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The actomyosin network of trabecular meshwork (TM) cells influences intraocular pressure

(IOP) and aqueous humor drainage resistance1 and represents an important therapeutic target

for glaucoma. The biology of actin in the TM and effect of agents that alter actin have been

studied primarily in cultured TM cells. We are developing a tissue-based model of the

human TM in which live cells and cellular interactions can be directly observed in situ.2,3

Here we report our initial novel observations of actin in live cells within the human TM

following in situ baculovirus transduction with actin-RFP.

Human donor corneoscleral tissue was received in Optisol GS (Bausch & Lomb, Rochester,

NY). For institutional reasons, age, death and other patient information were not available to

us. Typical age at death ranged from 40-70 years and typical post-mortem age was 7-days

(oral communication, Dr. Martin Heur), with experiments begun within a day of receipt.2-5

TM was cut into segments (Fig. 1) and representative segments were randomly selected for

viability analysis, as previously described,2 prior to incubations for F-actin labeling. Briefly,

tissue was co-incubated with Calcein AM and propidium iodide at 37°C and 8% CO2 prior

to live cell imaging. Tissues with at least 50% Calcein-positive cells were considered

viable.2 Viable tissue was incubated with Cellular Lights™ Actin-RFP (Life Technologies;

n=5) following manufacturer's instructions. Cellular Lights uses a baculovirus delivery

vector (BacMam technology) that transduces mammalian cells and directs fluorescence

expression by TagRFP fusion to the N-terminus of beta-actin. Some specimens were co-

incubated with Hoechst 33342 to label cell nuclei. For comparison, different tissue segments

were fixed (4% parformaldehyde), permeabilized in 5% Triton X-100 (2h, 4°C), and

incubated with Alexa Fluor 568®-conjugated phalloidin (n=40).4

The tissue was imaged on a PerkinElmer™ Ultraviewer spinning disk confocal microscopy

system with 63× water immersion objective. Excitation/emission: 488/525nm

(autofluorescence); 555/584nm (Actin-RFP; phalloidin) and 350/460nm (Hoechst)

Following baculovirus transduction, cell clusters expressing actin-RFP (red fluorescence)

were seen associated with autofluorescent TM uveal beams (Fig. 2A), corneoscleral pores
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(Fig. 2B,C) and juxtacanalicular fibers (Fig. 2D). Actin-RFP had a primarily cortical

distribution and outlined cell borders, comparable with phalloidin labeling (compare figs.

2E-H). Actin distribution in the cytosol was perinuclear (Figs. 2D, 2H; closed arrowheads),

punctate (Figs. 2A, 2C, 2D-H; open arrowheads) and filamentous (Figs. 2B-D; open

arrows). In some sections, actin filaments were aligned along uveal beams (Figs. 2A, 2E)

and corneoscleral pores (Figs. 2B, 2F). Some cell borders had an appearance resembling

membrane ruffles typically seen in cultured cells (Fig. 2B, 2C; closed arrows). These ruffle-

like structures were not observed in phalloidin-labeled cells. Nuclei were closely associated

with fluorescence-labeled actin (Figs. 2A, 2D-H; asterisks). No nuclear fragmentation was

seen.

We have observed the actin cytoskeleton of live cells in the human TM following

baculovirus transduction with actin-RFP. Optical sections captured various aspects of the

actin cytoskeleton at different TM depths. Actin distribution was perinuclear, punctate,

filamentous, and prominent in cell cortices and borders. Notably, prominent stress fibers

were not seen. This may be due to the tissue micro-environment that differs from that of

rigid-surfaced 2D culture; lack of serum or endogenous factors that enhance actin

polymerization; or optical sectioning of cells in 3D tissue that masks stress fibers.

Alternatively, the lack of uveal and posterior tissue attachments in donor tissue rims could

result in decreased tensions across the TM, and explain the lack of stress fibers.

Actin-RFP labeling showed similarities with phalloidin-labeled actin with one caveat. Actin-

RFP revealed the presence of membrane protrusions reminiscent of ruffles that were not

evident in fixed and permeabilized phalloidin-labeled cells. It could be that Actin-RFP (or

GFP) labeling has particular benefits for visualizing less stable actin structures

(lamellipodia, filopodia) in live cells, a possibility we plan to explore in future studies using

2-photon microscopy.

We used spinning disk laser confocal microscopy that limits phototoxicity during live cell

imaging. We are now optimizing our transduction protocols and using 2-photon microscopy

that is less phototoxic and penetrates deeper than 1-photon microscopy. We have reported

the utility of our human TM tissue-based system for live cell analysis and analysis of protein

induction and expression, extracellular matrix and glaucoma markers.2-6 Our present report

expands the findings of our prior studies with evidence for the model's potential use in

tissue-based real-time studies of actin dynamics and testing of actin-targeting glaucoma

therapies.
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Figure 1.
A: Location of trabecular meshwork (TM) in human corneoscleral tissue. Bar=1mm. B:

Examples of wedges cut from corneoscleral donor tissue. Hashed lines indicate the anterior

and posterior borders of the TM. Blood is present in Schlemm's canal, immediately deep to

the TM.
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Figure 2.
Clusters of live TM cells expressing Actin-RPF (red; A-D) or fixed, phalloidin-labeled (red)

TM cells in the uveal (A, E), corneoscleral (B, C, F, G) and juxtacanalicular (D, H) regions.

Membrane ruffle-like structures (closed arrows) were apparent in Actin-RFP labeled, but not

phalloidin-labeled, cells. Green fibers: TM autofluorescence. Blue or green ovals: Hoechst-

labeled nuclei. Asterisks: nuclei associated with fluorescent actin. Open arrows: filamentous

cytosolic actin. Open arrowheads: punctate cytosolic actin. Closed arrowheads: perinuclear

actin. Bar=10μm.
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