to be

through inhibition of hepatic TORC2 (79),. Whether rapalogs prove effective to slow aging

in humans remains to be determined, but the results establish proof-in-principle that it is

possible to slow aging and, when achieved, delay the onset or progression of at least a subset

of age-related chronic diseases.

Resveratrol, Stacs and Sirtuins

Overexpression of SIR2 enhances replicative lifespan in yeast (43). Sir2 is the founding

member of a class of protein deacetylases termed Sirtuins. Eukaryotic species have multiple

Sirtuins (80), but it is SIR2 orthologs that have been linked to aging in worms and flies,

albeit controversially. Some studies report that overexpression of Sir.2-1 extends lifespan in

C. elegans, but others have failed to replicate this finding (45, 81, 82). Similar findings have

been reported with Sir2 in flies (81, 83, 84). The reasons for these discrepancies remain to

be fully elucidated. In mice, the closest ortholog by sequence homology is SIRT1, however

constitutive expression failed to extend lifespan in mice (85). Recently, it was reported that

overexpression of SIRT1 in the brain enhances longevity likely through enhanced

hypothalamic function with age (86). Overexpression of another Sirtuin, SIRT6, also extends

lifespan, but only in male mice (87).

The functions of Sirtuins linked to enhanced longevity remain to be elucidated. In yeast,

enhanced Sir2 activity suppresses rDNA recombination (43), reducing the number of

extrachromosomal rDNA circles, which accelerate aging through still poorly defined

mechanisms (88). However, there are other functions of yeast Sir2 that have been linked to

longevity, including possible effects on gene expression near telomeres and on replication at

ARS elements in rDNA repeats (89, 90). In worms, Sir.2-1 overexpression may lead to

enhanced function of the FOXO ortholog, DAF-16, possibly linking the Sirtuin pathway to
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IIS signaling (45). In flies, the mechanisms also remain poorly defined but involve

interaction with another deacteylase, Rpd3 (44).

In mice, the mechanisms underlying the longevity effects of SIRT1 overexpression in the

brain likely involve enhanced hypothalamic neural activity, which protects and maintains

mitochondrial function in aging skeletal muscle (86). It also remains possible that tissue-

specific SIRT1 overexpression may affect aging directly. Also of note, deletion of SIR2

orthologs have pronounced metabolic effects and may be required for lifespan extension by

dietary restriction, depending on the DR regimen that is chosen and other unidentified

factors (91, 92).

In a screen for SIRT1 activators, the molecule resveratrol was identified to enhance the

SIRT1 activity in an in vitro assay using acetylated non-native substrates (93). The substrate

was engineered for high throughput screening and involved the release of a fluorescent

moiety triggered by the deacetylase reaction. A series of other molecules, named Sirtuin

Activating Compounds (STACs), were also identified that could activate SIRT1. These

molecules have triggered a wave of studies reporting potentially beneficial effects in chronic

disease assays, and several clinical trials have been initiated. See recent reviews for a more

complete description of these studies (80, 94).

The activity of resveratrol and STACs toward SIRT1 has also been the subject of great

controversy, starting with the discovery that these molecules generally fail to activate SIRT1

toward native peptides in vitro (95, 96). Follow up studies suggested that in the original

screen, the non-native fluorescent moiety interfered with SIRT1 deacetylation and that

resveratrol and STACs alleviate that interference. In vivo, however, these same molecules

could promote deacetylation of SIRT1 substrates and their physiologic properties were

often, but not always, found to be SIRT1-dependent (97). A recent report may have resolved

this controversy, finding that a subset of native substrates have amino acids that act similarly

to the fluorescent moiety in the screen (98). Therefore, resveratrol and STACs appear to

demonstrate selective SIRT1 activation.

To date, resveratrol and STACs have been reported not to extend mouse lifespan (99), with

data in non-vertebrate organisms conflicting (100). Specifically, a large study by the NIA

Intervention Testing Program was unable to detect enhanced longevity in mice (99, 101).

Given the recent report that brain-specific SIRT1 expression extends mouse lifespan, it is

possible that other STACs will have a longevity effect, but further studies will be needed to

address this question in detail. Interestingly, resveratrol does extend lifespan in one fish

model, the annual fish Nothobranchius (102, 103).Regardless of their impact on lifespan, the

Sirtuin activating compounds represent another intriguing class of small molecules derived

from aging studies that may have significant clinical applications.

Other Drugs Linked to Aging

Within the next few years, several more drugs likely will be reported to extend mouse

lifespan. However, two already widely used drugs are worth discussing. One, metformin,

has recently been reported to increase male mouse median and maximum lifespan by

approximately 5% (104). This is the latest and most definitive of several studies examining
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the effects of metformin on lifespan, with a variety of results observed (105). It is

particularly relevant since metformin is a widely used drugs for type II diabetes and

relatively safe for human administration. Also consistent with the possibility that metformin

modulates aging, it has been reported to be beneficial in more than one age-related disease.

Reports from clinical studies indicate that the drug also reduces risk of cardiovascular

disease and cancer (106, 107). Although other activities have been reported, metformin is

primarily thought of as an activator of AMP kinase, which responds to cellular energy

deficits to mediate starvation responses in the cell (108). Therefore, as proposed for both

rapamycin and resveratrol, metformin can be considered a dietary restriction mimetic.

The case for statins as an aging drug can also be proposed. Statins inhibit HMG-CoA

reductase, leading to reduced levels of low density lipoprotein (LDL) associated cholesterol

and are widely used with efficacy in cardiovascular disease states (109, 110). Statins may

also prevent cellular senescence, possibly through reducing levels of reactive oxygen species

and/or stabilizing telomere structures (111). Although the NIA Intervention Testing Program

was unable to detect any longevity benefit with simvastatin (99), statins have been reported

in human clinical trials to protect in some cases against other age-related diseases including

dementias and forms of cancer. It has also been suggested that these drugs should be

administered in a widespread fashion to individuals above 50. However, there are several

notes of caution (109, 110). First, there are significant although manageable side effects

associated with statins in a subset of patients. In addition, the protective effects of statins

against diseases other than CVD are not always seen in clinical studies and finally, it has

been debated whether statins are beneficial for CVD in individuals over the age of 80 (109).

While further studies are certainly warranted, it seems premature to classify statins as anti-

aging drugs at this juncture.

How Does Aging Research Translate to Clinical Applications?

The last two decades of research have led to the following hypotheses: (1) aging can be

delayed in animal models (including mammals) with genetic interventions and small

molecules; (2) the pathways modulating aging are at least partially conserved in eukaryotes;

and (3) aging is a common cause of many if not most chronic diseases that are the leading

contributors to morbidity and mortality. The latter assertion is based on findings that

interventions delaying aging in animal models protect against chronic diseases. Put this

together and the potential is obvious: develop interventions to slow human aging as a means

of preventing disease and extending healthspan. This approach could improve quality-of-life

while simultaneously lowering healthcare costs. Whether aging drugs will also serve as

treatment for diseases is another issue, addressed below.

But this approach does not blend well with current drug development strategies, which are

primarily aimed at treatment strategies. Many of these treatments are accompanied by high

costs and some fail to significantly improve quality-of-life. In fact, approval of drugs aimed

at chronic diseases has occurred at a slow pace. Approval of drugs aimed at prevention is

feasible, but these studies are often shunned to extended trial times and high costs. Finally,

even if a drug existed that extended lifespan without side effects, it would be hard to get it

approved as aging is not a disease indication. Thus the conundrum - there is a disconnect
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between the likely benefits of drugs that slow aging and likely strategies that would get them

approved for human use (Figure 2).

This has led the small number of researchers focused on aging to take hits and direct them at

treatment of chronic diseases. But why should this work? Aging may indeed enable disease,

but why should the specific molecular pathology that accompanies chronic diseases be

mitigated by methodologies slowing aging. Early evidence, however, suggests that this

strategy might work. In this section, we lay out a hypothesis for why drugs that slow aging

may be viable treatment options for chronic diseases and it comes with a twist - it may not

be the diseases of aging for which small molecules extending lifespan show the most

efficacy.

As an example, we describe a recent study we reported examining a mouse model of Emery-

Dreifuss Muscular Dystrophy (EDMD2/3) and Dilated Cardiomyopathy (CDM1A) (112).

These diseases are caused by mis-sense mutations in the LMNA gene, which encodes the

nuclear intermediate filaments A-type lamins (113, 114). Interestingly, there are over a

dozen diseases associated with mutations in LMNA, including multiple progeroid syndromes

such as Hutchinson-Gilford Progeria Syndrome (HGPS). The motivation for the study was

to test rapamycin in a mouse progeria model, reasoning that a drug that affects normal aging

may be highly efficacious in progeria. As a control, with the intent of showing specificity for

rapamycin toward HGPS, we also tested the Lmna−/− mice (115), which succumb to

conduction defects due to the dilated cardiomyopathy after 6-8 weeks (116). The surprise,

rapamycin was ineffective in the progeria model (unpublished observation), but highly

effective in extending survival as well as improving cardiac function in the Lmna−/− mice

(112, 117). Why should rapamycin work for this disease, which is not associated with

aging? The likely answer, the TORC1 pathway is aberrantly upregulated in the Lmna−/−

mice (112), and in another Lmna mutant mouse model as well as tissue from human patients

(117). The connection between A-type lamin and TORC1 is still being elucidated, but the

reason rapamycin works is readily apparent - it suppresses elevated TORC1 activity in

pathologic tissues.

Interestingly, TORC1 activity may also be upregulated in a variety of aging cells and

tissues, including the mouse liver, hematopoietic stem cells and others (48, 118). In the

initial NIA Intervention Testing Program study, rapamycin was only administered at 20

months of age (47), leading many to predict even bigger benefits associated with earlier

administration. Yet this proved largely incorrect. Rapamycin administration starting at 9

months only led to lifespans slightly longer than when given at 20 months (99). From these

findings, it may be that the benefits of rapamycin come not from reduced steady-state

TORC1 signaling in young animals, but rather from suppression of age-associated aberrant

upregulation. While more studies are needed to confirm this hypothesis, it presents an

intriguing picture of the genetic pathways identified to modulate aging.

While TORC1 becomes elevated at least in a subset of aging tissues, Sirtuin activity

declines. For instance, Sir2 degradation is enhanced during yeast replicative aging, leading

to reduced activity and accompanying phenotypes (89). Similarly, SIRT1 function declines

with age in at least a subset of mouse tissues (119, 120). Interestingly, while it has been
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relatively easy to identify conserved longevity pathways, determining why they affect aging

and how they interface with mechanistic hypothesis of aging such as oxidative damage,

altered proteostasis, telomere shortening etc. has been very challenging. One possibility is

that Sirtuin and TOR dysfunction are not the primary events that drive aging but rather the

secondary responses to those events. In other words, these are the pathways that go wrong

when things go wrong, and moreover, that once aberrantly regulated they further contribute

to the pathology of aging. Suppressing this dysfunction therefore enhances lifespan and

healthspan.

If this is the case, there may be significant overlap between aging and disease states - the

same pathways may be mis-regulated. This may be the case at least with both TOR and

Sirtuins, whose altered function has been linked to pathology in a wide range of disease

conditions. Of course, the concept will require testing with other longevity pathways as they

emerge, but if true, it leads to a reasonable explanation of why small molecules that slow

aging will be effective therapeutic agents, as well as a path to approval. Moreover, it

suggests that screening for delayed aging may yield a wide range of new pathways and

chemical classes for chronic diseases. Finally, it implies that the molecules slowing aging

may be as likely to have efficacy for non-aging diseases as ones associated with aging.

Ultimately, the focus has to turn to healthspan, either tested directly or through disease

prevention studies. Avoiding disease rather than slowing progression is an economic and a

quality-of-life winning ticket. This will require a change of thinking in drug development,

including an increased tolerance for prevention trials and acceptance of new parameters of

aging, such as frailty and altered biomarkers, as disease indications. This latter issue remains

a major challenge for aging and longevity specifically. While many efforts involving both

unbiased large-scale and targeted hypothesis-driven studies have been performed, there

remains a dearth of solid biomarkers that are predictive of longevity in mice or humans.

Studies of miRNA levels in serum may prove to be a useful approach to generate these

critically needed biomarkers. In hand, it would be feasible to examine whether anti-aging

drugs reduce biomarkers of aging in human trials.

Aging research has unique features. Not only does it touch upon the major chronic disease

states that are currently plaguing humanity, but it offers the potential of aligning medical

research with disease prevention. After all, at least in the cases studied to date, slowing

aging is coupled with extending healthspan. The best way to treat a major debilitating

disease is to not get it in the first place and aging research has the potential to help achieve

that goal. With new small molecule interventions that slow aging emerging, the opportunity

is there for aging research to revolutionize medicine. Rapamycin derivatives and STACs

may or may not be appropriate to extend healthspan in humans, but as more and more

candidates emerge, the likelihood dramatically increases that one will work in humans.

Methods

This paper conforms to the relevant ethical guidelines for animal research.
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Figure 1. Possibilities for lifespan extension
In the diagram (Blue - normal lifespan, the total lifespan is depicted as the length of the line, whereas morbidity onset associated

with chronic diseases occurs at the inflection point. There are three ways in which lifespan might theoretically be extended. In

red, lifespan extended with no alteration in the onset of morbidity. This is the most non-preferable option since it creates a

prolonged period of high healthcare costs and low quality of life. In green, lifespan extension is accompanied by a coordinate

delay in the onset of morbidity. Thus, healthspan is enhanced relative to morbidity. Many animal models of enhanced longevity

appear to fit this paradigm. Finally, in orange, lifespan is extended with a reduction in the period of chronic disease, a condition

termed compressed morbidity. While the most preferable, this result has not been consistently achieved in animal models to

date.
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Figure 2. The translational promise of aging research is mis-aligned with current approaches to drug development
By manipulating the pathways that underlie and promote aging, researchers hope to extend healthspan, the disease free and

highly functional period of life (purple). This approach will likely lead to interventions that prevent the onset of age-associated

diseases (green). Less clear is whether treatments for disease will be generated (orange). However, most drug development is

focused on disease treatment, with a smaller emphasis on prevention in part due to the high cost of often lengthy trials. The

concept of providing drugs to healthy people to keep them healthy longer has yet to emerge as a mainstream approach.
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Figure 3. What goes wrong when things go wrong
From recent studies, we put forward the hypothesis that major aging pathways that have been discovered, TOR signaling and

SIRT1-dependent protein deacetylation, may be linked not only to normal aging processes but also over-represented in disease

states. With mammalian aging, it is emerging that TOR signaling is elevated aberrantly and SIRT1 activity is reduced. These

may occur in response to the primary molecular events that underlie aging, but appear not to be beneficial compensations.

Restoring SIRT1 activity of suppressing elevated TOR signaling suppresses aging pathology, extends lifespan or both. Primary

aging molecular events almost certainly promote many disease states as well. Interestingly, however, aberrant TOR and SIRT1

function may be an enriched occurrence in a range of diseases, even ones not associated with aging. If true and if the trend

continues, it suggests that a new approach to therapy may be possible. Aging pathways may emerge as targets for a wide range

of disease indications, not all of which age-related. Thus it may be possible to identify small molecules that target aging

pathways, such as rapamycin and resveratrol, and then use them to probe disease indications for efficacious outcomes. If so,

aging research will yield therapeutic strategies, but not in the way expected.
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